1
|
Chapman A, McAfee A, Tarpy DR, Fine J, Rempel Z, Peters K, Currie R, Foster LJ. Common viral infections inhibit egg laying in honey bee queens and are linked to premature supersedure. Sci Rep 2024; 14:17285. [PMID: 39068210 PMCID: PMC11283550 DOI: 10.1038/s41598-024-66286-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
With their long lives and extreme reproductive output, social insect queens have escaped the classic trade-off between fecundity and lifespan, but evidence for a trade-off between fecundity and immunity has been inconclusive. This is in part because pathogenic effects are seldom decoupled from effects of immune induction. We conducted parallel, blind virus infection experiments in the laboratory and in the field to interrogate the idea of a reproductive immunity trade-off in honey bee (Apis mellifera) queens and to better understand how these ubiquitous stressors affect honey bee queen health. We found that queens injected with infectious virus had smaller ovaries and were less likely to recommence egg-laying than controls, while queens injected with UV-inactivated virus displayed an intermediate phenotype. In the field, heavily infected queens had smaller ovaries and infection was a meaningful predictor of whether supersedure cells were observed in the colony. Immune responses in queens receiving live virus were similar to queens receiving inactivated virus, and several of the same immune proteins were negatively associated with ovary mass in the field. This work supports the hypothesized relationship between virus infection and symptoms associated with queen failure and suggests that a reproductive-immunity trade-off is partially, but not wholly responsible for these effects.
Collapse
Affiliation(s)
- Abigail Chapman
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, Canada.
| | - Alison McAfee
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - David R Tarpy
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Julia Fine
- Invasive Species and Pollinator Health Research Unit, USDA-ARS, Davis, CA, USA
| | - Zoe Rempel
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada
| | - Kira Peters
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada
| | - Rob Currie
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Subasi BS, Grabe V, Kaltenpoth M, Rolff J, Armitage SAO. How frequently are insects wounded in the wild? A case study using Drosophila melanogaster. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240256. [PMID: 39100166 PMCID: PMC11296199 DOI: 10.1098/rsos.240256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 08/06/2024]
Abstract
Wounding occurs across multicellular organisms. Wounds can affect host mobility and reproduction, with ecological consequences for competitive interactions and predator-prey dynamics. Wounds are also entry points for pathogens. An immune response is activated upon injury, resulting in the deposition of the brown-black pigment melanin in insects. Despite the abundance of immunity studies in the laboratory and the potential ecological and evolutionary implications of wounding, the prevalence of wounding in wild-collected insects is rarely systematically explored. We investigated the prevalence and potential causes of wounds in wild-collected Drosophilidae flies. We found that 31% of Drosophila melanogaster were wounded or damaged. The abdomen was the most frequently wounded body part, and females were more likely to have melanized patches on the ventral abdomen, compared with males. Encapsulated parasitoid egg frequency was approximately 10%, and just under 1% of Drosophilidae species had attached mites, which also caused wounds. Wounding is prevalent in D. melanogaster, likely exerting selection pressure on host immunity for two reasons: on a rapid and efficient wound repair and on responding efficiently to opportunistic infections. Wounding is thus expected to be an important driver of immune system evolution and to affect individual fitness and population dynamics.
Collapse
Affiliation(s)
| | - Veit Grabe
- Microscopic Imaging Service Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jens Rolff
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
3
|
Rennolds CW, Bely AE. Integrative biology of injury in animals. Biol Rev Camb Philos Soc 2023; 98:34-62. [PMID: 36176189 PMCID: PMC10087827 DOI: 10.1111/brv.12894] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 01/12/2023]
Abstract
Mechanical injury is a prevalent challenge in the lives of animals with myriad potential consequences for organisms, including reduced fitness and death. Research on animal injury has focused on many aspects, including the frequency and severity of wounding in wild populations, the short- and long-term consequences of injury at different biological scales, and the variation in the response to injury within or among individuals, species, ontogenies, and environmental contexts. However, relevant research is scattered across diverse biological subdisciplines, and the study of the effects of injury has lacked synthesis and coherence. Furthermore, the depth of knowledge across injury biology is highly uneven in terms of scope and taxonomic coverage: much injury research is biomedical in focus, using mammalian model systems and investigating cellular and molecular processes, while research at organismal and higher scales, research that is explicitly comparative, and research on invertebrate and non-mammalian vertebrate species is less common and often less well integrated into the core body of knowledge about injury. The current state of injury research presents an opportunity to unify conceptually work focusing on a range of relevant questions, to synthesize progress to date, and to identify fruitful avenues for future research. The central aim of this review is to synthesize research concerning the broad range of effects of mechanical injury in animals. We organize reviewed work by four broad and loosely defined levels of biological organization: molecular and cellular effects, physiological and organismal effects, behavioural effects, and ecological and evolutionary effects of injury. Throughout, we highlight the diversity of injury consequences within and among taxonomic groups while emphasizing the gaps in taxonomic coverage, causal understanding, and biological endpoints considered. We additionally discuss the importance of integrating knowledge within and across biological levels, including how initial, localized responses to injury can lead to long-term consequences at the scale of the individual animal and beyond. We also suggest important avenues for future injury biology research, including distinguishing better between related yet distinct injury phenomena, expanding the subjects of injury research to include a greater variety of species, and testing how intrinsic and extrinsic conditions affect the scope and sensitivity of injury responses. It is our hope that this review will not only strengthen understanding of animal injury but will contribute to building a foundation for a more cohesive field of 'injury biology'.
Collapse
|
4
|
Lin D, Sutherland D, Aninta SI, Louie N, Nip KM, Li C, Yanai A, Coombe L, Warren RL, Helbing CC, Hoang LMN, Birol I. Mining Amphibian and Insect Transcriptomes for Antimicrobial Peptide Sequences with rAMPage. Antibiotics (Basel) 2022; 11:antibiotics11070952. [PMID: 35884206 PMCID: PMC9312091 DOI: 10.3390/antibiotics11070952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
Antibiotic resistance is a global health crisis increasing in prevalence every day. To combat this crisis, alternative antimicrobial therapeutics are urgently needed. Antimicrobial peptides (AMPs), a family of short defense proteins, are produced naturally by all organisms and hold great potential as effective alternatives to small molecule antibiotics. Here, we present rAMPage, a scalable bioinformatics discovery platform for identifying AMP sequences from RNA sequencing (RNA-seq) datasets. In our study, we demonstrate the utility and scalability of rAMPage, running it on 84 publicly available RNA-seq datasets from 75 amphibian and insect species—species known to have rich AMP repertoires. Across these datasets, we identified 1137 putative AMPs, 1024 of which were deemed novel by a homology search in cataloged AMPs in public databases. We selected 21 peptide sequences from this set for antimicrobial susceptibility testing against Escherichia coli and Staphylococcus aureus and observed that seven of them have high antimicrobial activity. Our study illustrates how in silico methods such as rAMPage can enable the fast and efficient discovery of novel antimicrobial peptides as an effective first step in the strenuous process of antimicrobial drug development.
Collapse
Affiliation(s)
- Diana Lin
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Darcy Sutherland
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, BC V6Z R4R, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sambina Islam Aninta
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Nathan Louie
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Ka Ming Nip
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Chenkai Li
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
- Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Anat Yanai
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Lauren Coombe
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - René L. Warren
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
| | - Caren C. Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada;
| | - Linda M. N. Hoang
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, BC V6Z R4R, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Inanc Birol
- Canada’s Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC V5Z 4S6, Canada; (D.L.); (D.S.); (S.I.A.); (N.L.); (K.M.N.); (C.L.); (A.Y.); (L.C.); (R.L.W.)
- British Columbia Centre for Disease Control, Public Health Laboratory, Vancouver, BC V6Z R4R, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Correspondence:
| |
Collapse
|
5
|
Heinze J, Giehr J. The plasticity of lifespan in social insects. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190734. [PMID: 33678025 PMCID: PMC7938164 DOI: 10.1098/rstb.2019.0734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 01/11/2023] Open
Abstract
One of the central questions of ageing research is why lifespans of organisms differ so tremendously among related taxa and, even more surprising, among members of the same species. Social insects provide a particularly pronounced example for this. Here, we review previously published information on lifespan plasticity in social insects and provide new data on worker lifespan in the ant Cardiocondyla obscurior, which because of its relatively short lifespan is a convenient model to study ageing. We show that individual lifespan may vary within species with several reproductive and social traits, such as egg-laying rate, queen number, task, colony size and colony composition. For example, in Cardiocondyla, highly fecund queens live longer than reproductively less active queens, and workers tend to live longer when transferred into a novel social environment or, as we show with new data, into small colonies. We hypothesize that this plasticity of lifespan serves to maximize the reproductive output of the colony as a whole and thus the inclusive fitness of all individuals. The underlying mechanisms that link the social environment or reproductive status with lifespan are currently unresolved. Several studies in honeybees and ants indicate an involvement of nutrient-sensing pathways, but the details appear to differ among species. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Jürgen Heinze
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg 93040 Germany
| | - Julia Giehr
- Zoology/Evolutionary Biology, University of Regensburg, Regensburg 93040 Germany
| |
Collapse
|
6
|
|
7
|
Giehr J, Heinze J. Queens stay, workers leave: caste-specific responses to fatal infections in an ant. BMC Evol Biol 2018; 18:202. [PMID: 30587108 PMCID: PMC6307282 DOI: 10.1186/s12862-018-1320-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 12/04/2018] [Indexed: 01/13/2023] Open
Abstract
Background The intense interactions among closely related individuals in animal societies provide perfect conditions for the spread of pathogens. Social insects have therefore evolved counter-measures on the cellular, individual, and social level to reduce the infection risk. One striking example is altruistic self-removal, i.e., lethally infected workers leave the nest and die in isolation to prevent the spread of a contagious disease to their nestmates. Because reproductive queens and egg-laying workers behave less altruistically than non-laying workers, e.g., when it comes to colony defense, we wondered whether moribund egg-layers would show the same self-removal as non-reproductive workers. Furthermore, we investigated how a lethal infection affects reproduction and studied if queens and egg-laying workers intensify their reproductive efforts when their residual reproductive value decreases (“terminal investment”). Results We treated queens, egg-laying workers from queenless colonies, and non-laying workers from queenright colonies of the monogynous (single-queened) ant Temnothorax crassispinus either with a control solution or a solution containing spores of the entomopathogenic fungus Metarhizium brunneum. Lethally infected workers left the nest and died away from it, regardless of their reproductive status. In contrast, infected queens never left the nest and were removed by workers only after they had died. The reproductive investment of queens strongly decreased after the treatment with both, the control solution and the Metarhizium brunneum suspension. The egg laying rate in queenless colonies was initially reduced in infected colonies but not in control colonies. Egg number increased again with decreasing number of infected workers. Conclusions Queens and workers of the ant Temnothorax crassispinus differ in their reaction to an infection risk and a reduced life expectancy. Workers isolate themselves to prevent contagion inside the colony, whereas queens stay in the nest. We did not find terminal investment; instead it appeared that egg-layers completely shut down egg production in response to the lethal infection. Workers in queenless colonies resumed reproduction only after all infected individuals had died, probably again to minimize the risk of infecting the offspring. Electronic supplementary material The online version of this article (10.1186/s12862-018-1320-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia Giehr
- Department of Zoology/ Evolutionary Biology, University of Regensburg, 93053, Regensburg, Germany.
| | - Jürgen Heinze
- Department of Zoology/ Evolutionary Biology, University of Regensburg, 93053, Regensburg, Germany
| |
Collapse
|
8
|
Bernadou A, Schrader L, Pable J, Hoffacker E, Meusemann K, Heinze J. Stress and early experience underlie dominance status and division of labour in a clonal insect. Proc Biol Sci 2018; 285:rspb.2018.1468. [PMID: 30158313 DOI: 10.1098/rspb.2018.1468] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/03/2018] [Indexed: 11/12/2022] Open
Abstract
Cooperation and division of labour are fundamental in the 'major transitions' in evolution. While the factors regulating cell differentiation in multi-cellular organisms are quite well understood, we are just beginning to unveil the mechanisms underlying individual specialization in cooperative groups of animals. Clonal ants allow the study of which factors influence task allocation without confounding variation in genotype and morphology. Here, we subjected larvae and freshly hatched workers of the clonal ant Platythyrea punctata to different rearing conditions and investigated how these manipulations affected division of labour among pairs of oppositely treated, same-aged clonemates. High rearing temperature, physical stress, injury and malnutrition increased the propensity of individuals to become subordinate foragers rather than dominant reproductives. This is reflected in changed gene regulation: early stages of division of labour were associated with different expression of genes involved in nutrient signalling pathways, metabolism and the phenotypic response to environmental stimuli. Many of these genes appear to be capable of responding to a broad range of stressors. They might link environmental stimuli to behavioural and phenotypic changes and could therefore be more broadly involved in caste differentiation in social insects. Our experiments also shed light on the causes of behavioural variation among genetically identical individuals.
Collapse
Affiliation(s)
- Abel Bernadou
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Lukas Schrader
- Molecular Evolution and Sociobiology Group, Institute for Evolution and Biodiversity, University of Münster, Hüffersstraße 1, 48149 Münster, Germany
| | - Julia Pable
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Elisabeth Hoffacker
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Karen Meusemann
- Department of Evolutionary, Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, Hauptstraße 1, 79104 Freiburg (Brsg.), Germany
| | - Jürgen Heinze
- Zoology/Evolutionary Biology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
9
|
Dávila F, Botteaux A, Bauman D, Chérasse S, Aron S. Antibacterial activity of male and female sperm-storage organs in ants. ACTA ACUST UNITED AC 2018; 221:jeb.175158. [PMID: 29444845 DOI: 10.1242/jeb.175158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/05/2018] [Indexed: 01/08/2023]
Abstract
Bacteria can damage sperm and thus reduce the reproductive success of both males and females; selection should therefore favour the evolution of antimicrobial protection. Eusocial hymenopterans might be particularly affected by such bacterial infections because of their mating ecology. In both sexes, mating is restricted to a short window early in the adult stage; there are no further chances to mate later in life. Males die shortly after mating, but queens use the acquired sperm to fertilise their eggs for years, sometimes decades. The reproductive success of both sexes is, thus, ultimately sperm-limited, which maintains strong selection for high sperm viability before and after storage. We tested the antibacterial activity of the contents of the male and female sperm-storage organs - the accessory testes and the spermatheca, respectively. As our study species, we used the bacterium Escherichia coli and the garden ant Lasius niger, whose queens can live for several decades. Our results provide the first empirical evidence that male and female sperm-storage organs display different antibacterial activity. While the contents of the accessory testes actually enhanced bacterial growth, the contents of the spermatheca strongly inhibited it. Furthermore, mating appears to activate the general immune system in queens. However, antimicrobial activity in both the spermatheca and the control tissue (head-thorax homogenate) declined rapidly post-mating, consistent with a trade-off between immunity and reproduction. Overall, this study suggests that ejaculates undergo an immune 'flush' at the time of mating, allowing storage of sperm cells free of bacteria.
Collapse
Affiliation(s)
- Francisco Dávila
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Anne Botteaux
- Laboratory of Molecular Bacteriology, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - David Bauman
- Laboratory of Plant Ecology and Biogeochemistry, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Sarah Chérasse
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Serge Aron
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, 1050 Brussels, Belgium
| |
Collapse
|
10
|
Blacher P, Huggins TJ, Bourke AFG. Evolution of ageing, costs of reproduction and the fecundity-longevity trade-off in eusocial insects. Proc Biol Sci 2018; 284:rspb.2017.0380. [PMID: 28701554 PMCID: PMC5524490 DOI: 10.1098/rspb.2017.0380] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/07/2017] [Indexed: 01/04/2023] Open
Abstract
Eusocial insects provide special opportunities to elucidate the evolution of ageing as queens have apparently evaded costs of reproduction and reversed the fecundity–longevity trade-off generally observed in non-social organisms. But how reproduction affects longevity in eusocial insects has rarely been tested experimentally. In this study, we took advantage of the reproductive plasticity of workers to test the causal role of reproduction in determining longevity in eusocial insects. Using the eusocial bumblebee Bombus terrestris, we found that, in whole colonies, in which workers could freely ‘choose’ whether to become reproductive, workers' level of ovarian activation was significantly positively associated with longevity and ovary-active workers significantly outlived ovary-inactive workers. By contrast, when reproductivity was experimentally induced in randomly selected workers, thereby decoupling it from other traits, workers' level of ovarian activation was significantly negatively associated with longevity and ovary-active workers were significantly less long-lived than ovary-inactive workers. These findings show that workers experience costs of reproduction and suggest that intrinsically high-quality individuals can overcome these costs. They also raise the possibility that eusocial insect queens exhibit condition-dependent longevity and hence call into question whether eusociality entails a truly reversed fecundity–longevity trade-off involving a fundamental remodelling of conserved genetic and endocrine networks underpinning ageing.
Collapse
Affiliation(s)
- Pierre Blacher
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Timothy J Huggins
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Andrew F G Bourke
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
11
|
Favreau E, Martínez-Ruiz C, Rodrigues Santiago L, Hammond RL, Wurm Y. Genes and genomic processes underpinning the social lives of ants. CURRENT OPINION IN INSECT SCIENCE 2018; 25:83-90. [PMID: 29602366 DOI: 10.1016/j.cois.2017.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 05/06/2023]
Abstract
The >15000 ant species are all highly social and show great variation in colony organization, complexity and behavior. The mechanisms by which such sociality evolved, as well as those underpinning the elaboration of ant societies since their ∼140 million year old common ancestor, have long been pondered. Here, we review recent insights generated using various genomic approaches. This includes understanding the molecular mechanisms underlying caste differentiation and the diversity of social structures, studying the impact of eusociality on genomic evolutionary rates, and investigating gene expression changes associated with differences in lifespan between castes. Furthermore, functional studies involving RNAi and CRISPR have recently been successfully applied to ants, opening the door to exciting research that promises to revolutionize the understanding of the evolution and diversification of social living.
Collapse
Affiliation(s)
- Emeline Favreau
- Organismal Biology Department, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Carlos Martínez-Ruiz
- Organismal Biology Department, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Leandro Rodrigues Santiago
- Organismal Biology Department, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Robert L Hammond
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, United Kingdom.
| | - Yannick Wurm
- Organismal Biology Department, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.
| |
Collapse
|
12
|
Giehr J, Grasse AV, Cremer S, Heinze J, Schrempf A. Ant queens increase their reproductive efforts after pathogen infection. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170547. [PMID: 28791176 PMCID: PMC5541571 DOI: 10.1098/rsos.170547] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/01/2017] [Indexed: 05/31/2023]
Abstract
Infections with potentially lethal pathogens may negatively affect an individual's lifespan and decrease its reproductive value. The terminal investment hypothesis predicts that individuals faced with a reduced survival should invest more into reproduction instead of maintenance and growth. Several studies suggest that individuals are indeed able to estimate their body condition and to increase their reproductive effort with approaching death, while other studies gave ambiguous results. We investigate whether queens of a perennial social insect (ant) are able to boost their reproduction following infection with an obligate killing pathogen. Social insect queens are special with regard to reproduction and aging, as they outlive conspecific non-reproductive workers. Moreover, in the ant Cardiocondyla obscurior, fecundity increases with queen age. However, it remained unclear whether this reflects negative reproductive senescence or terminal investment in response to approaching death. Here, we test whether queens of C. obscurior react to infection with the entomopathogenic fungus Metarhizium brunneum by an increased egg-laying rate. We show that a fungal infection triggers a reinforced investment in reproduction in queens. This adjustment of the reproductive rate by ant queens is consistent with predictions of the terminal investment hypothesis and is reported for the first time in a social insect.
Collapse
Affiliation(s)
- Julia Giehr
- Zoology/Evolutionary Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Anna V. Grasse
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Sylvia Cremer
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Jürgen Heinze
- Zoology/Evolutionary Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Alexandra Schrempf
- Zoology/Evolutionary Biology, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|