1
|
Gence L, Morello E, Rastegar S, Apalama ML, Meilhac O, Bascands JL, Diotel N. Gene expression patterns of the LDL receptor and its inhibitor Pcsk9 in the adult zebrafish brain suggest a possible role in neurogenesis. Eur J Neurosci 2025; 61:e16586. [PMID: 39551948 DOI: 10.1111/ejn.16586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/18/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
The low-density lipoprotein receptor (LDLr) is the first member of a closely related transmembrane protein family. It is known for its involvement in various physiological processes, mainly in the regulation of lipid metabolism, especially in the brains of mammals and zebrafish. In zebrafish, two ldlr genes (ldlra and b) have been identified and their distribution in the brain is not well documented. Recently, the roles of ldlr and its inhibitor pcsk9 in regenerative process after telencephalic brain injury have been discussed. In this study, we explored the expression patterns of these genes during zebrafish development. We found that ldlra expression was detected at the end of the pharyngula period (48 hpf) and increased during the larval stage. Conversely, ldlrb expression was observed from zygotic to larval stages. Using techniques like in situ hybridization and taking advantage of transgenic fish, we demonstrated the widespread distribution of ldlra, ldlrb and pcsk9 in the brain of adult zebrafish. Specifically, these genes were expressed in neurons and neural stem cells and also at lower levels in endothelial cells. As expected, intraperitoneal injection of fluorescent-labelled LDLs resulted in their uptake by cerebral endothelial cells in a homeostatic context, whereas they diffused within the brain parenchyma after telencephalic injury. However, after intracerebroventricular injections into animals, LDL particles were not taken up by neural stem cells. In conclusion, our results provide additional evidence for LDLr expression in the brain of adult zebrafish. These results raise the question of the role of LDLr in the cholesterol/lipid imbalance in cerebral complications.
Collapse
Affiliation(s)
- Laura Gence
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, La Réunion, France
| | - Elena Morello
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, La Réunion, France
- CHU de La Réunion, Saint-Pierre, La Réunion, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Marie Laurine Apalama
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, La Réunion, France
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, La Réunion, France
- CHU de La Réunion, Saint-Pierre, La Réunion, France
| | - Jean-Loup Bascands
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, La Réunion, France
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, La Réunion, France
| |
Collapse
|
2
|
Saralahti AK, Harjula SKE, Rantapero T, Uusi-Mäkelä MIE, Kaasinen M, Junno M, Piippo H, Nykter M, Lohi O, Rounioja S, Parikka M, Rämet M. Characterization of the innate immune response to Streptococcus pneumoniae infection in zebrafish. PLoS Genet 2023; 19:e1010586. [PMID: 36622851 PMCID: PMC9858863 DOI: 10.1371/journal.pgen.1010586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/20/2023] [Accepted: 12/20/2022] [Indexed: 01/10/2023] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is one of the most frequent causes of pneumonia, sepsis and meningitis in humans, and an important cause of mortality among children and the elderly. We have previously reported the suitability of the zebrafish (Danio rerio) larval model for the study of the host-pathogen interactions in pneumococcal infection. In the present study, we characterized the zebrafish innate immune response to pneumococcus in detail through a whole-genome level transcriptome analysis and revealed a well-conserved response to this human pathogen in challenged larvae. In addition, to gain understanding of the genetic factors associated with the increased risk for severe pneumococcal infection in humans, we carried out a medium-scale forward genetic screen in zebrafish. In the screen, we identified a mutant fish line which showed compromised resistance to pneumococcus in the septic larval infection model. The transcriptome analysis of the mutant zebrafish larvae revealed deficient expression of a gene homologous for human C-reactive protein (CRP). Furthermore, knockout of one of the six zebrafish crp genes by CRISPR-Cas9 mutagenesis predisposed zebrafish larvae to a more severe pneumococcal infection, and the phenotype was further augmented by concomitant knockdown of a gene for another Crp isoform. This suggests a conserved function of C-reactive protein in anti-pneumococcal immunity in zebrafish. Altogether, this study highlights the similarity of the host response to pneumococcus in zebrafish and humans, gives evidence of the conserved role of C-reactive protein in the defense against pneumococcus, and suggests novel host genes associated with pneumococcal infection.
Collapse
Affiliation(s)
- Anni K. Saralahti
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sanna-Kaisa E. Harjula
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tommi Rantapero
- Laboratory of Computational Biology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Meri I. E. Uusi-Mäkelä
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mikko Kaasinen
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Maiju Junno
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Hannaleena Piippo
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Matti Nykter
- Laboratory of Computational Biology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Olli Lohi
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | | | - Mataleena Parikka
- Laboratory of Infection Biology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- FVR–Finnish Vaccine Research, Tampere, Finland
| |
Collapse
|
3
|
Hu YX, You HM, Zhu RF, Liang YL, Li FF, Qin YW, Zhao XX, Liang C, Jing Q. Establishment of a lipid metabolism disorder model in ApoEb mutant zebrafish. Atherosclerosis 2022; 361:18-29. [PMID: 36306655 DOI: 10.1016/j.atherosclerosis.2022.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/21/2022] [Accepted: 10/14/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS ApoEb is a zebrafish homologous to mammalian ApoE, whose deficiency would lead to lipid metabolism disorders (LMDs) like atherosclerosis. We attempted to knock out the zebrafish ApoEb, then establish a zebrafish model with LMD. METHODS ApoEb was knocked out using the CRISPR/Cas9 system, and the accumulation of lipids was confirmed by Oil Red O staining, confocal imaging, and lipid measurements. The lipid-lowering effects of simvastatin (SIM), ezetimibe (EZE) and Xuezhikang (XZK), an extract derived from red yeast rice, were evaluated through in vivo imaging in zebrafish larvae. RESULTS In the ApoEb mutant, significant vascular lipid deposition occurred, and lipid measurement performed in the whole-body homogenate of larvae and adult plasma showed significantly increased lipid levels. SIM, EZE and XZK apparently relieved hyperlipidemia in ApoEb mutants, and XZK had a significant inhibitory effect on the recruitment of neutrophils and macrophages. CONCLUSIONS In this study, an LMD model has been established in ApoEb mutant zebrafish. We suggest that this versatile model could be applied in studying hypercholesterolemia and related vascular pathology in the context of early atherosclerosis, as well as the physiological function of ApoE.
Collapse
Affiliation(s)
- Yang-Xi Hu
- Department of Cardiology, Changzheng Hospital, Shanghai, 200003, China
| | - Hong-Min You
- Department of Cardiology, Changhai Hospital, Shanghai, 200433, China
| | - Rong-Fang Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu-Lai Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fang-Fang Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yong-Wen Qin
- Department of Cardiology, Changhai Hospital, Shanghai, 200433, China
| | - Xian-Xian Zhao
- Department of Cardiology, Changhai Hospital, Shanghai, 200433, China
| | - Chun Liang
- Department of Cardiology, Changzheng Hospital, Shanghai, 200003, China.
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
4
|
Abstract
This article reviews the discovery of PCSK9, its structure-function characteristics, and its presently known and proposed novel biological functions. The major critical function of PCSK9 deduced from human and mouse studies, as well as cellular and structural analyses, is its role in increasing the levels of circulating low-density lipoprotein (LDL)-cholesterol (LDLc), via its ability to enhance the sorting and escort of the cell surface LDL receptor (LDLR) to lysosomes. This implicates the binding of the catalytic domain of PCSK9 to the EGF-A domain of the LDLR. This also requires the presence of the C-terminal Cys/His-rich domain, its binding to the secreted cytosolic cyclase associated protein 1, and possibly another membrane-bound "protein X". Curiously, in PCSK9-deficient mice, an alternative to the downregulation of the surface levels of the LDLR by PCSK9 is taking place in the liver of female mice in a 17β-estradiol-dependent manner by still an unknown mechanism. Recent studies have extended our understanding of the biological functions of PCSK9, namely its implication in septic shock, vascular inflammation, viral infections (Dengue; SARS-CoV-2) or immune checkpoint modulation in cancer via the regulation of the cell surface levels of the T-cell receptor and MHC-I, which govern the antitumoral activity of CD8+ T cells. Because PCSK9 inhibition may be advantageous in these processes, the availability of injectable safe PCSK9 inhibitors that reduces by 50% to 60% LDLc above the effect of statins is highly valuable. Indeed, injectable PCSK9 monoclonal antibody or small interfering RNA could be added to current immunotherapies in cancer/metastasis.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC, Canada
| |
Collapse
|
5
|
Vasyutina M, Alieva A, Reutova O, Bakaleiko V, Murashova L, Dyachuk V, Catapano AL, Baragetti A, Magni P. The zebrafish model system for dyslipidemia and atherosclerosis research: Focus on environmental/exposome factors and genetic mechanisms. Metabolism 2022; 129:155138. [PMID: 35051509 DOI: 10.1016/j.metabol.2022.155138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/15/2021] [Accepted: 01/13/2022] [Indexed: 12/13/2022]
Abstract
Dyslipidemias and atherosclerosis play a pivotal role in cardiovascular risk and disease. Although some pathophysiological mechanisms underlying these conditions have been unveiled, several knowledge gaps still remain. Experimental models, both in vitro and in vivo, have been instrumental to our better understanding of such complex processes. The latter have often been based on rodent species, either wild-type or, in several instances, genetically modified. In this context, the zebrafish may represent an additional very useful in vivo experimental model for dyslipidemia and atherosclerosis. Interestingly, the lipid metabolism of zebrafish shares several features with that present in humans, recapitulating some molecular features and pathophysiological aspects in a better way than that of rodents. The zebrafish model may be of help to address questions related to exposome factors as well as to genetic features, aiming to dissect selected aspects of the more complex scenario observed in humans. Indeed, exposome-related dyslipidemia/atherosclerosis research in zebrafish may target different scientific questions, related to nutrition, microbiota, temperature, light exposure at the larval stage, exposure to chemicals and epigenetic consequences of such external factors. Addressing genetic features related to dyslipidemia/atherosclerosis using the zebrafish model is already a reality and active research is now ongoing in this promising area. Novel technologies (gene and genome editing) may help to identify new candidate genes involved in dyslipidemia and dyslipidemia-related diseases. Based on these considerations, the zebrafish experimental model appears highly suitable for the study of exposome factors, genes and molecules involved in the development of atherosclerosis-related disease as well as for the validation of novel potential treatment options.
Collapse
Affiliation(s)
- Marina Vasyutina
- Almazov Federal Medical Research Centre, Saint Petersburg, Russia.
| | - Asiiat Alieva
- Almazov Federal Medical Research Centre, Saint Petersburg, Russia
| | - Olga Reutova
- Almazov Federal Medical Research Centre, Saint Petersburg, Russia
| | | | - Lada Murashova
- Almazov Federal Medical Research Centre, Saint Petersburg, Russia
| | | | - Alberico L Catapano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Milan, Italy
| | - Andrea Baragetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Milan, Italy
| | - Paolo Magni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Milan, Italy.
| |
Collapse
|
6
|
Mbikay M, Chrétien M. The Biological Relevance of PCSK9: When Less Is Better…. Biochem Cell Biol 2022; 100:189-198. [PMID: 35263196 DOI: 10.1139/bcb-2021-0540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proprotein Convertase Subtilisin/Kexin-type 9 (PCSK9) is a circulating negative regulator of hepatic low-density lipoprotein receptor (LDLR) which clears cholesterol from blood. Gain-of-function genetic mutations which amplify PCSK9 activity have been found to cause potentially lethal familial hypercholesterolemia. Inversely, reduction of its activity through loss-of-function genetics or with pharmaceuticals was shown to increase hepatic LDLR, to lower blood cholesterol, and to protect against cardiovascular diseases. New epidemiological and experimental evidence suggests that this reduction could also attenuate inflammation, reinforce cancer immunity, provide resistance to infections, and protect against liver pathologies. In this review, we question the relevance of this protein under normal physiology. We propose that PCSK9 is an important, but non-essential, modulator of cholesterol metabolism and immunity, and that its pathogenicity results from its chronic overexpression.
Collapse
Affiliation(s)
- Majambu Mbikay
- Institut de recherches cliniques de Montréal, 5598, Functional Endoproteolysis, Montreal, Quebec, Canada;
| | - Michel Chrétien
- Institut de recherches cliniques de Montreal, 5598, Functional Endoproteolysis, Montreal, Quebec, Canada;
| |
Collapse
|
7
|
Wang Q, Mei J, Xie J. The Effects of Lemon Balm ( Melissa officinalis L.) Essential Oil on the Stress Response, Anti-Oxidative Ability, and Kidney Metabolism of Sea Bass during Live Transport. Animals (Basel) 2022; 12:339. [PMID: 35158663 PMCID: PMC8833459 DOI: 10.3390/ani12030339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
This study was conducted to enhance the viability and alleviate the oxidative stress response using MO for sea bass during live transport. Six experimental groups were designed, and the effects of the physiological responses of MO were evaluated in comparison with MS-222 and eugenol. The physiological stress levels, proprotein convertase subtilisin/kexin type 9 (PCSK-9), antioxidant enzyme activities, and kidney parameters of blood serum were determined. It was found that cortisol level, glucose (Glu), lactic acid (LD), heat shock proteins (HSPs), catalase (CAT), myeloperoxidase (MPO), glutathione peroxidase (GSH-Px), uric acid (UA), and urea nitrogen (BUN) in the MO-treated samples were lower than that of the control (133.72 ng/L); however, the total antioxidant capacity (T-AOC) was higher after 72 h of the simulated live transport. The ability to resist oxidative stress increased along with the increase in the MO concentration in the water during live transport, which was similar to the results of MS-222 and eugenol treatment. In conclusion, MO, acting as a kind of novel sedative and anesthetic, can be used to improve the oxidative system and survival rate during live transport. The results of this study provide a reference for enhancing animal welfare and anti-oxidative stress ability, reducing mortality and the stress response during live fish transport.
Collapse
Affiliation(s)
- Qi Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
- Collaborative Innovation Center of Seafood Deep Processing, Ministry of Education, Dalian 116034, China
| |
Collapse
|
8
|
Grewal T, Buechler C. Emerging Insights on the Diverse Roles of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) in Chronic Liver Diseases: Cholesterol Metabolism and Beyond. Int J Mol Sci 2022; 23:ijms23031070. [PMID: 35162992 PMCID: PMC8834914 DOI: 10.3390/ijms23031070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 02/05/2023] Open
Abstract
Chronic liver diseases are commonly associated with dysregulated cholesterol metabolism. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serine protease of the proprotein convertase family that is mainly synthetized and secreted by the liver, and represents one of the key regulators of circulating low-density lipoprotein (LDL) cholesterol levels. Its ability to bind and induce LDL-receptor degradation, in particular in the liver, increases circulating LDL-cholesterol levels in the blood. Hence, inhibition of PCSK9 has become a very potent tool for the treatment of hypercholesterolemia. Besides PCSK9 limiting entry of LDL-derived cholesterol, affecting multiple cholesterol-related functions in cells, more recent studies have associated PCSK9 with various other cellular processes, including inflammation, fatty acid metabolism, cancerogenesis and visceral adiposity. It is increasingly becoming evident that additional roles for PCSK9 beyond cholesterol homeostasis are crucial for liver physiology in health and disease, often contributing to pathophysiology. This review will summarize studies analyzing circulating and hepatic PCSK9 levels in patients with chronic liver diseases. The factors affecting PCSK9 levels in the circulation and in hepatocytes, clinically relevant studies and the pathophysiological role of PCSK9 in chronic liver injury are discussed.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany
- Correspondence:
| |
Collapse
|