1
|
Taylor CH, Friberg IM, Jackson JA, Arriero E, Begon M, Wanelik KM, Paterson S, Bradley JE. Living with chronic infection: Persistent immunomodulation during avirulent haemoparasitic infection in a wild rodent. Mol Ecol 2023; 32:1197-1210. [PMID: 36478482 DOI: 10.1111/mec.16819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/07/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Apicomplexans are a protozoan phylum of obligate parasites which may be highly virulent during acute infections, but may also persist as chronic infections which appear to have little fitness cost. Babesia microti is an apicomplexan haemoparasite that, in immunocompromised individuals, can cause severe, potentially fatal disease. However, in its natural host, wild field voles (Microtus agrestis), it exhibits chronic infections that have no detectable impact on survival or female fecundity. How is damage minimized, and what is the impact on the host's immune state and health? We examine the differences in immune state (here represented by expression of immune-related genes in multiple tissues) associated with several common chronic infections in a population of wild field voles. While some infections show little impact on immune state, we find strong associations between immune state and B. microti. These include indications of clearance of infected erythrocytes (increased macrophage activity in the spleen) and activity likely associated with minimizing damage from the infection (anti-inflammatory and antioxidant activity in the blood). By analysing gene expression from the same individuals at multiple time points, we show that the observed changes are a response to infection, rather than a risk factor. Our results point towards continual investment to minimize the damage caused by the infection. Thus, we shed light on how wild animals can tolerate some chronic infections, but emphasize that this tolerance does not come without a cost.
Collapse
Affiliation(s)
| | - Ida M Friberg
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Joseph A Jackson
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Elena Arriero
- School of Life Sciences, University of Nottingham, Nottingham, UK.,Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
| | - Mike Begon
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Klara M Wanelik
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Zoology, University of Oxford, Oxford, UK
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
2
|
Wanelik KM, Begon M, Bradley JE, Friberg IM, Jackson JA, Taylor CH, Paterson S. Effects of an IgE receptor polymorphism acting on immunity, susceptibility to infection, and reproduction in a wild rodent. eLife 2023; 12:e77666. [PMID: 36645701 PMCID: PMC9842384 DOI: 10.7554/elife.77666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/22/2022] [Indexed: 01/17/2023] Open
Abstract
The genotype of an individual is an important predictor of their immune function, and subsequently, their ability to control or avoid infection and ultimately contribute offspring to the next generation. However, the same genotype, subjected to different intrinsic and/or extrinsic environments, can also result in different phenotypic outcomes, which can be missed in controlled laboratory studies. Natural wildlife populations, which capture both genotypic and environmental variability, provide an opportunity to more fully understand the phenotypic expression of genetic variation. We identified a synonymous polymorphism in the high-affinity Immunoglobulin E (IgE) receptor (GC and non-GC haplotypes) that has sex-dependent effects on immune gene expression, susceptibility to infection, and reproductive success of individuals in a natural population of field voles (Microtus agrestis). We found that the effect of the GC haplotype on the expression of immune genes differed between sexes. Regardless of sex, both pro-inflammatory and anti-inflammatory genes were more highly relatively expressed in individuals with the GC haplotype than individuals without the haplotype. However, males with the GC haplotype showed a stronger signal for pro-inflammatory genes, while females showed a stronger signal for anti-inflammatory genes. Furthermore, we found an effect of the GC haplotype on the probability of infection with a common microparasite, Babesia microti, in females - with females carrying the GC haplotype being more likely to be infected. Finally, we found an effect of the GC haplotype on reproductive success in males - with males carrying the GC haplotype having a lower reproductive success. This is a rare example of a polymorphism whose consequences we are able to follow across immunity, infection, and reproduction for both males and females in a natural population.
Collapse
Affiliation(s)
- Klara M Wanelik
- Institute of Infection, Veterinary and Ecological Sciences, University of LiverpoolLiverpoolUnited Kingdom
| | - Mike Begon
- Institute of Infection, Veterinary and Ecological Sciences, University of LiverpoolLiverpoolUnited Kingdom
| | - Janette E Bradley
- School of Life Sciences, University of NottinghamNottinghamUnited Kingdom
| | - Ida M Friberg
- School of Environment and Life Sciences, University of SalfordSalfordUnited Kingdom
| | - Joseph A Jackson
- School of Environment and Life Sciences, University of SalfordSalfordUnited Kingdom
| | | | - Steve Paterson
- Institute of Infection, Veterinary and Ecological Sciences, University of LiverpoolLiverpoolUnited Kingdom
| |
Collapse
|
3
|
Balard A, Heitlinger E. Shifting focus from resistance to disease tolerance: A review on hybrid house mice. Ecol Evol 2022; 12:e8889. [PMID: 35571751 PMCID: PMC9077717 DOI: 10.1002/ece3.8889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/10/2022] Open
Abstract
Parasites have been proposed to modulate the fitness of hybridizing hosts in part based on observations in the European house mouse hybrid zone (HMHZ), a tension zone in which hybrids show reduced fitness. We here review evidence (1) for parasite load differences in hybrid versus parental mice and (2) for health and fitness effects of parasites promoting or preventing introgression and hybridization. The question of relative resistance or susceptibility of hybrids to parasites in the HMHZ has long been controversial. Recent field studies found hybrids to be more resistant than mice from parental subspecies against infections with pinworms and protozoans (Eimeria spp.). We argue that the field studies underlying the contradictory impression of hybrid susceptibility have limitations in sample size, statistical analysis and scope, focusing only on macroparasites. We suggest that weighted evidence from field studies indicate hybrid resistance. Health is a fitness component through which resistance can modulate overall fitness. Resistance, however, should not be extrapolated directly to a fitness effect, as the relationship between resistance and health can be modulated by tolerance. In our own recent work, we found that the relationship between health and resistance (tolerance) differs between infections with the related species E. falciformis and E. ferrisi. Health and tolerance need to be assessed directly and the choice of parasite has made this difficult in previous experimental studies of house mice. We discuss how experimental Eimeria spp. infections in hybrid house mice can address resistance, health and tolerance in conjunction.
Collapse
Affiliation(s)
- Alice Balard
- Department of Molecular ParasitologyInstitute for BiologyHumboldt University Berlin (HU)BerlinGermany
- Research Group Ecology and Evolution of Molecular Parasite‐Host InteractionsLeibniz‐Institut for Zoo and Wildlife Research (IZW) im Forschungsverbund Berlin e.V.BerlinGermany
| | - Emanuel Heitlinger
- Department of Molecular ParasitologyInstitute for BiologyHumboldt University Berlin (HU)BerlinGermany
- Research Group Ecology and Evolution of Molecular Parasite‐Host InteractionsLeibniz‐Institut for Zoo and Wildlife Research (IZW) im Forschungsverbund Berlin e.V.BerlinGermany
| |
Collapse
|
4
|
Duckett DJ, Sullivan J, Pirro S, Carstens BC. Genomic Resources for the North American Water Vole ( Microtus richardsoni) and the Montane Vole ( Microtus montanus). GIGABYTE 2021; 2021:gigabyte19. [PMID: 36824326 PMCID: PMC9631978 DOI: 10.46471/gigabyte.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/04/2021] [Indexed: 11/09/2022] Open
Abstract
Voles of the genus Microtus are important research organisms, yet genomic resources are lacking. Such resources would benefit future studies of immunology, phylogeography, cryptic diversity, and more. We sequenced and assembled nuclear genomes from two subspecies of water vole (Microtus richardsoni) and from the montane vole (Microtus montanus). The water vole genomes were sequenced with Illumina and 10× Chromium plus Illumina sequencing, resulting in assemblies with ∼1600,000 and ∼30,000 scaffolds, respectively. The montane vole was also assembled into ∼13,000 scaffolds using Illumina sequencing. Mitochondrial genome assemblies were also performed for both species. Structural and functional annotation for the best water vole nuclear genome resulted in ∼24,500 annotated genes, with 83% of these having functional annotations. Assembly quality statistics for our nuclear assemblies fall within the range of genomes previously published in the genus Microtus, making the water vole and montane vole genomes useful additions to currently available genomic resources.
Collapse
Affiliation(s)
- Drew J. Duckett
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 1315 Kinnear Rd., Columbus, OH 43212, USA
| | - Jack Sullivan
- Department of Biological Sciences, University of Idaho, Box 443051, Moscow, ID 83844-3051, USA
| | - Stacy Pirro
- Iridian Genomes, Inc., 6213 Swords Way, Bethesda, MD 20817, USA
| | - Bryan C. Carstens
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 1315 Kinnear Rd., Columbus, OH 43212, USA
| |
Collapse
|
5
|
Wanelik KM, Begon M, Arriero E, Bradley JE, Friberg IM, Jackson JA, Taylor CH, Paterson S. Transcriptome-wide analysis reveals different categories of response to a standardised immune challenge in a wild rodent. Sci Rep 2020; 10:7444. [PMID: 32366957 PMCID: PMC7198573 DOI: 10.1038/s41598-020-64307-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/14/2020] [Indexed: 11/09/2022] Open
Abstract
Individuals vary in their immune response and, as a result, some are more susceptible to infectious disease than others. Little is known about the nature of this individual variation in natural populations, or which components of immune pathways are most responsible, but defining this underlying landscape of variation is an essential first step to understanding the drivers of this variation and, ultimately, predicting the outcome of infection. We describe transcriptome-wide variation in response to a standardised immune challenge in wild field voles. We find that genes (hereafter 'markers') can be categorised into a limited number of types. For the majority of markers, the response of an individual is dependent on its baseline expression level, with significant enrichment in this category for conventional immune pathways. Another, moderately sized, category contains markers for which the responses of different individuals are also variable but independent of their baseline expression levels. This category lacks any enrichment for conventional immune pathways. We further identify markers which display particularly high individual variability in response, and could be used as markers of immune response in larger studies. Our work shows how a standardised challenge performed on a natural population can reveal the patterns of natural variation in immune response.
Collapse
Affiliation(s)
- Klara M Wanelik
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| | - Mike Begon
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Elena Arriero
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,Department of Biodiversity, Ecology and Evolution, University Complutense of Madrid, Madrid, Spain
| | - Janette E Bradley
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Ida M Friberg
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | - Joseph A Jackson
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | | | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
6
|
Tavalire HF, Hoal EG, le Roex N, van Helden PD, Ezenwa VO, Jolles AE. Risk alleles for tuberculosis infection associate with reduced immune reactivity in a wild mammalian host. Proc Biol Sci 2019; 286:20190914. [PMID: 31311473 PMCID: PMC6661349 DOI: 10.1098/rspb.2019.0914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022] Open
Abstract
Integrating biological processes across scales remains a central challenge in disease ecology. Genetic variation drives differences in host immune responses, which, along with environmental factors, generates temporal and spatial infection patterns in natural populations that epidemiologists seek to predict and control. However, genetics and immunology are typically studied in model systems, whereas population-level patterns of infection status and susceptibility are uniquely observable in nature. Despite obvious causal connections, organizational scales from genes to host outcomes to population patterns are rarely linked explicitly. Here we identify two loci near genes involved in macrophage (phagocyte) activation and pathogen degradation that additively increase risk of bovine tuberculosis infection by up to ninefold in wild African buffalo. Furthermore, we observe genotype-specific variation in IL-12 production indicative of variation in macrophage activation. Here, we provide measurable differences in infection resistance at multiple scales by characterizing the genetic and inflammatory variation driving patterns of infection in a wild mammal.
Collapse
Affiliation(s)
- Hannah F. Tavalire
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Eileen G. Hoal
- South African Medical Research Council, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Nikki le Roex
- South African Medical Research Council, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Paul D. van Helden
- South African Medical Research Council, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Vanessa O. Ezenwa
- Odum School of Ecology and Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Anna E. Jolles
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
7
|
Budischak SA, Cressler CE. Fueling Defense: Effects of Resources on the Ecology and Evolution of Tolerance to Parasite Infection. Front Immunol 2018; 9:2453. [PMID: 30429848 PMCID: PMC6220035 DOI: 10.3389/fimmu.2018.02453] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/04/2018] [Indexed: 12/29/2022] Open
Abstract
Resource availability is a key environmental constraint affecting the ecology and evolution of species. Resources have strong effects on disease resistance, but they can also affect the other main parasite defense strategy, tolerance. A small but growing number of animal studies are beginning to investigate the effects of resources on tolerance phenotypes. Here, we review how resources affect tolerance strategies across animal taxa ranging from fruit flies to frogs to mice. Surprisingly, resources (quality and quantity) can increase or reduce tolerance, dependent upon the particular host-parasite system. To explore this seeming contradiction, we recast predictions of models of sterility tolerance and mortality tolerance in a resource-dependent context. Doing so reveals that resources can have very different epidemiological and evolutionary effects, depending on what aspects of the tolerance phenotype are affected. Thus, it is critical to consider both sterility and mortality in future empirical studies of how behavioral and environmental resource availability affect tolerance to infection.
Collapse
Affiliation(s)
- Sarah A. Budischak
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, United States
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
| | - Clayton E. Cressler
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|