1
|
The Diagnosis Value of a Novel Model with 5 Circulating miRNAs for Liver Fibrosis in Patients with Chronic Hepatitis B. Mediators Inflamm 2021; 2021:6636947. [PMID: 33727891 PMCID: PMC7939739 DOI: 10.1155/2021/6636947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/29/2022] Open
Abstract
Methods Differential expression of five selected miRNAs (hsa-mir-1225-3p, hsa-mir-1238, hsa-miR-3162-3P, hsa-miR-4721, and hsa-miR-H7) was verified by qRT-PCR in the plasma of 83 patients and 20 healthy controls. The relative expression of these miRNAs was analyzed in different groups to screen target miRNA. A logistic regression analysis was performed to assess factors associated with fibrosis progression. The receiver operating characteristic (ROC) curve and discriminant analyses validated the ability of these predicted variables to discriminate the nonsignificant liver fibrosis group from the significant liver fibrosis group. Furthermore, the established models were compared with other prediction models to evaluate the diagnostic efficiency. Results These five tested miRNAs all had signature correlations with hepatic fibrotic level (p < 0.05), and the upregulation trends were consistent with miRNA microarray analysis previously. The multivariate logistic regression analysis identified that a model of five miRNAs (miR-5) had a high diagnostic accuracy in discrimination of different stages of liver fibrosis. The ROC showed that the miR-5 has excellent value in diagnosis of fibrosis, even better than the Forns score, FIB-4, S index, and APRI. GO functions of different miRNAs mainly involved in various biological processes were markedly involved in HBV and revealed signaling pathways dysregulated in liver fibrosis of CHB patients. Conclusions It was validated that the combination of these five miRNAs was a new set of promising molecular diagnostic markers for liver fibrosis. The diagnosis model (miR-5) can distinguish significant and nonsignificant liver fibrosis with high sensitivity and specificity.
Collapse
|
2
|
ZEB1: New advances in fibrosis and cancer. Mol Cell Biochem 2021; 476:1643-1650. [PMID: 33417164 DOI: 10.1007/s11010-020-04036-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/22/2020] [Indexed: 02/08/2023]
Abstract
Zinc finger E-box binding homeobox 1 (ZEB1) is an important transcription factor in epithelial mesenchymal transition (EMT) which participates in the numerous life processes, such as embryonic development, fibrosis and tumor progression. ZEB1 has multiple functions in human body and plays a crucial part in some life processes. ZEB1 is vital for the formation and development of the organs in the embryonic period. The abnormal expression of ZEB1 is a predictor for the poor prognosis or the poor survival in several cancers. ZEB1 contributes to the occurrence of fibrosis, cancer and even chemoresistance. Some research is indicated that fibrosis is finally developed into the cancers. Therefore, ZEB1 is probably taken as a biomarker in fibrosis or cancer. In this review, it is predicted of the structure of ZEB1 and the protein binding sites of ZEB1 with some protein, and it is discussed about the roles of ZEB1 in fibrosis and cancer progression to elaborate the potential applications of ZEB1 in clinic.
Collapse
|
3
|
Riaz F, Li D. Non-coding RNA Associated Competitive Endogenous RNA Regulatory Network: Novel Therapeutic Approach in Liver Fibrosis. Curr Gene Ther 2020; 19:305-317. [PMID: 31696817 DOI: 10.2174/1566523219666191107113046] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
Liver fibrosis or scarring is the most common pathological feature caused by chronic liver injury, and is widely considered one of the primary causes of morbidity and mortality. It is primarily characterised by hepatic stellate cells (HSC) activation and excessive extracellular matrix (ECM) protein deposition. Overwhelming evidence suggests that the dysregulation of several noncoding RNAs (ncRNAs), mainly long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) contributes to the activation of HSC and progression of liver fibrosis. These ncRNAs not only bind to their target genes for the development and regression of liver fibrosis but also act as competing endogenous RNAs (ceRNAs) by sponging with miRNAs to form signaling cascades. Among these signaling cascades, lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA are critical modulators for the initiation, progression, and regression of liver fibrosis. Thus, targeting these interacting ncRNA cascades can serve as a novel and potential therapeutic target for inhibition of HSC activation and prevention and regression of liver fibrosis.
Collapse
Affiliation(s)
- Farooq Riaz
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi 710061, China
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi 710061, China
| |
Collapse
|
4
|
Dai Y, Xie F, Chen Y. Reduced levels of miR-485-5p in HPV-infected cervical cancer promote cell proliferation and enhance invasion ability. FEBS Open Bio 2020; 10:1348-1361. [PMID: 32343879 PMCID: PMC7327903 DOI: 10.1002/2211-5463.12869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/31/2019] [Accepted: 04/24/2020] [Indexed: 12/28/2022] Open
Abstract
Cervical cancer (CC) is the most common gynecological malignancy, with high incidence and mortality rates in China. The microRNA miR‐485‐5p has previously been reported to serve as a negative regulator of tumorigenesis in breast cancer and hepatocellular carcinoma, and miR‐485‐5p has been observed to be differentially expressed between CC and normal control tissue. Here, we confirmed that miR‐485‐5p expression is lower in CC than in adjacent normal tissue and proceeded to investigate the effects of miR‐485 on tumor behavior in CC cell lines. We report that miR‐485‐5p transcription is decreased in HPV‐infected CC tissue, and levels of miR‐485 in clinical samples are positively correlated with the 5‐year overall survival rate. The Transwell assay showed that miR‐485‐5p inhibited cell invasion and migration but had no influence on apoptosis and cell proliferation. Using a luciferase reporter assay, we demonstrated that miR‐485‐5p partially abrogated cell migration and proliferation by targeting FLOT‐1 mRNA. Transfection of HPV‐infected cervical carcinoma cells with an adenovirus vector encoding human FLOT‐1 partially diminished the inhibitory effects of miR‐485 on cell invasion. Taken, together, these data demonstrated that miR‐485‐5p suppresses the invasion of cancer cells by targeting FLOT‐1 in HPV‐infected cervical carcinoma cells.
Collapse
Affiliation(s)
- Yuanyuan Dai
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Fengyan Xie
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yan Chen
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
5
|
Omran NM, El-Sherbini SM, Hegazy O, Elshaarawy AA, Talaat RM. Crosstalk between miR-215 and epithelial-mesenchymal transition specific markers (E-cadherin and N-cadherin) in different stages of chronic HCV Infection. J Med Virol 2019; 92:1231-1238. [PMID: 31769519 DOI: 10.1002/jmv.25637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022]
Abstract
The main causes of death among patients with hepatocellular carcinoma (HCC) are a recurrence, metastasis, and deterioration of primary tumors by the epithelial-to-mesenchymal transition (EMT) which is controlled by several molecules including E-cadherin and N-cadherin. Microribonucleic acids (miRNAs) have been identified to play a regulatory role in EMT. miR-215 is important in repressing migration/invasion of cancer cells. In this study, we aimed to evaluate the crosstalk between miR-215 and EMT specific markers (E-cadherin and N-cadherin) with a spotlight on its role in the EMT process in hepatitis C virus (HCV)-infected patients. One hundred forty-five patients were studied, 75 had HCV-induced cirrhosis classified into child A, B, and C and 25 had HCC. In parallel, 45 healthy volunteers considered as controls. Serum levels of E- and N-cadherin were measured using enzyme-linked immunosorbent assay and miR-215 expression measured by a quantitative reverse transcription-polymerase chain reaction. Insignificant change in serum levels of E-cadherin and N-cadherin in HCV-infected patients compared with normal controls was observed with a slight increase in E-cadherin and N-cadherin in the child B group. HCC patients had the lowest amount of E-cadherin and N-cadherin compared with cirrhotic and normal subjects. A maximum reduction in miR-215 was observed in HCC patients compared with cirrhotic and control ones. A positive correlation (r = .202; P < .05) was observed between miR-215 and E-cadherin. Our data stressed on the potential role of miR-215 as an important mediator in HCC progression. miRNAs participating in EMT needs further studies to provide insight into the metastasis of HCC.
Collapse
Affiliation(s)
- Nermeen M Omran
- Department of Clinical Pathology, National Liver Institute, Menofia University, Al Minufya, Egypt
| | - Sherif M El-Sherbini
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Osama Hegazy
- Department of Hepatopancreatobiliary Surgery and Liver Transplantation, National Liver Institute, Menofia University, Al Minufya, Egypt
| | - Ahmed A Elshaarawy
- Department of Clinical Pathology, National Liver Institute, Menofia University, Al Minufya, Egypt
| | - Roba M Talaat
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
6
|
Li LY, Yang CC, Yang JF, Li HD, Zhang BY, Zhou H, Hu S, Wang K, Huang C, Meng XM, Zhou H, Zhang L, Li J, Xu T. ZEB1 regulates the activation of hepatic stellate cells through Wnt/β-catenin signaling pathway. Eur J Pharmacol 2019; 865:172787. [DOI: 10.1016/j.ejphar.2019.172787] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/31/2022]
|
7
|
|
8
|
Chen R, Wu JC, Liu T, Qu Y, Lu LG, Xu MY. MicroRNA profile analysis in the liver fibrotic tissues of chronic hepatitis B patients. J Dig Dis 2017; 18:115-124. [PMID: 28127890 DOI: 10.1111/1751-2980.12452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/16/2017] [Accepted: 01/24/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We aimed to identify the features of microRNA (miRNA) at different fibrotic stages in patients with hepatitis B virus (HBV)-related liver fibrosis. METHODS Liver tissues were collected from 40 chronic hepatitis B (CHB) patients at fibrotic stages S0-4. Microarrays of miRNAs and genomic informatics analysis were performed. RESULTS In total, 105 miRNAs were differentially expressed in fibrotic tissues (S1-4 groups) compared with no fibrotic tissues (S0 group; P < 0.05). Combined with three classifications, 17 differential miRNAs were found to be closely related to fibrotic stages (over twofold change and P < 0.05). Five miRNAs had a signature that correlated with serum biochemical parameters and liver inflammatory grades. The receiver operating characteristic (ROC) curve showed that six miRNAs performed excellently in the diagnosis of liver fibrosis, with the area under the ROC curve (AUROC) over 0.8; among them hsa-miR-214-3p had the highest AUROC (0.867). Gene ontology functions of differential miRNAs mainly involved in the cellular and developmental processes, localization, biological regulation, binding, transcriptional regulator and organelle. We also found that 23 novel signaling pathways were dysregulated in the liver fibrosis. CONCLUSIONS MiRNA profile signature, including 17 differential miRNAs and 23 dysregulated signaling pathways, was associated with liver fibrosis. Hepatic inflammatory grades were correlated with the differential miRNA. Some miRNAs can be used for the diagnosis of liver fibrosis.
Collapse
Affiliation(s)
- Rong Chen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Cheng Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Liu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Qu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lun Gen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Yi Xu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Zou XZ, Liu T, Gong ZC, Hu CP, Zhang Z. MicroRNAs-mediated epithelial-mesenchymal transition in fibrotic diseases. Eur J Pharmacol 2016; 796:190-206. [PMID: 27916556 DOI: 10.1016/j.ejphar.2016.12.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/24/2016] [Accepted: 12/01/2016] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs), a large family of small and highly conserved non-coding RNAs, regulate gene expression through translational repression or mRNA degradation. Aberrant expression of miRNAs underlies a spectrum of diseases including organ fibrosis. Recent evidence suggests that miRNAs contribute to organ fibrosis through mediating epithelial-mesenchymal transition (EMT). Alleviation of EMT has been proposed as a promising strategy against fibrotic diseases given the key role of EMT in fibrosis. miRNAs impact the expression of specific ligands, receptors, and signaling pathways, thus modulating EMT and consequently influencing fibrosis. This review summarizes the current knowledge concerning how miRNAs regulate EMT and highlights the specific roles that miRNAs-regulated EMT plays in fibrotic diseases as diverse as pulmonary fibrosis, hepatic fibrosis, renal fibrosis and cardiac fibrosis. It is desirable that a more comprehensive understanding of the functions of miRNAs-regulated EMT will facilitate the development of novel diagnostic and therapeutic strategies for various debilitating organ fibrosis.
Collapse
Affiliation(s)
- Xiao-Zhou Zou
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Ting Liu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Zhi-Cheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chang-Ping Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China.
| | - Zheng Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
10
|
Nephron segment specific microRNA biomarkers of pre-clinical drug-induced renal toxicity: Opportunities and challenges. Toxicol Appl Pharmacol 2016; 312:34-41. [DOI: 10.1016/j.taap.2016.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/19/2016] [Accepted: 01/27/2016] [Indexed: 12/11/2022]
|
11
|
Calvopina DA, Coleman MA, Lewindon PJ, Ramm GA. Function and Regulation of MicroRNAs and Their Potential as Biomarkers in Paediatric Liver Disease. Int J Mol Sci 2016; 17:ijms17111795. [PMID: 27801781 PMCID: PMC5133796 DOI: 10.3390/ijms17111795] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs involved in biological and pathological processes of every cell type, including liver cells. Transcribed from specific genes, miRNA precursors are processed in the cytoplasm into mature miRNAs and as part of the RNA-induced silencing complex (RISC) complex binds to messenger RNA (mRNA) by imperfect complementarity. This leads to the regulation of gene expression at a post-transcriptional level. The function of a number of different miRNAs in fibrogenesis associated with the progression of chronic liver disease has recently been elucidated. Furthermore, miRNAs have been shown to be both disease-and tissue-specific and are stable in the circulation, which has led to increasing investigation on their utility as biomarkers for the diagnosis of chronic liver diseases, including those in children. Here, we review the current knowledge on the biogenesis of microRNA, the mechanisms of translational repression and the use of miRNA as circulatory biomarkers in chronic paediatric liver diseases including cystic fibrosis associated liver disease, biliary atresia and viral hepatitis B.
Collapse
Affiliation(s)
- Diego A Calvopina
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD 4006, Australia.
| | - Miranda A Coleman
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD 4006, Australia.
| | - Peter J Lewindon
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD 4006, Australia.
- Department of Gastroenterology and Hepatology, Lady Cilento Children's Hospital, 501 Stanley St, South Brisbane, QLD 4101, Australia.
- Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, QLD 4006, Australia.
| | - Grant A Ramm
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, QLD 4006, Australia.
- Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, QLD 4006, Australia.
| |
Collapse
|
12
|
Inhibiting miR-21 attenuates experimental hepatic fibrosis by suppressing both the ERK1 pathway in HSC and hepatocyte EMT. Clin Sci (Lond) 2016; 130:1469-80. [PMID: 27226339 DOI: 10.1042/cs20160334] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/25/2016] [Indexed: 12/15/2022]
Abstract
MicroRNA-21 (miR-21) has emerged as a critical regulatory molecule and an important serum marker in hepatic fibrogenesis. The aim of the present study was to investigate the role of inhibiting miR-21 on hepatic fibrosis treatment. Serum miR-21 levels in 60 healthy individuals and 180 patients with different stages of liver cirrhosis were examined, miR-21 levels in normal or cirrhotic human liver tissues (n=10 each) were also detected. An adenoviral vector (Ad-TuD-21) carrying the sponging ToughDecoy (TuD)-RNA sequence against miR-21 was constructed to reduce miR-21 expression efficiently in vitro and in vivo Histological and immunohistological examinations were performed to evaluate the inhibitory effects and mechanism of Ad-TuD-21 delivery into carbon tetrachloride (CCl4) induced hepatic fibrosis rats by targeting extracellular signal-regulated kinase 1 (ERK1) signalling in hepatic stellate cells (HSC) and hepatocyte epithelial-mesenchymal transition (EMT). Our results revealed that enhanced miR-21 levels in cirrhotic patients were related to the severity and activity of liver cirrhosis. Ad-TuD-21 administered to liver fibrosis rats could remarkably suppress profibrotic gene expression, cause histological improvements in liver and attenuate hepatic fibrosis significantly. More importantly, after Ad-TuD-21 treatment, inhibition of both the ERK1 signalling pathway in HSC and hepatocyte EMT was confirmed, which paralleled the enhancement of miR-21 target genes-sprouty2 (SPRY2) and hepatocyte nuclear factor 4α (HNF4α)-expression in vivo These data demonstrated that miR-21 is a key regulator to promote hepatic fibrogenesis, and sponging miR-21 expression may present a novel potentially therapeutic option for hepatic fibrosis.
Collapse
|