1
|
Ronzoni L, Pelusi S, Moretti V, Malvestiti F, Eidgah Torghabehei H, Jamialahmadi O, Rondena J, Bianco C, Periti G, Filippo MRD, Romeo S, Prati D, Valenti L. Diagnostic Uptake of Targeted Sequencing in Adults With Steatotic Liver Disease and a Suspected Genetic Contribution. Liver Int 2025; 45:e70010. [PMID: 39945383 PMCID: PMC11822878 DOI: 10.1111/liv.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025]
Abstract
BACKGROUND AND AIMS In patients with steatotic liver diseases (SLD), genetic factors may account for severe liver involvement despite mild or absence of triggering factors or a strong family history. Aim of this study was to examine the diagnostic uptake of targeted sequencing (TS), covering both coding and non-coding regions, of a broad panel of 82 liver and lipid metabolism genes in patients with unexplained SLD. METHODS We enrolled 49 adult patients with SLD and a suspected genetic contribution. Genetic variants were detected through a customised TS panel, whereas the contribution of common genetic variation to the individual susceptibility to SLD was captured by a polygenic risk score (SLD-PRS). RESULTS A diagnosis of rare Mendelian disorder was established in 11 patients (22%), independently of age or family history. Rare variants possibly contributing to clinical phenotype were detected in additional 29 patients (59%). Increased SLD-PRS values were detected in 17 patients (35%), enabling an increase in diagnostic uptake of 24%, especially in those without a strong family history (p = 0.03). Genetic diagnosis allowed refinement of clinical management in 23 (47%) patients. CONCLUSIONS The diagnostic uptake of TS was 22% for Mendelian disorder and 59% for possible contribution to clinical phenotype in selected adult patients with SLD. Evaluation of common variants, as captured by SLD-PRS, yields complementary information increasing the overall utility of the genetic examination.
Collapse
Grants
- 777377 Innovative Medicines Initiative 2 joint undertaking of European Union's Horizon 2020 research and innovation program and EFPIA European Union (EU) Program Horizon 2020 for the project LITMUS
- Gilead Sciences Inc.
- 101016726-REVEAL The European Union, H2020-ICT-2018-20/H2020-ICT-2020-2 program "Photonics"
- Italian ministry of Research (MUR) PNRR - M4 - C2 "National Center for Gene Therapy and Drugs based on RNA Technology" CN3, Spoke 4
- 101096312 The European Union, HORIZON-MISS-2021-CANCER-02-03 program "Genial"
- RF-2016-02364358 The Italian Ministry of Health (Ministero della Salute), Ricerca Finalizzata 2016
- Italian ministry of Research (MUR) PRIN 2022
- PNRR-MAD-2022-12375656 The Italian Ministry of Health, Ricerca Finalizzata PNRR 2022
- RF-2021-12373889 The Italian Ministry of Health, Ricerca Finalizzata 2021
- PR-0361 Fondazione Patrimonio Ca' Granda, "Liver BIBLE"
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Ricerca Corrente
- Innovative Medicines Initiative 2 joint undertaking of European Union’s Horizon 2020 research and innovation program and EFPIA European Union (EU) Program Horizon 2020 for the project LITMUS
- The European Union, H2020‐ICT‐2018‐20/H2020‐ICT‐2020‐2 program “Photonics”
- Italian ministry of Research (MUR) PNRR ‐ M4 ‐ C2 “National Center for Gene Therapy and Drugs based on RNA Technology” CN3, Spoke 4
- The European Union, HORIZON‐MISS‐2021‐CANCER‐02‐03 program “Genial”
- The Italian Ministry of Health (Ministero della Salute), Ricerca Finalizzata 2016
- Italian ministry of Research (MUR) PRIN 2022
- The Italian Ministry of Health, Ricerca Finalizzata PNRR 2022
- The Italian Ministry of Health, Ricerca Finalizzata 2021
- Fondazione Patrimonio Ca’ Granda, “Liver BIBLE”
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Ricerca Corrente
Collapse
Affiliation(s)
- Luisa Ronzoni
- Precisione Medicine Lab, Biological Resource Center and Department of Transfusion MedicineFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| | - Serena Pelusi
- Precisione Medicine Lab, Biological Resource Center and Department of Transfusion MedicineFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| | - Vittoria Moretti
- Precisione Medicine Lab, Biological Resource Center and Department of Transfusion MedicineFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| | - Francesco Malvestiti
- Department of Pathophysiology and TransplantationUniversità Degli Studi di MilanoMilanItaly
| | - Hadi Eidgah Torghabehei
- Omic Sciences Lab, Scientific DirectionFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| | - Oveis Jamialahmadi
- Department of Molecular and Clinical Medicine, Institute of Medicine, Academy, Wallenberg LaboratoryUniversity of GothenburgGothenburgSweden
| | - Jessica Rondena
- Precisione Medicine Lab, Biological Resource Center and Department of Transfusion MedicineFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| | - Cristiana Bianco
- Precisione Medicine Lab, Biological Resource Center and Department of Transfusion MedicineFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| | - Giulia Periti
- Precisione Medicine Lab, Biological Resource Center and Department of Transfusion MedicineFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| | - Maria Rosaria De Filippo
- Omic Sciences Lab, Scientific DirectionFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, Academy, Wallenberg LaboratoryUniversity of GothenburgGothenburgSweden
- Department of CardiologySahlgrenska University HospitalGothenburgSweden
- Clinical Nutrition Unit, Department of Medical and Surgical SciencesUniversity Magna GraeciaCatanzaroItaly
| | - Daniele Prati
- Precisione Medicine Lab, Biological Resource Center and Department of Transfusion MedicineFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| | - Luca Valenti
- Precisione Medicine Lab, Biological Resource Center and Department of Transfusion MedicineFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
- Department of Pathophysiology and TransplantationUniversità Degli Studi di MilanoMilanItaly
- Omic Sciences Lab, Scientific DirectionFondazione IRCCS ca' Granda Ospedale Maggiore Policlinico MilanoMilanItaly
| |
Collapse
|
2
|
Moretti V, Romeo S, Valenti L. The contribution of genetics and epigenetics to MAFLD susceptibility. Hepatol Int 2024; 18:848-860. [PMID: 38662298 PMCID: PMC11450136 DOI: 10.1007/s12072-024-10667-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/25/2024] [Indexed: 04/26/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common liver disease worldwide. The risk of developing MAFLD varies among individuals, due to a combination of environmental inherited and acquired genetic factors. Genome-wide association and next-generation sequencing studies are leading to the discovery of the common and rare genetic determinants of MAFLD. Thanks to the great advances in genomic technologies and bioinformatics analysis, genetic and epigenetic factors involved in the disease can be used to develop genetic risk scores specific for liver-related complications, which can improve risk stratification. Genetic and epigenetic factors lead to the identification of specific sub-phenotypes of MAFLD, and predict the individual response to a pharmacological therapy. Moreover, the variant transcripts and protein themselves represent new therapeutic targets. This review will discuss the current status of research into genetic as well as epigenetic modifiers of MAFLD development and progression.
Collapse
Affiliation(s)
- Vittoria Moretti
- Precision Medicine Lab, Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Via F Sforza 35, 20122, Milan, Italy
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Luca Valenti
- Precision Medicine Lab, Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Via F Sforza 35, 20122, Milan, Italy.
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
3
|
Shalaby S, Ronzoni L, Hernandez-Gea V, Valenti L. The genetics of portal hypertension: Recent developments and the road ahead. Liver Int 2023; 43:2592-2603. [PMID: 37718732 DOI: 10.1111/liv.15732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/07/2023] [Accepted: 09/02/2023] [Indexed: 09/19/2023]
Abstract
Portal hypertension (PH), defined as a pathological increase in the portal vein pressure, has different aetiologies and causes. Intrahepatic PH is mostly secondary to the presence of underlying liver disease leading to cirrhosis, characterized by parenchymal changes with deregulated accumulation of extracellular matrix and vascular abnormalities; liver sinusoidal endothelial cells and hepatic stellate cells are key players in PH progression, able to influence each other. However, PH may also develop independently of parenchymal damage, as occur in portosinusoidal vascular disorder (PSVD), a group of clinical and histological entities characterized by portal vasculature dysfunctions. In this particular group of disorders, the pathophysiology of PH is still poorly understood. In the last years, several genetic studies, based on genome-wide association studies or whole-exome sequencing analysis, have highlighted the importance of genetic heritability in PH pathogenesis, both in cirrhotic and non-cirrhotic cases. The common PNPLA3 p.I148M variant, one of the main determinants of the susceptibility to steatotic liver disease, has also been associated with decompensation in patients with PH. Genetic variations at loci influencing coagulation, mainly the ABO locus, may directly contribute to the pathogenesis of PH. Rare genetic variants have been associated with familiar cases of progressive PSVD. In this review, we summarize the recent knowledges on genetic variants predisposing to PH development, contributing to better understand the role of genetic factors in PH pathogenesis.
Collapse
Grants
- Commissioner for Universities and Research from the Department of Economy and Knowledge" of the "Generalitat de Catalunya" (AGAUR SGR2017_517) (VHG)
- Fondazione Patrimonio Ca' Granda, "Liver BIBLE" (PR-0361) (LV)
- Gilead_IN-IT-989-5790 (LV)
- Innovative Medicines Initiative 2 joint undertaking of European Union's Horizon 2020 research and innovation programme and EFPIA European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS (LV)
- Instituto de Salud Carlos III" FIS PI20/00569 FEDER from the European Union (Fondos FEDER, "Una manera de hacer Europa") (VHG)
- Italian Ministry of Health (Ministero della Salute), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Ricerca Corrente (LV)
- Italian Ministry of Health (Ministero della Salute), Rete Cardiologica "CV-PREVITAL" (LV)
- Italian Ministry of Health (Ministero della Salute), Ricerca Finalizzata 2016, RF-2016-02364358 ("Impact of whole exome sequencing on the clinical management of patients with advanced nonalcoholic fatty liver and cryptogenic liver disease"), Ricerca Finalizzata 2021 RF-2021-12373889, Italian Ministry of Health, Ricerca Finalizzata PNRR 2022 "RATIONAL: Risk strAtificaTIon Of Nonalcoholic fAtty Liver" PNRR-MAD-2022-12375656 (LV)
- Italian Ministry of Health (Ministero della Salute). PNRR PNC-E3-2022-23683266 PNC-HLS-DA, INNOVA (LV)
- The European Union, H2020-ICT-2018-20/H2020-ICT-2020-2 programme "Photonics" under grant agreement No. 101016726 - REVEAL (LV)
- The European Union, HORIZON-MISS-2021-CANCER-02-03 programme "Genial" under grant agreement "101096312" (LV)
Collapse
Affiliation(s)
- Sarah Shalaby
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, CIBEREHD, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Barcelona, Spain
- Department of Surgery, Oncology, and Gastroenterology, Padua University Hospital, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Padua, Italy
| | - Luisa Ronzoni
- Precision Medicine Lab, Biological Resource Center Unit, Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Virginia Hernandez-Gea
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, CIBEREHD, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Barcelona, Spain
| | - Luca Valenti
- Precision Medicine Lab, Biological Resource Center Unit, Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
4
|
Chung DH, Zheng M, Bale AE, Vilarinho S. Hepatology Genome Rounds: An interdisciplinary approach to integrate genomic data into clinical practice. J Hepatol 2023; 79:1065-1071. [PMID: 37011712 PMCID: PMC10523901 DOI: 10.1016/j.jhep.2023.03.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
In the last decade, the utility of whole-exome sequencing in uncovering genetic aetiologies of a variety of liver diseases has been demonstrated. These new diagnoses have guided the management, treatment, and prognostication of previously undiagnosed patients, largely thanks to improved insight into the underlying pathogenesis of their conditions. Despite its clear benefits, the uptake of genetic testing by hepatologists has been limited, in part due to limited prior genetic training and/or opportunities for continuing education. Herein, we show that Hepatology Genome Rounds, an interdisciplinary forum highlighting hepatology cases of clinical interest and educational value, are an important venue for integrating genotypic and phenotypic information to enable accurate diagnosis and appropriate management, dissemination of genomic knowledge within the field of hepatology, and ongoing education to providers and trainees in genomic medicine. We describe our single-centre experience and discuss practical considerations for clinicians interested in launching such a series. We foresee that this format will be adopted at other institutions and by additional specialties, with the aim of further incorporating genomic information into clinical medicine.
Collapse
Affiliation(s)
- David H Chung
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Melanie Zheng
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Allen E Bale
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Sílvia Vilarinho
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Zheng M, Hakim A, Konkwo C, Deaton AM, Ward LD, Silveira MG, Assis DN, Liapakis A, Jaffe A, Jiang ZG, Curry MP, Lai M, Cho MH, Dykas D, Bale A, Mistry PK, Vilarinho S. Advancing diagnosis and management of liver disease in adults through exome sequencing. EBioMedicine 2023; 95:104747. [PMID: 37566928 PMCID: PMC10433007 DOI: 10.1016/j.ebiom.2023.104747] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Whole-exome sequencing (WES) is an effective tool for diagnosis in patients who remain undiagnosed despite a comprehensive clinical work-up. While WES is being used increasingly in pediatrics and oncology, it remains underutilized in non-oncological adult medicine, including in patients with liver disease, in part based on the faulty premise that adults are unlikely to harbor rare genetic variants with large effect size. Here, we aim to assess the burden of rare genetic variants underlying liver disease in adults at two major tertiary referral academic medical centers. METHODS WES analysis paired with comprehensive clinical evaluation was performed in fifty-two adult patients with liver disease of unknown etiology evaluated at two US tertiary academic health care centers. FINDINGS Exome analysis uncovered a definitive or presumed diagnosis in 33% of patients (17/52) providing insight into their disease pathogenesis, with most of these patients (12/17) not having a known family history of liver disease. Our data shows that over two-thirds of undiagnosed liver disease patients attaining a genetic diagnosis were being evaluated for cholestasis or hepatic steatosis of unknown etiology. INTERPRETATION This study reveals an underappreciated incidence and spectrum of genetic diseases presenting in adulthood and underscores the clinical value of incorporating exome sequencing in the evaluation and management of adults with liver disease of unknown etiology. FUNDING S.V. is supported by the NIH/NIDDK (K08 DK113109 and R01 DK131033-01A1) and the Doris Duke Charitable Foundation Grant #2019081. This work was supported in part by NIH-funded Yale Liver Center, P30 DK34989.
Collapse
Affiliation(s)
- Melanie Zheng
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Aaron Hakim
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Chigoziri Konkwo
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | | | | | - Marina G Silveira
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | - David N Assis
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | - AnnMarie Liapakis
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Ariel Jaffe
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Z Gordon Jiang
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Michael P Curry
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Michelle Lai
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel Dykas
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Allen Bale
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Pramod K Mistry
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Silvia Vilarinho
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Ronzoni L, Marini I, Passignani G, Malvestiti F, Marchelli D, Bianco C, Pelusi S, Prati D, Valenti L. Validation of a targeted gene panel sequencing for the diagnosis of hereditary chronic liver diseases. Front Genet 2023; 14:1137016. [PMID: 37388930 PMCID: PMC10300275 DOI: 10.3389/fgene.2023.1137016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Background: The cause of chronic liver diseases (CLD) remains undiagnosed in up to 30% of adult patients. Whole-Exome Sequencing (WES) can improve the diagnostic rate of genetic conditions, but it is not yet widely available, due to the costs and the difficulties in results interpretation. Targeted panel sequencing (TS) represents an alternative more focused diagnostic approach. Aims: To validate a customized TS for hereditary CLD diagnosis. Methods: We designed a customized panel including 82 CLD-associated genes (iron overload, lipid metabolism, cholestatic diseases, storage diseases, specific hereditary CLD and susceptibility to liver diseases). DNA samples from 19 unrelated adult patients with undiagnosed CLD were analyzed by both TS (HaloPlex) and WES (SureSelect Human All Exon kit v5) and the diagnostic performances were compared. Results: The mean depth of coverage of TS-targeted regions was higher with TS than WES (300x vs. 102x; p < 0.0001). Moreover, TS yielded a higher average coverage per gene and lower fraction of exons with low coverage (p < 0.0001). Overall, 374 unique variants were identified across all samples, 98 of which were classified as "Pathogenic" or "Likely Pathogenic" with a high functional impact (HFI). The majority of HFI variants (91%) were detected by both methods; 6 were uniquely identified by TS and 3 by WES. Discrepancies in variant calling were mainly due to variability in read depth and insufficient coverage in the corresponding target regions. All variants were confirmed by Sanger sequencing except two uniquely detected by TS. Detection rate and specificity for variants in TS-targeted regions of TS were 96.9% and 97.9% respectively, whereas those of WES were 95.8% and 100%, respectively. Conclusion: TS was confirmed to be a valid first-tier genetic test, with an average mean depth per gene higher than WES and a comparable detection rate and specificity.
Collapse
Affiliation(s)
- Luisa Ronzoni
- Biological Resource Centre, Precision Medicine Lab, Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milano, Italy
| | - Ilaria Marini
- Biological Resource Centre, Precision Medicine Lab, Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milano, Italy
| | - Giulia Passignani
- Biological Resource Centre, Precision Medicine Lab, Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milano, Italy
| | - Francesco Malvestiti
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Milano, Italy
| | - Daniele Marchelli
- Biological Resource Centre, Precision Medicine Lab, Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milano, Italy
| | - Cristiana Bianco
- Biological Resource Centre, Precision Medicine Lab, Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milano, Italy
| | - Serena Pelusi
- Biological Resource Centre, Precision Medicine Lab, Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milano, Italy
| | - Daniele Prati
- Biological Resource Centre, Precision Medicine Lab, Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milano, Italy
| | - Luca Valenti
- Biological Resource Centre, Precision Medicine Lab, Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano, Milano, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Milano, Italy
| |
Collapse
|