1
|
Oliveira CD, Cardoso MDG, de Souza L, Vieira SLS, Candido GDS, Andrade BF, Alves E, Nelson DL, de Oliveira JE, Ramos EM. Development and characterization of pectin films containing nanoemulsions of the essential oil from Thymus vulgaris for preserving salami. Food Chem 2025; 471:142786. [PMID: 39793363 DOI: 10.1016/j.foodchem.2025.142786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/02/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Emulsions were prepared from T. vulgaris essential oil using the surfactants Pluronic F127 and Tween 80 by mechanical agitation (Emulsion_Tw and Emulsion_Pl) and sonication using an ultrasonic tip (Sonicated_emulsion_Tw and Sonicated_emulsion_Pl). These emulsions were incorporated into pectin films. The use of different surfactants reduced the volatility of T. vulgaris essential oil and, consequently, ensured the maintenance of its antioxidant activity for a longer period of time. Salami samples packaged with pectin films containing essential oil emulsions contained less oxidative aldehydes (51 and 54 total ion count × 105) compared to salami samples packaged with films without essential oil (72 and 92 total ion count × 105), demonstrating the fact that these active films can preserve product quality regardless of the surfactant used.
Collapse
Affiliation(s)
| | | | - Luciano de Souza
- Department of Chemistry, Federal University of Lavras, Lavras 37200-000, MG, Brazil
| | | | | | | | - Eduardo Alves
- Department of Plant Pathology, Federal University of Lavras, Lavras 37200-000, MG, Brazil
| | - David Lee Nelson
- Postgraduate Program in Biofuels, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina 39803-371, MG, Brazil
| | | | - Eduardo Mendes Ramos
- Department Food Science, Federal University of Lavras, Lavras 37200-000, MG, Brazil
| |
Collapse
|
2
|
Huang M, Yu J, Guo M, Zhang J, Ren L. Recent advances in the preservation effects of spice essential oils on fruits and vegetables. Food Chem 2025; 464:141827. [PMID: 39522378 DOI: 10.1016/j.foodchem.2024.141827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Spice essential oils (SEOs) are currently a prominent area of investigation in food preservation due to their natural, effective, and environmentally friendly properties. This review discussed the latest research progress concerning the application of SEO in fruits and vegetables preservation. The article commenced with an overview of the sources of SEOs and their main components, explored their bioactivities, antimicrobial mechanisms, and the microencapsulation and nanotechnology utilizing spice essential oils. Further research explored the applications of SEOs in culinary, pharmaceuticals, cosmetics, agriculture, and food industries, with a focus on evaluating their effectiveness in extending the shelf-life of fruits and vegetables. Additionally, it discusses limitations such as intense aroma and toxicity concerns, while also outlining prospects for future research and applications in the food sector. Overall, SEOs offer promising avenues for effectively prolonging the storage period of post-harvested fruits and vegetables while maintaining their quality attributes.
Collapse
Affiliation(s)
- Mingxin Huang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jia Yu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Min Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China..
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China..
| |
Collapse
|
3
|
Caetano ARS, Cardoso MDG, de Oliveira JE, Batista LR, Alves E, Natarelli CVL, Campolina GA, Ferreira VRF, Nelson DL. Antifungal activity of poly(lactic acid) nanofibers containing the essential oil from Corymbia citriodora Hook or the monoterpenes β-citronellol and citronellal against mycotoxigenic fungi. FEMS Microbiol Lett 2024; 371:fnae083. [PMID: 39380138 DOI: 10.1093/femsle/fnae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/27/2024] [Accepted: 10/07/2024] [Indexed: 10/10/2024] Open
Abstract
Food contamination by mycotoxigenic fungi is one of the principal factors that cause food loss and economic losses in the food industry. The objective of this work was to incorporate the essential oil from Corymbia citriodora Hook and its constituents citronellal and β-citronellol into poly(lactic acid) nanofibers; to characterize the nanofibers by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy and differential scanning calorimetry; to evaluate the antifungal activity by the fumigation method; to evaluate the antimycotoxigenic activity against Aspergillus carbonarius, Aspergillus ochraceus, Aspergillus westerdijkiae, Aspergillus flavus, and Aspergillus parasiticus; and to evaluate the morphology of these microorganisms. All the nanofibers had a regular, smooth, and continuous morphology. FTIR analyses confirmed that the active ingredients were incorporated into the polymer matrix. All samples exhibited antifungal and ochratoxigenic inhibitory activities of up to 100% and 99%, respectively, with the best results observed for (PLA + 30 wt% β-citronellol) nanofibers and (PLA + 30 wt% citronellal) nanofibers. However, 100% inhibition of the production of aflatoxin B1 and B2 was not observed. The images obtained by SEM indicated that the nanofibers caused damage to the hyphae, caused a decrease in the production of spores, and caused deformation, rupture, and non-formation of the conid head, might be an alternative for the control of mycotoxigenic fungi.
Collapse
Affiliation(s)
| | | | | | - Luiz Roberto Batista
- Food Sciences Department, Federal University of Lavras (UFLA), Lavras, 37200-900 MG, Brazil
| | - Eduardo Alves
- Department of Plant Pathology, Federal University of Lavras (UFLA), Lavras, 37200-900 MG, Brazil
| | - Caio Vinicius Lima Natarelli
- Materials Science and Engineering Department, Federal University of São Carlos (UFSCar), São Carlos, 13565-905 SP, Brazil
| | | | | | - David Lee Nelson
- Postgraduate Program in Biofuels, Federal University of The Jequitinhonha and Mucuri Valleys, Diamantina, 39100-000 MG, Brazil
| |
Collapse
|
4
|
Sadaiyandi V, Ramalingam R, Arunachalam KD, D JT. Essential Oils Infused Poly-ε-Caprolactone/Gelatin Electrospun Nanofibrous Mats: Biocompatibility and Antibacterial Study. Appl Biochem Biotechnol 2024; 196:296-313. [PMID: 37126111 DOI: 10.1007/s12010-023-04530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/02/2023]
Abstract
Infections caused by antibiotic-resistant pathogens result in a delayed wound-healing process. As an approach to prevent infections, alternatives in the form of natural antimicrobial products have become public interest. Essential oils derived from plants are used as antimicrobials owing to their broad-spectrum activity against pathogenic organisms. In this study, essential oil from seeds of watermelon, jackfruit, and papaya was incorporated into poly-ε-caprolactone/gelatin nanofibers using an electrospinning technique. The synthesized nanofibers were smooth, continuous, and bead-free. The nanofibers were found to be mechanically competent as confirmed by the universal tensile tester. The antibacterial activity of the various essential oil-loaded nanofibrous mats was determined by disc diffusion assay. Furthermore, they were found to be non-toxic and biocompatible by MTT and CMFDA assays on fibroblast cells. The obtained results have demonstrated that essential oil-loaded nanofiber mats are promising alternatives to conventional antibacterial wound dressings.
Collapse
Affiliation(s)
- Vivekananthan Sadaiyandi
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Tamil Nadu, Kattankulathur, Chengalpattu, 603 203, India
| | - Raghavendra Ramalingam
- Research in Environment, Sustainability Advocacy and Climate Change, Directorate of Research, SRM Institute of Science and Technology, Tamil Nadu, Kattankulathur, Chengalpattu, 603 203, India.
| | | | - John Thiruvadigal D
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Tamil Nadu, Kattankulathur, Chengalpattu, 603 203, India.
| |
Collapse
|
5
|
Carriles J, Nguewa P, González-Gaitano G. Advances in Biomedical Applications of Solution Blow Spinning. Int J Mol Sci 2023; 24:14757. [PMID: 37834204 PMCID: PMC10572924 DOI: 10.3390/ijms241914757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
In recent years, Solution Blow Spinning (SBS) has emerged as a new technology for the production of polymeric, nanocomposite, and ceramic materials in the form of nano and microfibers, with similar features to those achieved by other procedures. The advantages of SBS over other spinning methods are the fast generation of fibers and the simplicity of the experimental setup that opens up the possibility of their on-site production. While producing a large number of nanofibers in a short time is a crucial factor in large-scale manufacturing, in situ generation, for example, in the form of sprayable, multifunctional dressings, capable of releasing embedded active agents on wounded tissue, or their use in operating rooms to prevent hemostasis during surgical interventions, open a wide range of possibilities. The interest in this spinning technology is evident from the growing number of patents issued and articles published over the last few years. Our focus in this review is on the biomedicine-oriented applications of SBS for the production of nanofibers based on the collection of the most relevant scientific papers published to date. Drug delivery, 3D culturing, regenerative medicine, and fabrication of biosensors are some of the areas in which SBS has been explored, most frequently at the proof-of-concept level. The promising results obtained demonstrate the potential of this technology in the biomedical and pharmaceutical fields.
Collapse
Affiliation(s)
- Javier Carriles
- Department of Chemistry, Facultad de Ciencias, University of Navarra, 31080 Pamplona, Spain;
| | - Paul Nguewa
- ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology, University of Navarra, Irunlarrea 1, 31080 Pamplona, Spain
| | | |
Collapse
|
6
|
Caracciolo PC, Abraham GA, Battaglia ES, Bongiovanni Abel S. Recent Progress and Trends in the Development of Electrospun and 3D Printed Polymeric-Based Materials to Overcome Antimicrobial Resistance (AMR). Pharmaceutics 2023; 15:1964. [PMID: 37514150 PMCID: PMC10385409 DOI: 10.3390/pharmaceutics15071964] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance (AMR) developed by microorganisms is considered one of the most critical public health issues worldwide. This problem is affecting the lives of millions of people and needs to be addressed promptly. Mainly, antibiotics are the substances that contribute to AMR in various strains of bacteria and other microorganisms, leading to infectious diseases that cannot be effectively treated. To avoid the use of antibiotics and similar drugs, several approaches have gained attention in the fields of materials science and engineering as well as pharmaceutics over the past five years. Our focus lies on the design and manufacture of polymeric-based materials capable of incorporating antimicrobial agents excluding the aforementioned substances. In this sense, two of the emerging techniques for materials fabrication, namely, electrospinning and 3D printing, have gained significant attraction. In this article, we provide a summary of the most important findings that contribute to the development of antimicrobial systems using these technologies to incorporate various types of nanomaterials, organic molecules, or natural compounds with the required property. Furthermore, we discuss and consider the challenges that lie ahead in this research field for the coming years.
Collapse
Affiliation(s)
- Pablo C Caracciolo
- Biomedical Polymers Division, Research Institute for Materials Science and Technology (INTEMA), National University of Mar del Plata (UNMdP), National Scientific and Technical Research Council (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina
| | - Gustavo A Abraham
- Biomedical Polymers Division, Research Institute for Materials Science and Technology (INTEMA), National University of Mar del Plata (UNMdP), National Scientific and Technical Research Council (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina
| | - Ernesto S Battaglia
- Biomedical Polymers Division, Research Institute for Materials Science and Technology (INTEMA), National University of Mar del Plata (UNMdP), National Scientific and Technical Research Council (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina
| | - Silvestre Bongiovanni Abel
- Biomedical Polymers Division, Research Institute for Materials Science and Technology (INTEMA), National University of Mar del Plata (UNMdP), National Scientific and Technical Research Council (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina
| |
Collapse
|
7
|
Felicia Chukwuma I, Orizu Uchendu N, Onyekachukwu Asomadu R, Favour Chinedu Ezeorba W, Prince Chidike Ezeorba T. African and Holy Basil - A review of ethnobotany, phytochemistry, and toxicity of their Essential oil: Current trends and prospects for antimicrobial/anti-parasitic pharmacology. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
8
|
In vitro and in vivo efficacy of poly(lactic acid) nanofiber packaging containing essential oils from Ocimum basilicum L. and Ocimum gratissimum L. against Aspergillus carbonarius and Aspergillus niger in table grapes. Food Chem 2023; 400:134087. [DOI: 10.1016/j.foodchem.2022.134087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
|