1
|
Kopania EEK, Thomas GWC, Hutter CR, Mortimer SME, Callahan CM, Roycroft E, Achmadi AS, Breed WG, Clark NL, Esselstyn JA, Rowe KC, Good JM. Sperm competition intensity shapes divergence in both sperm morphology and reproductive genes across murine rodents. Evolution 2024; 79:11-27. [PMID: 39392918 DOI: 10.1093/evolut/qpae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
It remains unclear how variation in the intensity of sperm competition shapes phenotypic and molecular evolution across clades. Mice and rats in the subfamily Murinae are a rapid radiation exhibiting incredible diversity in sperm morphology and production. We combined phenotypic and genomic data to perform phylogenetic comparisons of male reproductive traits and genes across 78 murine species. We identified several shifts towards smaller relative testes mass (RTM), presumably reflecting reduced sperm competition. Several sperm traits were associated with RTM, suggesting that mating system evolution selects for convergent suites of traits related to sperm competitive ability. We predicted that sperm competition would also drive more rapid molecular divergence in species with large testes. Contrary to this, we found that many spermatogenesis genes evolved more rapidly in species with smaller RTM due to relaxed purifying selection. While some reproductive genes evolved rapidly under recurrent positive selection, relaxed selection played a greater role in underlying rapid evolution in small testes species. Our work demonstrates that postcopulatory sexual selection can impose strong purifying selection shaping the evolution of male reproduction and that broad patterns of molecular evolution may help identify genes that contribute to male fertility.
Collapse
Affiliation(s)
- Emily E K Kopania
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregg W C Thomas
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
- Informatics Group, Harvard University, Cambridge, MA, USA
| | - Carl R Hutter
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | - Colin M Callahan
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Emily Roycroft
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Department of Sciences, Museums Victoria Research Institute, Melbourne, VIC, Australia
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Anang S Achmadi
- Museum Zoologicum Bogoriense, Research Center for Biology, Cibinong, Indonesia
| | - William G Breed
- School of Biological Sciences and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Nathan L Clark
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jacob A Esselstyn
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Kevin C Rowe
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Department of Sciences, Museums Victoria Research Institute, Melbourne, VIC, Australia
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
2
|
Kopania EEK, Thomas GWC, Hutter CR, Mortimer SME, Callahan CM, Roycroft E, Achmadi AS, Breed WG, Clark NL, Esselstyn JA, Rowe KC, Good JM. Sperm competition intensity shapes divergence in both sperm morphology and reproductive genes across murine rodents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.30.555585. [PMID: 37693452 PMCID: PMC10491253 DOI: 10.1101/2023.08.30.555585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
It remains unclear how variation in the intensity of sperm competition shapes phenotypic and molecular evolution across clades. Mice and rats in the subfamily Murinae are a rapid radiation exhibiting incredible diversity in sperm morphology and production. We combined phenotypic and genomic data to perform phylogenetic comparisons of male reproductive traits and genes across 78 murine species. We identified several shifts towards smaller relative testes mass, presumably reflecting reduced sperm competition. Several sperm traits were associated with relative testes mass, suggesting that mating system evolution selects for convergent suites of traits related to sperm competitive ability. We predicted that sperm competition would also drive more rapid molecular divergence in species with large testes. Contrary to this, we found that many spermatogenesis genes evolved more rapidly in species with smaller relative testes mass due to relaxed purifying selection. While some reproductive genes evolved rapidly under recurrent positive selection, relaxed selection played a greater role in underlying rapid evolution in small testes species. Our work demonstrates that postcopulatory sexual selection can impose strong purifying selection shaping the evolution of male reproduction, and that broad patterns of molecular evolution may help identify genes that contribute to male fertility.
Collapse
|
3
|
Sex-specific morphs: the genetics and evolution of intra-sexual variation. Nat Rev Genet 2023; 24:44-52. [PMID: 35971002 DOI: 10.1038/s41576-022-00524-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 11/08/2022]
Abstract
Sex-specific morphs exhibit discrete phenotypes, often including many disparate traits, that are observed in only one sex. These morphs have evolved independently in many different animals and are often associated with alternative mating strategies. The remarkable diversity of sex-specific morphs offers unique opportunities to understand the genetic basis of complex phenotypes, as the distinct nature of many morphs makes it easier to both categorize and compare genomes than for continuous traits. Sex-specific morphs also expand the study of sexual dimorphism beyond traditional bimodal comparisons of male and female averages, as they allow for a more expansive range of sexualization. Although ecological and endocrinological studies of sex-specific morphs have been advancing for some time, genomic and transcriptomic studies of morphs are far more recent. These studies reveal not only many different paths to the evolution of sex-specific morphs but also many commonalities, such as the role of sex-determining genes and hormone signalling in morph development, and the mixing of male and female traits within some morphs.
Collapse
|
4
|
Johnson BD, Anderson AP, Small CM, Rose E, Flanagan SP, Hendrickson-Rose C, Jones AG. The evolution of the testis transcriptome in pregnant male pipefishes and seahorses. Evolution 2022; 76:2162-2180. [PMID: 35863060 DOI: 10.1111/evo.14579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 01/22/2023]
Abstract
In many animals, sperm competition and sexual conflict are thought to drive the rapid evolution of male-specific genes, especially those expressed in the testes. A potential exception occurs in the male pregnant pipefishes, where females transfer eggs to the males, eliminating testes from participating in these processes. Here, we show that testis-related genes differ dramatically in their rates of molecular evolution and expression patterns in pipefishes and seahorses (Syngnathidae) compared to other fish. Genes involved in testis or sperm function within syngnathids experience weaker selection in comparison to their orthologs in spawning and livebearing fishes. An assessment of gene turnover and expression in the testis transcriptome suggests that syngnathids have lost (or significantly reduced expression of) important classes of genes from their testis transcriptomes compared to other fish. Our results indicate that more than 50 million years of male pregnancy have removed syngnathid testes from the molecular arms race that drives the rapid evolution of male reproductive genes in other taxa.
Collapse
Affiliation(s)
| | | | - Clayton M Small
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, 97403
| | - Emily Rose
- Department of Biology, Valdosta State University, Valdosta, Georgia, 31698
| | - Sarah P Flanagan
- School of Biological Sciences, University of Canterbury, Christchurch, 8041, New Zealand
| | | | - Adam G Jones
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, 83844
| |
Collapse
|
5
|
Cummings ME, Marsh-Rollo SE, Alonzo SH. Cognitive-Behavioral Divergence Is Greater Across Alternative Male Reproductive Phenotypes Than Between the Sexes in a Wild Wrasse. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.929595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sexual selection is a powerful diversifier of phenotype, behavior and cognition. Here we compare cognitive-behavioral traits across four reproductive phenotypes (females and three alternative males) of wild-caught ocellated wrasse (Symphodus ocellatus). Both sex and alternative male phenotypes are environmentally determined with sex determination occuring within the first year, and males transition between alternative phenotypes across 2 years (sneaker to satellite or satellite to nesting). We captured 151 ocellated wrasse and tested them on different behavior and cognition assays (scototaxis, shoaling, and two detour-reaching tasks). We found greater divergence across alternative male reproductive phenotypes than differences between the sexes in behavior, problem-solving, and relationships between these traits. Nesting males were significantly less bold than others, while sneaker males were faster problem-solvers and the only phenotype to display a cognitive-behavioral syndrome (significant correlation between boldness and problem-solving speed). Combining these results with prior measurements of sex steroid and stress hormone across males, suggests that nesting and sneaker males represent different coping styles. Our data suggests that transitioning between alternative male phenotypes requires more than changes in physiology (size and ornamentation) and mating tactic (sneaking vs. cooperation), but also involves significant shifts in cognitive-behavioral and coping style plasticity.
Collapse
|
6
|
Leg length and bristle density, both necessary for water surface locomotion, are genetically correlated in water striders. Proc Natl Acad Sci U S A 2022; 119:2119210119. [PMID: 35193982 PMCID: PMC8892508 DOI: 10.1073/pnas.2119210119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 11/18/2022] Open
Abstract
Access to hitherto unexploited ecological opportunities is associated with phenotypic evolution and often results in significant lineage diversification. Yet our understanding of the mechanisms underlying such adaptive traits remains limited. Water striders have been able to exploit the water-air interface, primarily facilitated by changes in the density of hydrophobic bristles and a significant increase in leg length. These two traits are functionally correlated and are both necessary for generating efficient locomotion on the water surface. Whether bristle density and leg length have any cellular or developmental genetic mechanisms in common is unknown. Here, we combine comparative genomics and transcriptomics with functional RNA interference assays to examine the developmental genetic and cellular mechanisms underlying the patterning of the bristles and the legs in Gerris buenoi and Mesovelia mulsanti, two species of water striders. We found that two duplication events in the genes beadex and taxi led to a functional expansion of the paralogs, which affected bristle density and leg length. We also identified genes for which no function in bristle development has been previously described in other insects. Interestingly, most of these genes play a dual role in regulating bristle development and leg length. In addition, these genes play a role in regulating cell division. This result suggests that cell division may be a common mechanism through which these genes can simultaneously regulate leg length and bristle density. We propose that pleiotropy, through which gene function affects the development of multiple traits, may play a prominent role in facilitating access to unexploited ecological opportunities and species diversification.
Collapse
|
7
|
Alonzo SH, Stiver KA, Kindsvater HK, Marsh-Rollo SE, Nugent B, Kazancıoğlu E. Ejaculate Allocation and Sperm Characteristics Differ among Alternative Male Types in a Species of Fish with Cooperation and Competition among Unrelated Males. Cells 2021; 10:cells10102612. [PMID: 34685591 PMCID: PMC8533787 DOI: 10.3390/cells10102612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/06/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Sexual selection arising from sperm competition has driven the evolution of immense variation in ejaculate allocation and sperm characteristics not only among species, but also among males within a species. One question that has received little attention is how cooperation among males affects these patterns. Here we ask how male alternative reproductive types differ in testes size, ejaculate production, and sperm morphology in the ocellated wrasse, a marine fish in which unrelated males cooperate and compete during reproduction. Nesting males build nests, court females and provide care. Sneaker males only “sneak” spawn, while satellite males sneak, but also help by chasing away sneakers. We found that satellite males have larger absolute testes than either sneakers or nesting males, despite their cooperative role. Nesting males invested relatively less in testes than either sneakers or satellites. Though sneakers produced smaller ejaculates than either satellite or nesting males, we found no difference among male types in either sperm cell concentration or sperm number, implying sneakers may produce less seminal fluid. Sperm tail length did not differ significantly among male types, but sneaker sperm cells had significantly larger heads than either satellite or nesting male sperm, consistent with past research showing sneakers produce slower sperm. Our results highlight that social interactions among males can influence sperm and ejaculate production.
Collapse
Affiliation(s)
- Suzanne H. Alonzo
- Department of Ecology and Evolutionary Biology, Institute of Marine Sciences, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA
- Correspondence: ; Tel.: +1-831-502-7706
| | - Kelly A. Stiver
- Department of Psychology, Southern Connecticut State University, 501 Crescent Street, New Haven, CT 06515, USA;
| | - Holly K. Kindsvater
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Susan E. Marsh-Rollo
- Department of Ecology and Evolutionary Biology, Institute of Marine Sciences, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA
- Department of Psychology, Neuroscience and Behaviour, McMaster University, 1280 Main St. W, Hamilton, ON L8S 4K1, Canada;
| | - Bridget Nugent
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06515, USA;
| | - Erem Kazancıoğlu
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06515, USA;
- Protenus, Inc., 1629 Thames St., Baltimore, MD 21231, USA;
| |
Collapse
|
8
|
Dapper AL, Wade MJ. Relaxed Selection and the Rapid Evolution of Reproductive Genes. Trends Genet 2020; 36:640-649. [PMID: 32713599 DOI: 10.1016/j.tig.2020.06.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 10/23/2022]
Abstract
Evolutionary genomic studies find that reproductive protein genes, those directly involved in reproductive processes, diversify more rapidly than most other gene categories. Strong postcopulatory sexual selection acting within species is the predominant hypothesis proposed to account for the observed pattern. Recently, relaxed selection due to sex-specific gene expression has also been put forward to explain the relatively rapid diversification. We contend that relaxed selection due to sex-limited gene expression is the correct null model for tests of molecular evolution of reproductive genes and argue that it may play a more significant role in the evolutionary diversification of reproductive genes than previously recognized. We advocate for a re-evaluation of adaptive explanations for the rapid diversification of reproductive genes.
Collapse
Affiliation(s)
- Amy L Dapper
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; Department of Biology, Indiana University, Bloomington, IN 47401, USA.
| | - Michael J Wade
- Department of Biology, Indiana University, Bloomington, IN 47401, USA
| |
Collapse
|
9
|
Fish sperm competition in hatcheries and between wild and hatchery origin fish in nature. Theriogenology 2020; 133:201-209. [PMID: 31155035 DOI: 10.1016/j.theriogenology.2019.03.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 03/30/2019] [Indexed: 02/06/2023]
Abstract
Males compete pre- and post-mating to fertilize the maximum number of eggs. In polyandry, sperm competition occurs when sperm from two or more males compete to fertilize eggs from a female. Here we review how sperm competition from hatchery origin fish can cause loss of genetic variability in fish populations kept in captivity and in wild populations. In fish hatchery practices, sperm competition occurs in mass spawners that release gametes in tanks, and in artificial fertilizations when pooled semen is used. In mass spawnings sperm competition is difficult to tease apart from pre-mating competition and other post-mating selective mechanisms, whereas, studies focused on the use of pooled semen in different fish species have shown a clear relationship between sperm motility parameters and precedence in fertilization. In both situations, sperm competition will result in a loss of genetic variability that accumulates over generations, but hatchery protocols can be adjusted to mitigate it. Another source of concern regarding sperm competition for hatchery produced fish is the spatial and temporal overlap in spawning with wild individuals, either via aquaculture escapees or purposeful stocking programs. This may result in sperm competition between hatchery origin and wild males and impact natural populations. Our review suggests that in order to give every adult selected as broodstock an equal opportunity to produce offspring in captivity, mass spawning and the use of pooled semen should be limited.
Collapse
|
10
|
Simmons LW, Sloan NS, Firman RC. Sexual Selection Shapes Seminal Vesicle Secretion Gene Expression in House Mice. Mol Biol Evol 2019; 37:1114-1117. [DOI: 10.1093/molbev/msz295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Abstract
Reproductive proteins typically have high rates of molecular evolution, and are assumed to be under positive selection from sperm competition and cryptic female choice. However, ascribing evolutionary divergence in the genome to these processes of sexual selection from patterns of association alone is problematic. Here, we use an experimental manipulation of postmating sexual selection acting on populations of house mice and explore its consequences for the expression of seminal vesicle secreted (SVS) proteins. Following 25 generations of selection, males from populations subjected to postmating sexual selection had evolved increased expression of at least two SVS genes that exhibit the signature of positive selection at the molecular level, SVS1 and SVS2. These proteins contribute to mating plug formation and sperm survival in the female reproductive tract. Our data thereby support the view that sexual selection is responsible for the evolution of these seminal fluid proteins.
Collapse
Affiliation(s)
- Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, Australia
| | - Nadia S Sloan
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, Australia
| | - Renée C Firman
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, Australia
| |
Collapse
|
11
|
Nugent BM, Stiver KA, Hofmann HA, Alonzo SH. Experimentally induced variation in neuroendocrine processes affects male reproductive behaviour, sperm characteristics and social interactions. Mol Ecol 2019; 28:3464-3481. [PMID: 30586201 DOI: 10.1111/mec.14999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/17/2018] [Accepted: 11/27/2018] [Indexed: 01/24/2023]
Abstract
While extensive research has focused on how social interactions evolve, the fitness consequences of the neuroendocrine mechanisms underlying these interactions have rarely been documented, especially in the wild. Here, we measure how the neuroendocrine mechanisms underlying male behaviour affect mating success and sperm competition in the ocellated wrasse (Symphodus ocellatus). In this species, males exhibit three alternative reproductive types. "Nesting males" provide parental care, defend territories and form cooperative associations with unrelated "satellites," who cheat by sneaking fertilizations but help by reducing sperm competition from "sneakers" who do not cooperate or provide care. To measure the fitness consequences of the mechanisms underlying these social interactions, we used "phenotypic engineering" that involved administering an androgen receptor antagonist (flutamide) to wild, free-living fish. Nesting males treated with flutamide shifted their aggression from sneakers to satellite males and experienced decreased submissiveness by sneaker males (which correlated with decreased nesting male mating success). The preoptic area (POA), a region controlling male reproductive behaviours, exhibited dramatic down-regulation of androgen receptor (AR) and vasotocin 1a receptor (V1aR) mRNA following experimental manipulation of androgen signalling. We did not find a direct effect of the manipulation on male mating success, paternity or larval production. However, variation in neuroendocrine mechanisms generated by the experimental manipulation was significantly correlated with changes in behaviour and mating success: V1aR expression was negatively correlated with satellite-directed aggression, and expression of its ligand arginine vasotocin (AVT) was positively correlated with courtship and mating success, thus revealing the potential for sexual selection on these mechanisms.
Collapse
Affiliation(s)
- Bridget M Nugent
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut.,Department of Integrative Biology, Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Kelly A Stiver
- Department of Psychology, Southern Connecticut State University, New Haven, Connecticut
| | - Hans A Hofmann
- Department of Integrative Biology, Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Suzanne H Alonzo
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut.,Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California
| |
Collapse
|
12
|
Dean R, Hammer C, Higham V, Dowling DK. Masculinization of gene expression is associated with male quality in Drosophila melanogaster. Evolution 2018; 72:2736-2748. [PMID: 30382578 DOI: 10.1111/evo.13618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/19/2022]
Abstract
The signature of sexual selection has been revealed through the study of differences in patterns of genome-wide gene expression, both between the sexes and between alternative reproductive morphs within a single sex. What remains unclear, however, is whether differences in gene expression patterns between individuals of a given sex consistently map to variation in individual quality. Such a pattern, particularly if found in males, would provide unambiguous evidence that the phenotypic response to sexual selection is shaped through sex-specific alterations to the transcriptome. To redress this knowledge gap, we explored whether patterns of sex-biased gene expression are associated with variation in male reproductive quality in Drosophila melanogaster. We measured two male reproductive phenotypes, and their association with sex-biased gene expression, across a selection of inbred lines from the Drosophila Genetic Reference Panel. Genotypes with higher expression of male-biased genes produced males exhibiting shorter latencies to copulation, and higher capacity to inseminate females. Conversely, female-biased genes tended to show negative associations with these male reproductive traits across genotypes. We uncovered similar patterns, by reanalyzing a published dataset from a second D. melanogaster population. Our results reveal the footprint of sexual selection in masculinising the male transcriptome.
Collapse
Affiliation(s)
- Rebecca Dean
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia.,Department of Genetics, Evolution and Environment, University College London, WC1E 6BT, United Kingdom
| | - Camille Hammer
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Vanessa Higham
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
13
|
Pauletto M, Manousaki T, Ferraresso S, Babbucci M, Tsakogiannis A, Louro B, Vitulo N, Quoc VH, Carraro R, Bertotto D, Franch R, Maroso F, Aslam ML, Sonesson AK, Simionati B, Malacrida G, Cestaro A, Caberlotto S, Sarropoulou E, Mylonas CC, Power DM, Patarnello T, Canario AVM, Tsigenopoulos C, Bargelloni L. Genomic analysis of Sparus aurata reveals the evolutionary dynamics of sex-biased genes in a sequential hermaphrodite fish. Commun Biol 2018; 1:119. [PMID: 30271999 PMCID: PMC6123679 DOI: 10.1038/s42003-018-0122-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
Sexual dimorphism is a fascinating subject in evolutionary biology and mostly results from sex-biased expression of genes, which have been shown to evolve faster in gonochoristic species. We report here genome and sex-specific transcriptome sequencing of Sparus aurata, a sequential hermaphrodite fish. Evolutionary comparative analysis reveals that sex-biased genes in S. aurata are similar in number and function, but evolved following strikingly divergent patterns compared with gonochoristic species, showing overall slower rates because of stronger functional constraints. Fast evolution is observed only for highly ovary-biased genes due to female-specific patterns of selection that are related to the peculiar reproduction mode of S. aurata, first maturing as male, then as female. To our knowledge, these findings represent the first genome-wide analysis on sex-biased loci in a hermaphrodite vertebrate species, demonstrating how having two sexes in the same individual profoundly affects the fate of a large set of evolutionarily relevant genes.
Collapse
Affiliation(s)
- Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | - Tereza Manousaki
- Institute of Marine Biology, Biotechnology and Aquaculture ó, Hellenic Centre for Marine Research, Thalassocosmos, Former US Base at Gournes, 715 00, Heraklion, Greece
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | - Alexandros Tsakogiannis
- Institute of Marine Biology, Biotechnology and Aquaculture ó, Hellenic Centre for Marine Research, Thalassocosmos, Former US Base at Gournes, 715 00, Heraklion, Greece
| | - Bruno Louro
- CCMAR-Centro de Ciências do Mar, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Nicola Vitulo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Viet Ha Quoc
- Institute of Marine Biology, Biotechnology and Aquaculture ó, Hellenic Centre for Marine Research, Thalassocosmos, Former US Base at Gournes, 715 00, Heraklion, Greece
| | - Roberta Carraro
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | - Daniela Bertotto
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | - Rafaella Franch
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | - Francesco Maroso
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | | | | | | | | | - Alessandro Cestaro
- Research and Innovation Centre, Fondazione Edmund Mach, via Edmund Mach 1, 38010, San Michele all'Adige, Trento, Italy
| | - Stefano Caberlotto
- Valle Cà Zuliani Società Agricola Srl, Via Timavo 76, 34074, Monfalcone, Gorizia, Italy
| | - Elena Sarropoulou
- Institute of Marine Biology, Biotechnology and Aquaculture ó, Hellenic Centre for Marine Research, Thalassocosmos, Former US Base at Gournes, 715 00, Heraklion, Greece
| | - Costantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture ó, Hellenic Centre for Marine Research, Thalassocosmos, Former US Base at Gournes, 715 00, Heraklion, Greece
| | - Deborah M Power
- CCMAR-Centro de Ciências do Mar, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | - Adelino V M Canario
- CCMAR-Centro de Ciências do Mar, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Costas Tsigenopoulos
- Institute of Marine Biology, Biotechnology and Aquaculture ó, Hellenic Centre for Marine Research, Thalassocosmos, Former US Base at Gournes, 715 00, Heraklion, Greece
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy.
| |
Collapse
|
14
|
Jayaswal V, Jimenez J, Magie R, Nguyen K, Clifton B, Yeh S, Ranz JM. A species-specific multigene family mediates differential sperm displacement in Drosophila melanogaster. Evolution 2018; 72:399-403. [PMID: 29315521 DOI: 10.1111/evo.13417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 01/23/2023]
Abstract
Sperm competition is a postcopulatory sexual selection mechanism in species in which females mate with multiple males. Despite its evolutionary relevance in shaping male traits, the genetic mechanisms underlying sperm competition are poorly understood. A recently originated multigene family specific to Drosophila melanogaster, Sdic, is important for the outcome of sperm competition in doubly mated females, although the mechanistic nature of this phenotype remained unresolved. Here, we compared doubly mated females, second mated to either Sdic knockout or nonknockout males, and directly visualize sperm dynamics in the female reproductive tract. We found that a less effective removal of first-to-mate male's sperm within the female's sperm storage organs is consistent with a reduced sperm competitive ability of the Sdic knockout males. Our results highlight the role young genes can play in driving the evolution of sperm competition.
Collapse
Affiliation(s)
- Vivek Jayaswal
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
| | - Jamie Jimenez
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697
| | - Robert Magie
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697
| | - Kien Nguyen
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697
| | - Bryan Clifton
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697
| | - Shudan Yeh
- Department of Life Sciences, National Central University, Taoyuan City, Zhongli District, Taiwan
| | - José M Ranz
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697
| |
Collapse
|
15
|
Darolti I, Wright AE, Pucholt P, Berlin S, Mank JE. Slow evolution of sex-biased genes in the reproductive tissue of the dioecious plant Salix viminalis. Mol Ecol 2018; 27:694-708. [PMID: 29274186 PMCID: PMC5901004 DOI: 10.1111/mec.14466] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Abstract
The relative rate of evolution for sex‐biased genes has often been used as a measure of the strength of sex‐specific selection. In contrast to studies in a wide variety of animals, far less is known about the molecular evolution of sex‐biased genes in plants, particularly in dioecious angiosperms. Here, we investigate the gene expression patterns and evolution of sex‐biased genes in the dioecious plant Salix viminalis. We observe lower rates of sequence evolution for male‐biased genes expressed in the reproductive tissue compared to unbiased and female‐biased genes. These results could be partially explained by the lower codon usage bias for male‐biased genes leading to elevated rates of synonymous substitutions compared to unbiased genes. However, the stronger haploid selection in the reproductive tissue of plants, together with pollen competition, would also lead to higher levels of purifying selection acting to remove deleterious variation. Future work should focus on the differential evolution of haploid‐ and diploid‐specific genes to understand the selective dynamics acting on these loci.
Collapse
Affiliation(s)
- Iulia Darolti
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Alison E Wright
- Department of Genetics, Evolution and Environment, University College London, London, UK.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Pascal Pucholt
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Array and Analysis Facility, Department of Medical Science, Uppsala University, Uppsala, Sweden
| | - Sofia Berlin
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Judith E Mank
- Department of Genetics, Evolution and Environment, University College London, London, UK.,Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Congrains C, Campanini EB, Torres FR, Rezende VB, Nakamura AM, de Oliveira JL, Lima ALA, Chahad-Ehlers S, Sobrinho IS, de Brito RA. Evidence of Adaptive Evolution and Relaxed Constraints in Sex-Biased Genes of South American and West Indies Fruit Flies (Diptera: Tephritidae). Genome Biol Evol 2018; 10:380-395. [PMID: 29346618 PMCID: PMC5786236 DOI: 10.1093/gbe/evy009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2018] [Indexed: 12/29/2022] Open
Abstract
Several studies have demonstrated that genes differentially expressed between sexes (sex-biased genes) tend to evolve faster than unbiased genes, particularly in males. The reason for this accelerated evolution is not clear, but several explanations have involved adaptive and nonadaptive mechanisms. Furthermore, the differences of sex-biased expression patterns of closely related species are also little explored out of Drosophila. To address the evolutionary processes involved with sex-biased expression in species with incipient differentiation, we analyzed male and female transcriptomes of Anastrepha fraterculus and Anastrepha obliqua, a pair of species that have diverged recently, likely in the presence of gene flow. Using these data, we inferred differentiation indexes and evolutionary rates and tested for signals of selection in thousands of genes expressed in head and reproductive transcriptomes from both species. Our results indicate that sex-biased and reproductive-biased genes evolve faster than unbiased genes in both species, which is due to both adaptive pressure and relaxed constraints. Furthermore, among male-biased genes evolving under positive selection, we identified some related to sexual functions such as courtship behavior and fertility. These findings suggest that sex-biased genes may have played important roles in the establishment of reproductive isolation between these species, due to a combination of selection and drift, and unveil a plethora of genetic markers useful for more studies in these species and their differentiation.
Collapse
Affiliation(s)
- Carlos Congrains
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Emeline B Campanini
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Felipe R Torres
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Víctor B Rezende
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Aline M Nakamura
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | | | - André L A Lima
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | - Samira Chahad-Ehlers
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| | | | - Reinaldo A de Brito
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, SP, Brazil
| |
Collapse
|
17
|
Cardoso SD, Gonçalves D, Goesmann A, Canário AVM, Oliveira RF. Temporal variation in brain transcriptome is associated with the expression of female mimicry as a sequential male alternative reproductive tactic in fish. Mol Ecol 2017; 27:789-803. [PMID: 29110358 DOI: 10.1111/mec.14408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/23/2017] [Accepted: 09/13/2017] [Indexed: 01/21/2023]
Abstract
Distinct patterns of gene expression often underlie intra- and intersexual differences, and the study of this set of coregulated genes is essential to understand the emergence of complex behavioural phenotypes. Here, we describe the development of a de novo transcriptome and brain gene expression profiles of wild-caught peacock blenny, Salaria pavo, an intertidal fish with sex-role reversal in courtship behaviour (i.e., females are the courting sex) and sequential alternative reproductive tactics in males (i.e., larger and older nest-holder males and smaller and younger sneaker males occur). Sneakers mimic both female's courtship behaviour and nuptial coloration to get access to nests and sneak fertilizations, and later in life transition into nest-holder males. Thus, this species offers the unique opportunity to study how the regulation of gene expression can contribute to intersex phenotypes and to the sequential expression of male and female behavioural phenotypes by the same individual. We found that at the whole brain level, expression of the sneaker tactic was paralleled by broader and divergent gene expression when compared to either females or nest-holder males, which were more similar between themselves. When looking at sex-biased transcripts, sneaker males are intersex rather than being either nest-holder or female-like, and their transcriptome is simultaneously demasculinized for nest-holder-biased transcripts and feminized for female-biased transcripts. These results indicate that evolutionary changes in reproductive plasticity can be achieved through regulation of gene expression, and in particular by varying the magnitude of expression of sex-biased genes, throughout the lifetime of the same individual.
Collapse
Affiliation(s)
- Sara D Cardoso
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,ISPA - Instituto Universitário, Lisbon, Portugal.,Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - David Gonçalves
- Institute of Science and Environment, University of Saint Joseph, Macau, China
| | - Alexander Goesmann
- Center for Biotechnology, CeBiTec, Bielefeld University, Bielefeld, Germany
| | | | - Rui F Oliveira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,ISPA - Instituto Universitário, Lisbon, Portugal.,Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|