1
|
Kirkutyte I, Latunde-Dada GO. Relationship Between Hepatic Iron Concentration and Glycemic Metabolism, Prediabetes, and Type 2 Diabetes: A Systematic Review. Nutr Rev 2025; 83:e1828-e1842. [PMID: 39724915 DOI: 10.1093/nutrit/nuae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
CONTEXT Emerging research has suggested a potential link between high iron levels, indicated by serum ferritin levels, and the development of type 2 diabetes (T2D). However, the role of hepatic iron concentration (HIC) on T2D development and progression is not well understood. OBJECTIVES This study aims to systematically review the literature on HIC and/or the degree of hepatic iron overload (HIO) in individuals with prediabetes and/or diagnosed T2D, and to analyze associations between HIC and markers of glucose metabolism. DATA SOURCES The databases Medline, PubMed, Embase, CINAHL, and Web of Knowledge were searched for studies published in English from 1999 to March 2024. This review followed the Preferred Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. DATA EXTRACTION Data were extracted following the established eligibility criteria. Study characteristics and biomarkers related to prediabetes, T2D, and HIO were extracted. The risk of bias was analyzed using the Newcastle-Ottawa Scale. Data were stratified by the exposure and analyzed in subgroups according to the outcome. Data regarding the HIC values in controls, individuals with prediabetes, and individuals with T2D and the association estimates between HIC or HIO and markers of glycemic metabolism, prediabetes, or T2D were extracted. DATA ANALYSIS A total of 12 studies were identified, and data from 4110 individuals were analyzed. HIO was not consistently observed in prediabetic/T2D populations; however, elevated HIC was frequently observed in prediabetic and T2D individuals, and was associated with the disruption of certain glycemic markers in some cases. CONCLUSION The extent of iron overload, as indicated by hepatic iron load, varied among the prediabetic and T2D populations studied. Further research is needed to understand the distribution and regulation of iron in T2D pathology.
Collapse
Affiliation(s)
- Indre Kirkutyte
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, United Kingdom
| | - Gladys Oluyemisi Latunde-Dada
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, United Kingdom
| |
Collapse
|
2
|
Bashir A, Völzke H, Henck V, Schipf S, Dörr M, Nauck M, Schmidt CO, Aghdassi A, Khattak MNK, Markus MRP, Ittermann T. Prevalence trends of type 2 diabetes treatment, dyslipidemia and hepatic steatosis in Northeast Germany. J Public Health (Oxf) 2025; 47:24-33. [PMID: 39611572 DOI: 10.1093/pubmed/fdae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/27/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND The investigation of prevalence trends of metabolic cardiovascular risk factors is important for appropriate planning of future health programs aiming to prevent cardiovascular morbidity and mortality. In a previous study, we demonstrated an increase in the prevalence of type 2 diabetes (T2D) between 2000 and 2010 in Northeast Germany. The purpose of this study is to investigate prevalence trends of T2D treatment, dyslipidemia and hepatic steatosis in Northeast Germany. METHODS The baseline examinations of the first Study of Health in Pomerania (SHIP) project were carried out from 1997 to 2001 (SHIP-START-0, 4308 subjects). A second, independent random sample of the same region was enrolled between 2008 and 2012 (SHIP-TREND-0, 4420 subjects). All data were standardized with post-stratification weighting derived from the adult population of the German federal state of Mecklenburg-West Pomerania. RESULTS The prevalence of metformin intake increased from 2.1% to 4.1% and insulin use from 2.0% to 2.8%. While the prevalence of statin intake increased from 6.8% to 12.2%, the prevalence of dyslipidemia decreased slightly from 49.0% in SHIP-START-0 to 45.5% in SHIP-TREND-0. The prevalence of hepatic steatosis increased from 29.7% to 37.3%. This increase was most prominently observed in women and younger age groups. CONCLUSIONS T2D, dyslipidemia and hepatic steatosis are common and increasing health problems among adults in Northeast Germany. Reassuring healthy diet and controlling obesity may result in prevention of above-mentioned health problems.
Collapse
Affiliation(s)
- Aqsa Bashir
- Institute for Community Medicine-SHIP clinical-epidemiological research, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine-SHIP clinical-epidemiological research, University Medicine Greifswald, Greifswald, Germany
| | - Vivien Henck
- Institute for Community Medicine-SHIP clinical-epidemiological research, University Medicine Greifswald, Greifswald, Germany
| | - Sabine Schipf
- Institute for Community Medicine-SHIP clinical-epidemiological research, University Medicine Greifswald, Greifswald, Germany
- German Center for Diabetes Research (DZD), partner site Greifswald, Greifswald, Germany
| | - Marcus Dörr
- Department of Internal Medicine B-Cardiology, Intensive Care, Pulmonary Medicine and Infectious Diseases, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany
| | - Matthias Nauck
- German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Carsten Oliver Schmidt
- Institute for Community Medicine-SHIP clinical-epidemiological research, University Medicine Greifswald, Greifswald, Germany
| | - Ali Aghdassi
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Muhammad N K Khattak
- Institute for Community Medicine-SHIP clinical-epidemiological research, University Medicine Greifswald, Greifswald, Germany
| | - Marcello R P Markus
- Department of Internal Medicine B-Cardiology, Intensive Care, Pulmonary Medicine and Infectious Diseases, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Greifswald, Germany
- German Center for Diabetes Research (DZD), partner site Greifswald, Greifswald, Germany
| | - Till Ittermann
- Institute for Community Medicine-SHIP clinical-epidemiological research, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
3
|
Mayer C, Ittermann T, Schipf S, Gross S, Kim S, Schielke J, Bülow R, Kühn J, Lerch MM, Völzke H, Felix SB, Bahls M, Targher G, Dörr M, Markus MRP. Lower muscular strength is associated with greater liver fat content and higher serum liver enzymes-"The Sedentary's Liver" The Study of Health in Pomerania. Eur J Sport Sci 2024; 24:824-833. [PMID: 38874978 PMCID: PMC11236008 DOI: 10.1002/ejsc.12103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 06/15/2024]
Abstract
We investigated the associations of low handgrip strength (HGS, i.e., a marker of muscular fitness) with liver fat content (LFC) and serum liver enzymes in a population-based setting. We used data from 2700 participants (51.7% women), aged 21-90 years, from two independent cohorts of the population-based Study of Health in Pomerania (SHIP-START-2 and SHIP-TREND-0). Cross-sectional, multivariable adjusted regression models were performed to examine the associations of HGS with LFC, measured by magnetic resonance imaging and serum liver enzymes. We found significant inverse associations of HGS with both LFC and serum liver enzymes. Specifically, a 10-kg lower HGS was associated with a 0.59% (95% confidence interval [CI]: 0.24-0.94; p = 0.001) higher LFC, a 0.051 µkatal/L (95% CI: 0.005-0.097; p = 0.031) higher gamma-glutamyltransferase (GGT) concentration and a 0.010 µkatal/L (95% CI: 0.001-0.020; p = 0.023) higher aspartate aminotransferase (AST) concentration. The adjusted odds-ratio for prevalent hepatic steatosis (defined by a MRI-PDFF ≥5.1%) per 10-kg lower HGS was 1.21 (95% CI: 1.04-1.40; p = 0.014). When considering only obese individuals, those with low HGS had a 1.58% (95% CI: 0.18-2.98; p = 0.027) higher mean LFC and higher chance of prevalent hepatic steatosis (adjusted OR 1.74, 95% CI: 1.15-2.62; p = 0.009) compared to individuals with high HGS. We found similar associations in individuals with overweight, but not in those with normal weight. Lower HGS was strongly associated with both higher LFC and higher serum GGT and AST concentrations. Future studies might clarify whether these findings reflect adverse effects of a sedentary lifestyle or aging on the liver.
Collapse
Affiliation(s)
- Claudius Mayer
- Department of Internal Medicine BUniversity Medicine GreifswaldGreifswaldGermany
- German Centre for Cardiovascular Research (DZHK)Partner Site GreifswaldGreifswaldGermany
| | - Till Ittermann
- German Centre for Cardiovascular Research (DZHK)Partner Site GreifswaldGreifswaldGermany
- Department of Study of Health in Pomerania/Clinical‐Epidemiological ResearchInstitute for Community MedicineUniversity Medicine GreifswaldGreifswaldGermany
| | - Sabine Schipf
- Department of Study of Health in Pomerania/Clinical‐Epidemiological ResearchInstitute for Community MedicineUniversity Medicine GreifswaldGreifswaldGermany
- German Center for Diabetes Research (DZD)Partner Site GreifswaldGreifswaldGermany
| | - Stefan Gross
- Department of Internal Medicine BUniversity Medicine GreifswaldGreifswaldGermany
- German Centre for Cardiovascular Research (DZHK)Partner Site GreifswaldGreifswaldGermany
| | - Simon Kim
- Center for Hand‐ and Functional MicrosurgeryUniversity Medicine GreifswaldGreifswaldGermany
| | - Jan Schielke
- Department of Internal Medicine BUniversity Medicine GreifswaldGreifswaldGermany
- German Centre for Cardiovascular Research (DZHK)Partner Site GreifswaldGreifswaldGermany
| | - Robin Bülow
- Institute of Diagnostic Radiology and NeuroradiologyUniversity Medicine GreifswaldGreifswaldGermany
| | - Jens‐Peter Kühn
- Institute and Policlinic for Diagnostic and Interventional RadiologyUniversity HospitalCarl Gustav Carus UniversityTU DresdenDresdenGermany
| | - Markus M. Lerch
- Department of Internal Medicine AUniversity Medicine GreifswaldGreifswaldGermany
- LMU University HospitalLudwig Maximilians University MunichMunichGermany
| | - Henry Völzke
- German Centre for Cardiovascular Research (DZHK)Partner Site GreifswaldGreifswaldGermany
- Department of Study of Health in Pomerania/Clinical‐Epidemiological ResearchInstitute for Community MedicineUniversity Medicine GreifswaldGreifswaldGermany
| | - Stephan Burkhard Felix
- Department of Internal Medicine BUniversity Medicine GreifswaldGreifswaldGermany
- German Centre for Cardiovascular Research (DZHK)Partner Site GreifswaldGreifswaldGermany
| | - Martin Bahls
- Department of Internal Medicine BUniversity Medicine GreifswaldGreifswaldGermany
- German Centre for Cardiovascular Research (DZHK)Partner Site GreifswaldGreifswaldGermany
| | - Giovanni Targher
- Division of Endocrinology, Diabetes and MetabolismDepartment of MedicineUniversity of VeronaVeronaItaly
| | - Marcus Dörr
- Department of Internal Medicine BUniversity Medicine GreifswaldGreifswaldGermany
- German Centre for Cardiovascular Research (DZHK)Partner Site GreifswaldGreifswaldGermany
| | - Marcello Ricardo Paulista Markus
- Department of Internal Medicine BUniversity Medicine GreifswaldGreifswaldGermany
- German Centre for Cardiovascular Research (DZHK)Partner Site GreifswaldGreifswaldGermany
- German Center for Diabetes Research (DZD)Partner Site GreifswaldGreifswaldGermany
| |
Collapse
|
4
|
Fan L, Li L, Zhao Y, Zhao Y, Wang F, Wang Q, Ma Z, He S, Qiu J, Zhang J, Li J, Chang Z, Zhang Y. Antagonizing Effects of Chromium Against Iron-Decreased Glucose Uptake by Regulating ROS-Mediated PI3K/Akt/GLUT4 Signaling Pathway in C2C12. Biol Trace Elem Res 2024; 202:701-712. [PMID: 37156991 DOI: 10.1007/s12011-023-03695-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
To investigate the effect of chromium and iron on glucose metabolism via the PI3K/Akt/GLUT4 signaling pathway. Skeletal muscle gene microarray data in T2DM (GSE7014) was selected using Gene Expression Omnibus database. Element-gene interaction datasets of chromium and iron were extracted from comparative toxicogenomics database (CTD). Gene ontology (GO)and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using DAVID online tool. Cell viability, insulin-stimulated glucose uptake, intracellular reactive oxygen species (ROS) level, and protein expression level were measured in C2C12 cells. The bioinformatics research indicated that PI3K/Akt signaling pathway participated in the effects of chromium and iron associated with T2DM. Insulin-stimulated glucose uptake level was significantly higher in chromium picolinate (Cr group) and lower in ammonium iron citrate (FA group) than that for the control group (P < 0.05); chromium picolinate + ammonium iron citrate (Cr + FA group) glucose uptake level was higher than that for the FA group (P < 0.05). Intracellular ROS level was significantly higher in the FAC group than that for the control group (P < 0.05), and that for the Cr + FA group was lower than that for the FA group (P < 0.05). p-PI3K/PI3K, p-Akt/Akt, and GLUT4 levels were significantly lower in the FA group than that for the control group (P < 0.05), and the Cr + FA group had higher levels than the FA group (P < 0.05). Chromium might have a protective effect on iron-induced glucose metabolism abnormalities through the ROS-mediated PI3K/Akt/GLUT4 signaling pathway.
Collapse
Affiliation(s)
- Ling Fan
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Liping Li
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yu Zhao
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yi Zhao
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, Yinchuan, Ningxia, China
| | - Faxuan Wang
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, Yinchuan, Ningxia, China
| | - Qingan Wang
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, Yinchuan, Ningxia, China
| | - Zhanbing Ma
- School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shulan He
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jiangwei Qiu
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jiaxing Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Juan Li
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhenqi Chang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuhong Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
5
|
Niedermayer F, Su Y, von Krüchten R, Thorand B, Peters A, Rathmann W, Roden M, Schlett CL, Bamberg F, Nattenmüller J, Rospleszcz S. Trajectories of glycaemic traits exhibit sex-specific associations with hepatic iron and fat content: Results from the KORA-MRI study. Liver Int 2023; 43:2153-2166. [PMID: 37269169 DOI: 10.1111/liv.15635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) represents a major disease burden in the population. While the bidirectional association between NAFLD and diabetes is established, little is known about the association of hepatic iron content and glycaemia. Moreover, analyses of sex-specific effects and of dynamic changes in glycaemia are scarce. METHODS We investigated 7-year sex-specific trajectories of glycaemia and related traits (HbA1c, fasting glucose, fasting insulin, HOMA-IR, 2-h glucose and cross-sectional 2-h insulin) in a sample from a population-based cohort (N = 365; 41.1% female). Hepatic iron and fat content were assessed by 3T-Magnetic Resonance Imaging (MRI). Two-step multi-level models adjusted for glucose-lowering medication and confounders were applied. RESULTS In women and men, markers of glucose metabolism correlated with hepatic iron and fat content. Deterioration of glycaemia was associated with increased hepatic iron content in men (normoglycaemia to prediabetes: beta = 2.21 s-1 , 95% CI [0.47, 3.95]). Additionally, deterioration of glycaemia (e.g. prediabetes to diabetes: 1.27 log(%), [0.84, 1.70]) and trajectories of glucose, insulin and HOMA-IR were significantly associated with hepatic fat content in men. Similarly, deterioration of glycaemia as well as trajectories of glucose, insulin and HOMA-IR was significantly associated with increased hepatic fat content in women (e.g. trajectory of fasting insulin: 0.63 log(%), [0.36, 0.90]). CONCLUSIONS Unfavourable 7-year trajectories of markers of glucose metabolism are associated with increased hepatic fat content, particularly in women, whereas the association with hepatic iron content was less clear. Monitoring changes of glycaemia in the sub-diabetic range might enable early identification of hepatic iron overload and steatosis.
Collapse
Affiliation(s)
- Fiona Niedermayer
- Chair of Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology, Faculty of Medicine, LMU München, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Yaqi Su
- Chair of Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology, Faculty of Medicine, LMU München, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Ricarda von Krüchten
- Department of Diagnostic and Interventional Radiology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Annette Peters
- Chair of Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology, Faculty of Medicine, LMU München, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- German Center for Cardiovascular Disease Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Christopher L Schlett
- Department of Diagnostic and Interventional Radiology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Johanna Nattenmüller
- Department of Diagnostic and Interventional Radiology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Susanne Rospleszcz
- Chair of Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology, Faculty of Medicine, LMU München, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Cardiovascular Disease Research (DZHK), Munich Heart Alliance, Munich, Germany
| |
Collapse
|
6
|
Valenti L, Corradini E, Adams LA, Aigner E, Alqahtani S, Arrese M, Bardou-Jacquet E, Bugianesi E, Fernandez-Real JM, Girelli D, Hagström H, Henninger B, Kowdley K, Ligabue G, McClain D, Lainé F, Miyanishi K, Muckenthaler MU, Pagani A, Pedrotti P, Pietrangelo A, Prati D, Ryan JD, Silvestri L, Spearman CW, Stål P, Tsochatzis EA, Vinchi F, Zheng MH, Zoller H. Consensus Statement on the definition and classification of metabolic hyperferritinaemia. Nat Rev Endocrinol 2023; 19:299-310. [PMID: 36805052 PMCID: PMC9936492 DOI: 10.1038/s41574-023-00807-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/19/2023]
Abstract
Hyperferritinaemia is a common laboratory finding that is often associated with metabolic dysfunction and fatty liver. Metabolic hyperferritinaemia reflects alterations in iron metabolism that facilitate iron accumulation in the body and is associated with an increased risk of cardiometabolic and liver diseases. Genetic variants that modulate iron homeostasis and tissue levels of iron are the main determinants of serum levels of ferritin in individuals with metabolic dysfunction, raising the hypothesis that iron accumulation might be implicated in the pathogenesis of insulin resistance and the related organ damage. However, validated criteria for the non-invasive diagnosis of metabolic hyperferritinaemia and the staging of iron overload are still lacking, and there is no clear evidence of a benefit for iron depletion therapy. Here, we provide an overview of the literature on the relationship between hyperferritinaemia and iron accumulation in individuals with metabolic dysfunction, and on the associated clinical outcomes. We propose an updated definition and a provisional staging system for metabolic hyperferritinaemia, which has been agreed on by a multidisciplinary global panel of expert researchers. The goal is to foster studies into the epidemiology, genetics, pathophysiology, clinical relevance and treatment of metabolic hyperferritinaemia, for which we provide suggestions on the main unmet needs, optimal design and clinically relevant outcomes.
Collapse
Affiliation(s)
- Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
- Biological Resource Center and Precision Medicine Lab, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy.
- Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy.
| | - Elena Corradini
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy.
- Internal Medicine and Centre for Hemochromatosis and Hereditary Liver Diseases, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy.
| | - Leon A Adams
- Medical School, University of Western Australia, Perth, Australia
| | - Elmar Aigner
- First Department of Medicine, University Clinic Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Saleh Alqahtani
- Royal Clinics and Gastroenterology and Hepatology, King Faisal Specialist Hospital & Research Centre, Riyadh, Kingdom of Saudi Arabia
- Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA
| | - Marco Arrese
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Edouard Bardou-Jacquet
- University of Rennes, UMR1241, CHU Rennes, National Reference Center for Hemochromatosis and iron metabolism disorder, INSERM CIC1414, Rennes, France
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, Turin, Italy
| | - Jose-Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr Josep Trueta University Hospital, Girona, Spain
- Department of Medical Sciences, Faculty of Medicine, Girona University, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Domenico Girelli
- Section of Internal Medicine, Department of Medicine, University of Verona, Policlinico Giambattista Rossi, Verona, Italy
| | - Hannes Hagström
- Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Benjamin Henninger
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kris Kowdley
- Liver Institute Northwest, Seattle, WA, USA
- Elson S. Floyd College of Medicine, Washington State University, Seattle, WA, USA
| | - Guido Ligabue
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Division of Radiology, Ospedale di Sassuolo S.p.A, Sassuolo, Modena, Italy
| | - Donald McClain
- Wake Forest School of Medicine, Winston Salem, NC, USA
- Department of Veterans Affairs, Salisbury, NC, USA
| | - Fabrice Lainé
- INSERM CIC1414, Liver Unit, CHU Rennes, Rennes, France
| | - Koji Miyanishi
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Martina U Muckenthaler
- Department of Paediatric Hematology, Oncology and Immunology, University of Heidelberg, Heidelberg, Germany
- Center for Molecular Translational Iron Research, Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg, Heidelberg, Germany
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Patrizia Pedrotti
- Laboratorio di RM Cardiaca Cardiologia 4, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Antonello Pietrangelo
- Department of Medical and Surgical Sciences, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
- Internal Medicine and Centre for Hemochromatosis and Hereditary Liver Diseases, Azienda Ospedaliero-Universitaria di Modena-Policlinico, Modena, Italy
| | - Daniele Prati
- Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - John D Ryan
- Hepatology Unit, Beaumont Hospital, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - C Wendy Spearman
- Division of Hepatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Per Stål
- Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, UK
| | - Francesca Vinchi
- Iron Research Laboratory, Lindsley F.Kimball Research Institute, New York Blood Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Heinz Zoller
- Department of Medicine I, Medical University of Innsbruck, Innsbruck, Austria
- Doppler Laboratory on Iron and Phosphate Biology, Innsbruck, Austria
| |
Collapse
|
7
|
Abstract
High iron is a risk factor for type 2 diabetes mellitus (T2DM) and affects most of its cardinal features: decreased insulin secretion, insulin resistance, and increased hepatic gluconeogenesis. This is true across the normal range of tissue iron levels and in pathologic iron overload. Because of iron's central role in metabolic processes (e.g., fuel oxidation) and metabolic regulation (e.g., hypoxia sensing), iron levels participate in determining metabolic rates, gluconeogenesis, fuel choice, insulin action, and adipocyte phenotype. The risk of diabetes related to iron is evident in most or all tissues that determine diabetes phenotypes, with the adipocyte, beta cell, and liver playing central roles. Molecular mechanisms for these effects are diverse, although there may be integrative pathways at play. Elucidating these pathways has implications not only for diabetes prevention and treatment, but also for the pathogenesis of other diseases that are, like T2DM, associated with aging, nutrition, and iron.
Collapse
Affiliation(s)
- Alexandria V Harrison
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
| | - Felipe Ramos Lorenzo
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
- Department of Veterans Affairs, W.G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, North Carolina, USA
| | - Donald A McClain
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA;
- Department of Veterans Affairs, W.G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, North Carolina, USA
| |
Collapse
|
8
|
Shi Y, Zhong H, Pang L. Maternal micronutrient disturbance as risks of offspring metabolic syndrome. J Trace Elem Med Biol 2023; 75:127097. [PMID: 36272194 DOI: 10.1016/j.jtemb.2022.127097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Metabolic syndrome (MetS) is defined as a constellation of individual metabolic disturbances, including central obesity, hypertension, dyslipidemia, and insulin resistance. The established pathogenesis of MetS varies extensively with gender, age, ethnic background, and nutritional status. In terms of nutritional status, micronutrients are more likely to be discounted as essential components of required nutrition than macronutrients due to the small amount required. Numerous observational studies have shown that pregnant women frequently experience malnutrition, especially in developing and low-income countries, resulting in chronic MetS in the offspring due to the urgent and increasing demands for micronutrients during gestation and lactation. Over the past few decades, scientific developments have revolutionized our understanding of the association between balanced maternal micronutrients and MetS in the offspring. Examples of successful individual, dual, or multiple maternal micronutrient interventions on the offspring include iron for hypertension, selenium for type 2 diabetes, and a combination of folate and vitamin D for adiposity. In this review, we aim to elucidate the effects of maternal micronutrient intake on offspring metabolic homeostasis and discuss potential perspectives and challenges in the field of maternal micronutrient interventions.
Collapse
Affiliation(s)
- Yujie Shi
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| | - Hong Zhong
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Lingxia Pang
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| |
Collapse
|
9
|
Naeem M, Schipf S, Bülow R, Werner N, Dörr M, Lerch MM, Kühn JP, Rathmann W, Nauck M, Paulista Markus MR, Targher G, Ittermann T, Völzke H. Association between hepatic iron overload assessed by magnetic resonance imaging and glucose intolerance states in the general population. Nutr Metab Cardiovasc Dis 2022; 32:1470-1476. [PMID: 35282980 DOI: 10.1016/j.numecd.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 02/03/2022] [Accepted: 02/18/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIM While there is evidence that iron overload disorders are associated with type 2 diabetes, the relationship between hepatic iron overload and prediabetes remains unclear. We aimed to investigate the association between hepatic iron overload, as assessed by magnetic resonance imaging (MRI), and different glucose intolerance states in the population-based Study. METHODS AND RESULTS We included data from 1622 individuals with MRI data, who did not have known type 2 diabetes (T2DM). Using an oral glucose tolerance testing, participants were classified as having isolated impaired fasting glucose (i-IFG), isolated impaired glucose tolerance (i-IGT), combined IFG and IGT (IFG + IGT) or previously unknown T2DM. Hepatic iron and fat contents were assessed through quantitative MRI. We undertook linear and multinomial logistic regression models adjusted for potential confounders and MRI-assessed hepatic fat content to examine the association of hepatic iron overload with different glucose intolerance states or continuous markers of glucose metabolism. MRI-assessed hepatic iron overload was positively associated only with both 2-h plasma glucose (β = 0.32; 95%CI 0.04-0.60) and the combined IFG + IGT category (relative risk ratio = 1.87; 95%CI 1.15-3.06). No significant associations were found between hepatic iron overload and other glucose intolerance states or biomarkers of glucose metabolism, independently of potential confounders. CONCLUSIONS MRI-assessed hepatic iron overload was associated with higher 2-h glucose concentrations and the combined IFG + IGT category, but not with other glucose intolerance states. Our findings suggest a weak adverse impact of hepatic iron overload on glucose metabolism, but further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Muhammad Naeem
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany; Department of Zoology, University of Malakand, 18800, Pakistan.
| | - Sabine Schipf
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany; German Center for Diabetes Research (DZD), Partner Site Greifswald, Germany
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Germany
| | - Nicole Werner
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Marcus Dörr
- Department of Internal Medicine B - Cardiology, Intensive Care, Pulmonary Medicine and Infectious Diseases, University Medicine Greifswald, Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Germany
| | - Markus M Lerch
- Department of Gastroenterology, University Medicine Greifswald, Greifswald, Germany
| | - Jens-Peter Kühn
- Institute and Policlinic for Diagnostic and Interventional Radiology, University Hospital, Carl Gustav Carus University, TU Dresden, Dresden, Germany
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), Partner Site Greifswald, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Matthias Nauck
- Institute for Laboratory Medicine and Clinical Chemistry, University Medicine Greifswald, Greifswald, Germany
| | - Marcello Ricardo Paulista Markus
- Department of Internal Medicine B - Cardiology, Intensive Care, Pulmonary Medicine and Infectious Diseases, University Medicine Greifswald, Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Germany; German Center for Diabetes Research (DZD), Partner Site Greifswald, Germany
| | - Giovanni Targher
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona, Verona, Italy
| | - Till Ittermann
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Germany; German Center for Diabetes Research (DZD), Partner Site Greifswald, Germany
| |
Collapse
|
10
|
Hosten N, Bülow R, Völzke H, Domin M, Schmidt CO, Teumer A, Ittermann T, Nauck M, Felix S, Dörr M, Markus MRP, Völker U, Daboul A, Schwahn C, Holtfreter B, Mundt T, Krey KF, Kindler S, Mksoud M, Samietz S, Biffar R, Hoffmann W, Kocher T, Chenot JF, Stahl A, Tost F, Friedrich N, Zylla S, Hannemann A, Lotze M, Kühn JP, Hegenscheid K, Rosenberg C, Wassilew G, Frenzel S, Wittfeld K, Grabe HJ, Kromrey ML. SHIP-MR and Radiology: 12 Years of Whole-Body Magnetic Resonance Imaging in a Single Center. Healthcare (Basel) 2021; 10:33. [PMID: 35052197 PMCID: PMC8775435 DOI: 10.3390/healthcare10010033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
The Study of Health in Pomerania (SHIP), a population-based study from a rural state in northeastern Germany with a relatively poor life expectancy, supplemented its comprehensive examination program in 2008 with whole-body MR imaging at 1.5 T (SHIP-MR). We reviewed more than 100 publications that used the SHIP-MR data and analyzed which sequences already produced fruitful scientific outputs and which manuscripts have been referenced frequently. Upon reviewing the publications about imaging sequences, those that used T1-weighted structured imaging of the brain and a gradient-echo sequence for R2* mapping obtained the highest scientific output; regarding specific body parts examined, most scientific publications focused on MR sequences involving the brain and the (upper) abdomen. We conclude that population-based MR imaging in cohort studies should define more precise goals when allocating imaging time. In addition, quality control measures might include recording the number and impact of published work, preferably on a bi-annual basis and starting 2 years after initiation of the study. Structured teaching courses may enhance the desired output in areas that appear underrepresented.
Collapse
Affiliation(s)
- Norbert Hosten
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany; (N.H.); (R.B.); (M.D.); (K.H.); (C.R.)
| | - Robin Bülow
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany; (N.H.); (R.B.); (M.D.); (K.H.); (C.R.)
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (H.V.); (C.O.S.); (A.T.); (T.I.); (W.H.); (J.-F.C.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
| | - Martin Domin
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany; (N.H.); (R.B.); (M.D.); (K.H.); (C.R.)
| | - Carsten Oliver Schmidt
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (H.V.); (C.O.S.); (A.T.); (T.I.); (W.H.); (J.-F.C.)
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (H.V.); (C.O.S.); (A.T.); (T.I.); (W.H.); (J.-F.C.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
| | - Till Ittermann
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (H.V.); (C.O.S.); (A.T.); (T.I.); (W.H.); (J.-F.C.)
| | - Matthias Nauck
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Stephan Felix
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Department of Internal Medicine B, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Marcus Dörr
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Department of Internal Medicine B, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Marcello Ricardo Paulista Markus
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Department of Internal Medicine B, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Uwe Völker
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Amro Daboul
- Department of Prosthetic Dentistry, Gerodontology and Biomaterials, University Medicine Greifswald, 17475 Greifswald, Germany; (A.D.); (C.S.); (T.M.); (S.S.); (R.B.)
| | - Christian Schwahn
- Department of Prosthetic Dentistry, Gerodontology and Biomaterials, University Medicine Greifswald, 17475 Greifswald, Germany; (A.D.); (C.S.); (T.M.); (S.S.); (R.B.)
| | - Birte Holtfreter
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, 17475 Greifswald, Germany; (B.H.); (T.K.)
| | - Torsten Mundt
- Department of Prosthetic Dentistry, Gerodontology and Biomaterials, University Medicine Greifswald, 17475 Greifswald, Germany; (A.D.); (C.S.); (T.M.); (S.S.); (R.B.)
| | - Karl-Friedrich Krey
- Department of Orthodontics, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Stefan Kindler
- Department of Oral and Maxillofacial Surgery/Plastic Surgery, University Medicine Greifswald, 17475 Greifswald, Germany; (S.K.); (M.M.)
| | - Maria Mksoud
- Department of Oral and Maxillofacial Surgery/Plastic Surgery, University Medicine Greifswald, 17475 Greifswald, Germany; (S.K.); (M.M.)
| | - Stefanie Samietz
- Department of Prosthetic Dentistry, Gerodontology and Biomaterials, University Medicine Greifswald, 17475 Greifswald, Germany; (A.D.); (C.S.); (T.M.); (S.S.); (R.B.)
| | - Reiner Biffar
- Department of Prosthetic Dentistry, Gerodontology and Biomaterials, University Medicine Greifswald, 17475 Greifswald, Germany; (A.D.); (C.S.); (T.M.); (S.S.); (R.B.)
| | - Wolfgang Hoffmann
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (H.V.); (C.O.S.); (A.T.); (T.I.); (W.H.); (J.-F.C.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- German Centre for Neurodegenerative Diseases (DZNE), Partner Site Rostock/Greifswald, 17489 Greifswald, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, 17475 Greifswald, Germany; (B.H.); (T.K.)
| | - Jean-Francois Chenot
- Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (H.V.); (C.O.S.); (A.T.); (T.I.); (W.H.); (J.-F.C.)
| | - Andreas Stahl
- Clinic of Ophthalmology, University Medicine Greifswald, 17475 Greifswald, Germany; (A.S.); (F.T.)
| | - Frank Tost
- Clinic of Ophthalmology, University Medicine Greifswald, 17475 Greifswald, Germany; (A.S.); (F.T.)
| | - Nele Friedrich
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Stephanie Zylla
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Anke Hannemann
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 10785 Berlin, Germany; (M.N.); (S.F.); (M.D.); (M.R.P.M.); (U.V.); (N.F.); (S.Z.); (A.H.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Martin Lotze
- Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Jens-Peter Kühn
- Institute and Policlinic of Diagnostic and Interventional Radiology, Medical University, Carl-Gustav Carus, 01307 Dresden, Germany;
| | - Katrin Hegenscheid
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany; (N.H.); (R.B.); (M.D.); (K.H.); (C.R.)
| | - Christian Rosenberg
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany; (N.H.); (R.B.); (M.D.); (K.H.); (C.R.)
| | - Georgi Wassilew
- Clinic of Orthopedics, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Stefan Frenzel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany; (S.F.); (K.W.); (H.J.G.)
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany; (S.F.); (K.W.); (H.J.G.)
- German Center of Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Site Greifswald, 17489 Greifswald, Germany
| | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany; (S.F.); (K.W.); (H.J.G.)
- German Center of Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Site Greifswald, 17489 Greifswald, Germany
| | - Marie-Luise Kromrey
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany; (N.H.); (R.B.); (M.D.); (K.H.); (C.R.)
- Correspondence:
| |
Collapse
|
11
|
Distribution and Associated Factors of Hepatic Iron-A Population-Based Imaging Study. Metabolites 2021; 11:metabo11120871. [PMID: 34940629 PMCID: PMC8705957 DOI: 10.3390/metabo11120871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 11/17/2022] Open
Abstract
Hepatic iron overload can cause severe organ damage; therefore, an early diagnosis and the identification of potential risk factors is crucial. We aimed to investigate the sex-specific distribution of hepatic iron content (HIC) in a population-based cohort and identify relevant associated factors from a panel of markers. We analyzed N = 353 participants from a cross-sectional sample (KORA FF4) who underwent whole-body magnetic resonance imaging. HIC was assessed by single-voxel spectroscopy with a high-speed T2-corrected multi-echo technique. A large panel of markers, including anthropometric, genetic, and laboratory values, as well as behavioral risk factors were assessed. Relevant factors associated with HIC were identified by variable selection based on LASSO regression with bootstrap resampling. HIC in the study sample (mean age at examination: 56.0 years, 58.4% men) was significantly lower in women (mean ± SD: 39.2 ± 4.1 s-1) than in men (41.8 ± 4.7 s-1, p < 0.001). Relevant factors associated with HIC were HbA1c as well as prediabetes for men and visceral adipose tissue as well as age for women. Hepatic fat, alcohol consumption, and genetic risk score for iron levels were associated with HIC in both sexes. In conclusion, there are sex-specific associations of HIC with markers of body composition, glucose metabolism, and alcohol consumption.
Collapse
|