1
|
Takai S, Mizuno Y, Suzuki Y, Sasaki Y, Kakuda T, Kirikae T. [Rhodococcus equi infections in humans: an emerging zoonotic pathogen]. Nihon Saikingaku Zasshi 2024; 79:15-24. [PMID: 38382971 DOI: 10.3412/jsb.79.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Rhodococcus equi is a facultative intracellular gram-positive coccobacillus which is a well-known cause of foal pneumonia and/or enteritis in equine veterinary medicine. More than 300 cases of R. equi infection have been reported since the first description of human disease in 1968. Most patients who become infected with R equi are immunocompromised, such as those infected with human immunodeficiency virus (HIV), recipients of organ transplantation, and patients receiving cancer treatment. However, there are increasing reports of the immunocompetent hosts. The pathogenicity of R. equi has been attributed to the presence of plasmid-encoded virulence-associated proteins (Vap). To date, three host-associated virulence plasmid types of R. equi have been identified as follows: the circular pVAPA and pVAPB, related, respectively, to equine and porcine isolates in 1991 and 1995, and a recently described linear pVAPN plasmid associated with bovine and caprine strains in 2015. More recently, these three plasmid types have been re-found in the human isolates which were isolated during 1980s to 1990s. Not only horses, but also pigs, goats, cattle and their environment should be considered as a potential source of R. equi for humans. In this review, we shed light on the current understanding of R. equi as an emerging zoonotic pathogen.
Collapse
Affiliation(s)
- Shinji Takai
- Laboratory of Veterinary Hygiene, School of Veterinary Medicine, Kitasato University
| | | | - Yasunori Suzuki
- Laboratory of Veterinary Hygiene, School of Veterinary Medicine, Kitasato University
| | - Yukako Sasaki
- Laboratory of Veterinary Hygiene, School of Veterinary Medicine, Kitasato University
| | - Tsutomu Kakuda
- Laboratory of Veterinary Hygiene, School of Veterinary Medicine, Kitasato University
| | - Teruo Kirikae
- Department of Microbiome Research, Department of Microbiology, Juntendo University School of Medicine
| |
Collapse
|
2
|
Takai S, Suzuki Y, Sasaki Y, Kakuda T, Ribeiro MG, Makrai L, Witkowski L, Cohen N, Sekizaki T. Short review: Geographical distribution of equine-associated pVAPA plasmids in Rhodococcus equi in the world. Vet Microbiol 2023; 287:109919. [PMID: 38000208 DOI: 10.1016/j.vetmic.2023.109919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/25/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Virulent Rhodococcus equi strains expressing virulence-associated 15-17 kDa protein (VapA) and having a large virulence plasmid (pVAPA) of 85-90 kb containing vapA gene are pathogenic for horses. In the last two decades, following pVAPA, two host-associated virulence plasmid types of R. equi have been discovered: a circular plasmid, pVAPB, associated with porcine isolates in 1995, and a recently detected linear plasmid, pVAPN, related to bovine and caprine isolates. Molecular epidemiological studies of R. equi infection in foals on horse-breeding farms in Japan and many countries around the world have been conducted in the last three decades, and the epidemiological studies using restriction enzyme digestion patterns of plasmid DNAs from virulent isolates have shown 14 distinct pVAPA subtypes and their geographical preference. This short review summarizes previous reports regarding equine-associated pVAPA subtypes in the world and discusses their geographic distribution from the standpoint of horse movements.
Collapse
Affiliation(s)
- Shinji Takai
- Department of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan.
| | - Yasunori Suzuki
- Department of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Yukako Sasaki
- Department of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Tsutomu Kakuda
- Department of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Márcio Garcia Ribeiro
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Sciences, UNESP-São Paulo State University, Botucatu, SP, Brazil
| | - László Makrai
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Science, Szent István University, Hungária krt. 23-25, H-1143 Budapest, Hungary
| | - Lucjan Witkowski
- Laboratory of Veterinary Epidemiology and Economics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Noah Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Tsutomu Sekizaki
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|