1
|
Dai L, Ye Y, Mugaany J, Hu Z, Huang J, Lu C. Leveraging pQTL-based Mendelian randomization to identify new treatment prospects for primary biliary cholangitis and primary sclerosing cholangitis. Aging (Albany NY) 2024; 16:9228-9250. [PMID: 38809509 PMCID: PMC11164478 DOI: 10.18632/aging.205867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/15/2024] [Indexed: 05/30/2024]
Abstract
Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are autoimmune disorders characterized by progressive and chronic damage to the bile ducts, presenting clinicians with significant challenges. The objective of this study is to identify potential druggable targets to offer new avenues for treatment. A Mendelian randomization analysis was performed to identify druggable targets for PBC and PSC. This involved obtaining Cis-protein quantitative trait loci (Cis-pQTL) data from the deCODE database to serve as exposure. Outcome data for PBC (557 cases and 281,127 controls) and PSC (1,715 cases and 330,903 controls) were obtained from the FINNGEN database. Colocalization analysis was conducted to determine whether these features share the same associated SNPs. Validation of the expression level of druggable targets was done using the GSE119600 dataset and immunohistochemistry for clinical samples. Lastly, the DRUGBANK database was used to predict potential drugs. The MR analysis identified eight druggable targets each for PBC and PSC. Subsequent summary-data-based MR and colocalization analyses showed that LEFTY2 had strong evidence as a therapeutic candidate for PBC, while HSPB1 had moderate evidence. For PSC, only FCGR3B showed strong evidence as a therapeutic candidate. Additionally, upregulated expression of these genes was validated in PBC and PSC groups by GEO dataset and clinical samples. This study identifies two novel druggable targets with strong evidence for therapeutic candidates for PBC (LEFTY2 and HSPB1) and one for PSC (FCGR3B). These targets offer new therapeutic opportunities to address the challenging nature of PBC and PSC treatment.
Collapse
Affiliation(s)
- Lei Dai
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Centre Lihuili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yunyan Ye
- Department of Ophthalmology, Ningbo Medical Centre Lihuili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
| | - Joseph Mugaany
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Centre Lihuili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zetong Hu
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Centre Lihuili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Jing Huang
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Centre Lihuili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
| | - Changjiang Lu
- Department of Hepato-Pancreato-Biliary Surgery, Ningbo Medical Centre Lihuili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
| |
Collapse
|
2
|
Ma D, Ma J, Zhao C, Tai W. Reasons why women are more likely to develop primary biliary cholangitis. Heliyon 2024; 10:e25634. [PMID: 38384574 PMCID: PMC10878884 DOI: 10.1016/j.heliyon.2024.e25634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic autoimmune disease of biliary stasis in which immune factors cause the gradual destruction of small bile ducts, biliary stasis, and eventually the development of liver fibrosis, cirrhosis, and even liver failure. One of the main characteristics of PBC is that it primarily affects middle-aged women, but the precise cause is still unknown. This article analyzes the unique causes and mechanisms of the female predominance of PBC and summarizes the potential causes.The female domination of PBC is reported to be primarily caused by sex hormones, environmental circumstances, and epigenetic changes, each of which has a different subtle impact on patients' gender disparities.
Collapse
Affiliation(s)
- Di Ma
- Clinical Laboratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiaxuan Ma
- Clinical Laboratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chunmei Zhao
- Clinical Laboratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenlin Tai
- Clinical Laboratory Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
Pham HN, Pham L, Sato K. Bioinformatic analysis identified novel candidate genes with the potentials for diagnostic blood testing of primary biliary cholangitis. PLoS One 2023; 18:e0292998. [PMID: 37844121 PMCID: PMC10578581 DOI: 10.1371/journal.pone.0292998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
Primary biliary cholangitis (PBC) is an autoimmune disorder characterized by intrahepatic bile duct destruction and cholestatic liver injury. Diagnosis of PBC is generally based on the existence of anti-mitochondrial antibody (AMA) in blood samples; however, some PBC patients are negative for serum AMA tests, and invasive liver histological testing is required in rare PBC cases. The current study seeks novel candidate genes that are associated with PBC status and have potentials for blood diagnostic testing. Human transcriptomic profiling data of liver and blood samples were obtained from Gene Expression Omnibus (GEO). Three GEO data series (GSE79850, GSE159676, and GSE119600) were downloaded, and bioinformatic analyses were performed. Various differentially expressed genes were identified in three data series by comparing PBC patients and control individuals. Twelve candidate genes were identified, which were upregulated in both liver tissues and blood samples of PBC patients in all three data series. The enrichment analysis demonstrated that 8 out of 12 candidate genes were associated with biological functions, which were closely related to autoimmune diseases including PBC. Candidate genes, especially ITGAL showed good potentials to distinguish PBC with other diseases. These candidate genes could be useful for diagnostic blood testing of PBC, although further clinical studies are required to evaluate their potentials as diagnostic biomarkers.
Collapse
Affiliation(s)
- Hoang Nam Pham
- Department of Life Sciences, University of Science and Technology of Hanoi, Hanoi, Vietnam
| | - Linh Pham
- Department of Science and Mathematics, Texas A&M University–Central Texas, Killeen, Texas, United States of America
| | - Keisaku Sato
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
4
|
Rigopoulou EI, Bogdanos DP. Role of autoantibodies in the clinical management of primary biliary cholangitis. World J Gastroenterol 2023; 29:1795-1810. [PMID: 37032725 PMCID: PMC10080701 DOI: 10.3748/wjg.v29.i12.1795] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/04/2023] [Accepted: 03/14/2023] [Indexed: 03/28/2023] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease characterized by immune-driven destruction of small intrahepatic bile ducts leading a proportion of patients to hepatic failure over the years. Diagnosis at early stages in concert with ursodeoxycholic acid treatment has been linked with prevention of disease progression in the majority of cases. Diagnosis of PBC in a patient with cholestasis relies on the detection of disease-specific autoantibodies, including anti-mitochondrial antibodies, and disease-specific anti-nuclear antibodies targeting sp100 and gp210. These autoantibodies assist the diagnosis of the disease, and are amongst few autoantibodies the presence of which is included in the diagnostic criteria of the disease. They have also become important tools evaluating disease prognosis. Herein, we summarize existing data on detection of PBC-related autoantibodies and their clinical significance. Moreover, we provide insight on novel autoantibodies and their possible prognostic role in PBC patients.
Collapse
Affiliation(s)
- Eirini I Rigopoulou
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa 41110, Greece
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), General University Hospital of Larissa, Larissa 41110, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41110, Greece
| |
Collapse
|
5
|
Yang H, Chen L, Liu Y. A large-scale plasma proteome Mendelian randomization study identifies novel causal plasma proteins related to primary biliary cholangitis. Front Immunol 2023; 14:1052616. [PMID: 36825008 PMCID: PMC9941641 DOI: 10.3389/fimmu.2023.1052616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND AND AIMS Primary biliary cholangitis (PBC) is a progressive chronic autoimmune cholestatic liver disease characterized by the destruction of small intrahepatic bile ducts leading to biliary cirrhosis. Liver biopsy is required in the diagnosis of Antimitochondrial antibody-negative patients. Therefore, novel biomarkers are needed for the non-invasive diagnosis of PBC. To identify novel biomarkers for PBC, we conducted large-scale plasma proteome Mendelian randomization (MR). METHODS A total of 21,593 protein quantitative trait loci (pQTLs) for 2297 circulating proteins were used and classified into four different groups. MR analyses were conducted in the four groups separately. Furthermore, the results were discovered and replicated in two different cohorts of PBC. Colocalization analysis and enrichment analysis were also conducted. RESULTS Three plasma proteins (ficolin-1, CD40 and protein FAM177A1) were identified and replicated as being associated with PBC. All of them showed significant protective effects against PBC. An increase in ficolin-1 (OR=0.890 [0.843-0.941], p=3.50×10-5), CD40 (OR=0.814 [0.741-0.895], p=1.96×10-5) and protein FAM177A1 (OR=0.822 [0.754-0.897], p=9.75×10-6) reduced the incidence of PBC. Ficolin-1 (PP4 = 0.994) and protein FAM177A1 (PP4 = 0.995) colocalized with the expression of the genes FCN1 and FAM177A1 in whole blood, respectively. Furthermore, CD40 (PP4 = 0.977) and protein FAM177A1 (PP4 = 0.897) strongly colocalized with PBC. CONCLUSIONS We expand the current biomarkers for PBC. In total, three (ficolin-1, CD40, and protein FAM177A1) plasma proteins were identified and replicated as being associated with PBC in MR analysis. All of them showed significant protective effects against PBC. These proteins can be potential biomarkers or drug targets for PBC.
Collapse
|
6
|
Zimmer N, Trzeciak ER, Graefen B, Satoh K, Tuettenberg A. GARP as a Therapeutic Target for the Modulation of Regulatory T Cells in Cancer and Autoimmunity. Front Immunol 2022; 13:928450. [PMID: 35898500 PMCID: PMC9309211 DOI: 10.3389/fimmu.2022.928450] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Regulatory T cells (Treg) play a critical role in immune homeostasis by suppressing several aspects of the immune response. Herein, Glycoprotein A repetitions predominant (GARP), the docking receptor for latent transforming growth factor (LTGF-β), which promotes its activation, plays a crucial role in maintaining Treg mediated immune tolerance. After activation, Treg uniquely express GARP on their surfaces. Due to its location and function, GARP may represent an important target for immunotherapeutic approaches, including the inhibition of Treg suppression in cancer or the enhancement of suppression in autoimmunity. In the present review, we will clarify the cellular and molecular regulation of GARP expression not only in human Treg but also in other cells present in the tumor microenvironment. We will also examine the overall roles of GARP in the regulation of the immune system. Furthermore, we will explore potential applications of GARP as a predictive and therapeutic biomarker as well as the targeting of GARP itself in immunotherapeutic approaches.
Collapse
Affiliation(s)
- Niklas Zimmer
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Emily R. Trzeciak
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Barbara Graefen
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kazuki Satoh
- Early Clinical Development Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Andrea Tuettenberg
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
- *Correspondence: Andrea Tuettenberg,
| |
Collapse
|
7
|
Kudira R, Pasula S, Kapil S, Miethke A. Isolation of Liver Mononuclear Cells from a Cholestatic Mice for Single Cell or Single Nuclei Sequencing. Bio Protoc 2022. [DOI: 10.21769/bioprotoc.4400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
8
|
Li S, Song G, Bai Y, Song N, Zhao J, Liu J, Hu C. Applications of Protein Microarrays in Biomarker Discovery for Autoimmune Diseases. Front Immunol 2021; 12:645632. [PMID: 34012435 PMCID: PMC8126629 DOI: 10.3389/fimmu.2021.645632] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/13/2021] [Indexed: 01/18/2023] Open
Abstract
Dysregulated autoantibodies and cytokines were deemed to provide important cues for potential illnesses, such as various carcinomas and autoimmune diseases. Increasing biotechnological approaches have been applied to screen and identify the specific alterations of these biomolecules as distinctive biomarkers in diseases, especially autoimmune diseases. As a versatile and robust platform, protein microarray technology allows researchers to easily profile dysregulated autoantibodies and cytokines associated with autoimmune diseases using various biological specimens, mainly serum samples. Here, we summarize the applications of protein microarrays in biomarker discovery for autoimmune diseases. In addition, the key issues in the process of using this approach are presented for improving future studies.
Collapse
Affiliation(s)
- Siting Li
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Guang Song
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yina Bai
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Ning Song
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Jian Liu
- Department of Rheumatology, Aerospace Center Hospital, Aerospace, Clinical Medical College, Peking University, Beijing, China
| | - Chaojun Hu
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China.,Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| |
Collapse
|
9
|
Villalta D, Seaman A, Tiongson M, Warren C, Bentow C, Bizzaro N, Alessio MG, Porcelli B, Norman GL, Mahler M. Evaluation of a novel extended automated particle-based multi-analyte assay for the detection of autoantibodies in the diagnosis of primary biliary cholangitis. Clin Chem Lab Med 2020; 58:1499-1507. [PMID: 32286240 DOI: 10.1515/cclm-2020-0122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Background Anti-mitochondrial autoantibodies (AMA) detected by indirect immunofluorescence (IIF) on rodent tissues are the diagnostic marker of primary biliary cholangitis (PBC). However, up to 15% of patients with PBC are AMA-negative by IIF. In the effort to close the serological gap and improve the diagnostic sensitivity of PBC testing, recently, novel autoantibodies specific for PBC, such as kelch-like 12 (KLHL12, KLp epitope) and hexokinase 1 (HK1) have been described. In this study, we evaluated the autoantibody profile in a large cohort of PBC patients and in patients with other liver disease, including anti-HK1 and anti-KLp autoantibodies. Methods Sera of 194 PBC patients (126 AMA-IIF-positive and 68 AMA-IIF-negative) and 138 disease controls were tested for a panel of PBC-specific antibodies (MIT3, sp100, gp210, HK1, KLp) using a new automated particle-based multi-analyte technology (PMAT) assay on the Aptiva instrument (Inova). Results Selecting a cutoff yielding a specificity of >95% for all the markers, the sensitivity for anti-MIT3, anti-sp100, anti-gp210, anti-HK1 and anti-KLp in the PBC AMA-IIF-negative cohort was 20.6%, 16.2%, 23.5%, 22.0%, 17.6 and 13.2%, respectively. Six out of the 68 (8.8%) AMA-IIF negative sera were positive for anti-HK1 or anti-KLp alone. Using these new markers in addition to anti-MIT3, anti-sp100 and anti-gp210, the overall sensitivity in this cohort of AMA-IIF-negative patients increased from 53% to 61.8%, reducing the serological gap in AMA-negative PBC patients. Conclusions PBC antibody profiling, made possible by the new Aptiva-PMAT technology, allows recognition of a higher number of AMA-negative PBC patients than conventional immunoassays and may represent a useful tool to evaluate the prognostic significance of autoantibody association in PBC patients.
Collapse
Affiliation(s)
- Danilo Villalta
- Immunologia e Allergologia, Ospedale S. Maria degli Angeli, Pordenone, Italy
| | - Andrea Seaman
- Research and Development, Inova Diagnostics, San Diego, CA, USA
| | | | - Charles Warren
- Research and Development, Inova Diagnostics, San Diego, CA, USA
| | - Chelsea Bentow
- Research and Development, Inova Diagnostics, San Diego, CA, USA
| | - Nicola Bizzaro
- Laboratorio di Patologia Clinica, Ospedale S. Antonio, Tolmezzo (UD), via M.L. King 25, 30027 San Donà di Piave (Venice), Italy
| | - Maria Grazia Alessio
- Dipartimento di Patologia Clinica, Laboratorio Analisi, AO Papa Giovanni XXIII, Bergamo, Italy
| | - Brunetta Porcelli
- Dipartimento di Biotecnologie Mediche, Università di Siena, Policlinico Le Scotte, Siena, Italy
| | - Gary L Norman
- Research and Development, Inova Diagnostics, San Diego, CA, USA
| | - Michael Mahler
- Research and Development, Inova Diagnostics, San Diego, CA, USA
| |
Collapse
|