1
|
Olito C, Abbott JK. The evolution of suppressed recombination between sex chromosomes and the lengths of evolutionary strata. Evolution 2025:qpaf045. [PMID: 40324791 DOI: 10.1093/evolut/qpaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 05/07/2025]
Abstract
The idea that sex-differences in selection drive the evolution of suppressed recombination between sex chromosomes is well-developed in population genetics. Yet, despite a now classic body of theory, empirical evidence that sexually antagonistic (SA) selection drives the evolution of recombination arrest remains equivocal and alternative hypotheses underdeveloped. Here, we investigate whether the length of "evolutionary strata" formed by chromosomal inversions (or other large-effect recombination modifiers) expanding the nonrecombining sex-linked region (SLR) on sex chromosomes can be informative of how selection influenced their fixation. We develop population genetic models to show how the length of an SLR-expanding inversion and the presence of partially recessive deleterious mutational variation affect the fixation probability of three different classes of inversions: (i) intrinsically neutral, (ii) directly beneficial (i.e., due to breakpoint or positional effects), and (iii) those capturing SA loci. Our models indicate that inversions capturing an SA locus initially in linkage disequilibrium with the ancestral SLR exhibit a strong fixation bias toward small inversions, while neutral, beneficial, and inversions capturing a genetically unlinked SA locus tend to favor larger inversions and exhibit similar distributions of fixed inversion lengths. The footprint of evolutionary stratum size left behind by different selection regimes is strongly influenced by parameters affecting the deleterious mutation load, the physical position of the ancestral SLR, and the distribution of new inversion lengths.
Collapse
Affiliation(s)
- Colin Olito
- Department of Biology, Division of Biodiversity and Evolution, Lund University, Lund, Sweden
| | - Jessica K Abbott
- Department of Biology, Division of Biodiversity and Evolution, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Madrigal-Roca LJ, Kelly JK. Are you with me? Co-occurrence tests from community ecology can identify positive and negative epistasis between inversions in Mimulus guttatus. PLoS One 2025; 20:e0321253. [PMID: 40294049 PMCID: PMC12036897 DOI: 10.1371/journal.pone.0321253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/04/2025] [Indexed: 04/30/2025] Open
Abstract
Chromosomal inversions are structural genetic variants that can play a crucial role in adaptive evolution and speciation. Patterns of attraction and repulsion among unlinked inversions - whether they tend to be carried by the same or different individuals- can indicate how selection is acting on these polymorphisms. In this study, we compare analytical techniques using data from 64 inversions that segregate among 1373 F2 plants of the yellow monkeyflower Mimulus guttatus. Mendelian assortment provides a strong null hypothesis for [Formula: see text] contingency tests. Here, we show how co-occurrence metrics used in community ecology can provide additional insight regarding coupling and repulsion of inversions at genotypic level. The centered Jaccard/Tanimoto index and the affinity score describe the specific way that inversions interact to generate epistasis for plant survival. We further explore the use of network analysis to visualize inversion interactions and to identify essential third and fourth order interactions, which expand the traditional pairwise scope of the co-occurrence metrics. We suggest that a combination of different statistical approaches will provide the most complete characterization of the fitness effects, both for inversions and other polymorphisms essential to adaptation and speciation.
Collapse
Affiliation(s)
- Luis J. Madrigal-Roca
- Ecology and Evolutionary Biology’s Department of the University of Kansas, Lawrence, Kansas, United States of America
| | - John K. Kelly
- Ecology and Evolutionary Biology’s Department of the University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
3
|
Hodgens C, Flaherty DT, Pullen AM, Khan I, English NJ, Gillan L, Rojas-Pierce M, Akpa BS. Model-based inference of a dual role for HOPS in regulating guard cell vacuole fusion. IN SILICO PLANTS 2024; 6:diae015. [PMID: 39611053 PMCID: PMC11599693 DOI: 10.1093/insilicoplants/diae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/28/2024] [Indexed: 11/30/2024]
Abstract
Guard cell movements depend, in part, on the remodelling of vacuoles from a highly fragmented state to a fused morphology during stomata opening. Indeed, full opening of plant stomata requires vacuole fusion to occur. Fusion of vacuole membranes is a highly conserved process in eukaryotes, with key roles played by two multi-subunit complexes: HOPS (homotypic fusion and vacuolar protein sorting) and SNARE (soluble NSF attachment protein receptor). HOPS is a vacuole tethering factor that is thought to chaperone SNAREs from apposing vacuole membranes into a fusion-competent complex capable of rearranging membranes. In plants, recruitment of HOPS subunits to the tonoplast has been shown to require the presence of the phosphoinositide phosphatidylinositol 3-phosphate. However, chemically depleting this lipid induces vacuole fusion. To resolve this counter-intuitive observation regarding the role of HOPS in regulating plant vacuole morphology, we defined a quantitative model of vacuole fusion dynamics and used it to generate testable predictions about HOPS-SNARE interactions. We derived our model by using simulation-based inference to integrate prior knowledge about molecular interactions with limited, qualitative observations of emergent vacuole phenotypes. By constraining the model parameters to yield the emergent outcomes observed for stoma opening-as induced by two distinct chemical treatments-we predicted a dual role for HOPS and identified a stalled form of the SNARE complex that differs from phenomena reported in yeast. We predict that HOPS has contradictory actions at different points in the fusion signalling pathway, promoting the formation of SNARE complexes, but limiting their activity.
Collapse
Affiliation(s)
- Charles Hodgens
- Department of Chemical and Biomolecular Engineering, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
| | - D T Flaherty
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Anne-Marie Pullen
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Imran Khan
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Nolan J English
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Lydia Gillan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Marcela Rojas-Pierce
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Belinda S Akpa
- Department of Chemical and Biomolecular Engineering, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| |
Collapse
|
4
|
Soboleva ES, Kirilenko KM, Fedorova VS, Kokhanenko AA, Artemov GN, Sharakhov IV. Two Nested Inversions in the X Chromosome Differentiate the Dominant Malaria Vectors in Europe, Anopheles atroparvus and Anopheles messeae. INSECTS 2024; 15:312. [PMID: 38786868 PMCID: PMC11122324 DOI: 10.3390/insects15050312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
The Maculipennis subgroup of malaria mosquitoes includes both dominant malaria vectors and non-vectors in Eurasia. Understanding the genetic factors, particularly chromosomal inversions, that differentiate Anopheles species can provide valuable insights for vector control strategies. Although autosomal inversions between the species in this subgroup have been characterized based on the chromosomal banding patterns, the number and positions of rearrangements in the X chromosome remain unclear due to the divergent banding patterns. Here, we identified two large X chromosomal inversions, approximately 13 Mb and 10 Mb in size, using fluorescence in situ hybridization. The inversion breakpoint regions were mapped by hybridizing 53 gene markers with polytene chromosomes of An. messeae. The DNA probes were designed based on gene sequences from the annotated An. atroparvus genome. The two nested inversions resulted in five syntenic blocks. Only two small syntenic blocks, which encompass 181 annotated genes in the An. atroparvus genome, changed their position and orientation in the X chromosome. The analysis of the An. atroparvus genome revealed an enrichment of gene ontology terms associated with immune system and mating behavior in the rearranged syntenic blocks. Additionally, the enrichment of DNA transposons was found in sequences homologous to three of the four breakpoint regions. This study demonstrates the successful application of the physical genome mapping approach to identify rearrangements that differentiate species in insects with polytene chromosomes.
Collapse
Affiliation(s)
- Evgenia S. Soboleva
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russia
| | - Kirill M. Kirilenko
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russia
| | - Valentina S. Fedorova
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russia
| | - Alina A. Kokhanenko
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russia
| | - Gleb N. Artemov
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russia
| | - Igor V. Sharakhov
- Laboratory of Ecology, Genetics and Environmental Protection, Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russia
- Department of Entomology, the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, 360 West Campus Drive, Blacksburg, VA 24061, USA
| |
Collapse
|
5
|
Berdan EL, Barton NH, Butlin R, Charlesworth B, Faria R, Fragata I, Gilbert KJ, Jay P, Kapun M, Lotterhos KE, Mérot C, Durmaz Mitchell E, Pascual M, Peichel CL, Rafajlović M, Westram AM, Schaeffer SW, Johannesson K, Flatt T. How chromosomal inversions reorient the evolutionary process. J Evol Biol 2023; 36:1761-1782. [PMID: 37942504 DOI: 10.1111/jeb.14242] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Inversions are structural mutations that reverse the sequence of a chromosome segment and reduce the effective rate of recombination in the heterozygous state. They play a major role in adaptation, as well as in other evolutionary processes such as speciation. Although inversions have been studied since the 1920s, they remain difficult to investigate because the reduced recombination conferred by them strengthens the effects of drift and hitchhiking, which in turn can obscure signatures of selection. Nonetheless, numerous inversions have been found to be under selection. Given recent advances in population genetic theory and empirical study, here we review how different mechanisms of selection affect the evolution of inversions. A key difference between inversions and other mutations, such as single nucleotide variants, is that the fitness of an inversion may be affected by a larger number of frequently interacting processes. This considerably complicates the analysis of the causes underlying the evolution of inversions. We discuss the extent to which these mechanisms can be disentangled, and by which approach.
Collapse
Affiliation(s)
- Emma L Berdan
- Bioinformatics Core, Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Nicholas H Barton
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Roger Butlin
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
- Ecology and Evolutionary Biology, School of Bioscience, The University of Sheffield, Sheffield, UK
| | - Brian Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Rui Faria
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Inês Fragata
- CHANGE - Global Change and Sustainability Institute/Animal Biology Department, cE3c - Center for Ecology, Evolution and Environmental Changes, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | | | - Paul Jay
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | - Martin Kapun
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
- Central Research Laboratories, Natural History Museum of Vienna, Vienna, Austria
| | - Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Claire Mérot
- UMR 6553 Ecobio, Université de Rennes, OSUR, CNRS, Rennes, France
| | - Esra Durmaz Mitchell
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Functional Genomics & Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Catherine L Peichel
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Marina Rafajlović
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
- Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - Anja M Westram
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Stephen W Schaeffer
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kerstin Johannesson
- Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
- Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
6
|
Hodgens C, Flaherty DT, Pullen AM, Khan I, English NJ, Gillan L, Rojas-Pierce M, Akpa BS. Model-based inference of a plant-specific dual role for HOPS in regulating guard cell vacuole fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.565947. [PMID: 37986942 PMCID: PMC10659295 DOI: 10.1101/2023.11.07.565947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Stomata are the pores on a leaf surface that regulate gas exchange. Each stoma consists of two guard cells whose movements regulate pore opening and thereby control CO2 fixation and water loss. Guard cell movements depend in part on the remodeling of vacuoles, which have been observed to change from a highly fragmented state to a fused morphology during stomata opening. This change in morphology requires a membrane fusion mechanism that responds rapidly to environmental signals, allowing plants to respond to diurnal and stress cues. With guard cell vacuoles being both large and responsive to external signals, stomata represent a unique system in which to delineate mechanisms of membrane fusion. Fusion of vacuole membranes is a highly conserved process in eukaryotes, with key roles played by two multi-subunit complexes: HOPS (homotypic fusion and vacuolar protein sorting) and SNARE (soluble NSF attachment protein receptor). HOPS is a vacuole tethering factor that is thought to chaperone SNAREs from apposing vacuole membranes into a fusion-competent complex capable of rearranging membranes. To resolve a counter-intuitive observation regarding the role of HOPS in regulating plant vacuole morphology, we derived a quantitative model of vacuole fusion dynamics and used it to generate testable predictions about HOPS-SNARE interactions. We derived our model by applying simulation-based inference to integrate prior knowledge about molecular interactions with limited, qualitative observations of emergent vacuole phenotypes. By constraining the model parameters to yield the emergent outcomes observed for stoma opening - as induced by two distinct chemical treatments - we predicted a dual role for HOPS and identified a stalled form of the SNARE complex that differs from phenomena reported in yeast. We predict that HOPS has contradictory actions at different points in the fusion signaling pathway, promoting the formation of SNARE complexes, but limiting their activity.
Collapse
Affiliation(s)
- Charles Hodgens
- Department of Chemical and Biomolecular Engineering, University of Tennessee-Knoxville, Knoxville, Tennessee, USA
| | - DT Flaherty
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Anne-Marie Pullen
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Imran Khan
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Nolan J English
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Lydia Gillan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Marcela Rojas-Pierce
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Belinda S Akpa
- Department of Chemical and Biomolecular Engineering, University of Tennessee-Knoxville, Knoxville, Tennessee, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
7
|
Bredemeyer KR, Hillier L, Harris AJ, Hughes GM, Foley NM, Lawless C, Carroll RA, Storer JM, Batzer MA, Rice ES, Davis BW, Raudsepp T, O'Brien SJ, Lyons LA, Warren WC, Murphy WJ. Single-haplotype comparative genomics provides insights into lineage-specific structural variation during cat evolution. Nat Genet 2023; 55:1953-1963. [PMID: 37919451 PMCID: PMC10845050 DOI: 10.1038/s41588-023-01548-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/20/2023] [Indexed: 11/04/2023]
Abstract
The role of structurally dynamic genomic regions in speciation is poorly understood due to challenges inherent in diploid genome assembly. Here we reconstructed the evolutionary dynamics of structural variation in five cat species by phasing the genomes of three interspecies F1 hybrids to generate near-gapless single-haplotype assemblies. We discerned that cat genomes have a paucity of segmental duplications relative to great apes, explaining their remarkable karyotypic stability. X chromosomes were hotspots of structural variation, including enrichment with inversions in a large recombination desert with characteristics of a supergene. The X-linked macrosatellite DXZ4 evolves more rapidly than 99.5% of the genome clarifying its role in felid hybrid incompatibility. Resolved sensory gene repertoires revealed functional copy number changes associated with ecomorphological adaptations, sociality and domestication. This study highlights the value of gapless genomes to reveal structural mechanisms underpinning karyotypic evolution, reproductive isolation and ecological niche adaptation.
Collapse
Affiliation(s)
- Kevin R Bredemeyer
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA
| | - LaDeana Hillier
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Andrew J Harris
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA
| | - Graham M Hughes
- School of Biology & Environmental Sciences, University College Dublin, Dublin, Ireland
| | - Nicole M Foley
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Colleen Lawless
- School of Biology & Environmental Sciences, University College Dublin, Dublin, Ireland
| | - Rachel A Carroll
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA
| | | | - Mark A Batzer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Edward S Rice
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Brian W Davis
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA
| | - Terje Raudsepp
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA
| | - Stephen J O'Brien
- Guy Harvey Oceanographic Center, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Leslie A Lyons
- Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, MO, USA
| | - Wesley C Warren
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA.
| | - William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
8
|
Kavalco KF, Pasa R. Chromosomal Radiation: A model to explain karyotypic diversity in cryptic species. Genet Mol Biol 2023; 46:e20230116. [PMID: 37815421 PMCID: PMC10563172 DOI: 10.1590/1678-4685-gmb-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/22/2023] [Indexed: 10/11/2023] Open
Abstract
We present a concept that explains the pattern of occurrence of widely distributed organisms with large chromosomal diversity, large or small molecular divergence, and the insufficiency or absence of morphological identity. Our model is based on cytogenetic studies associated with molecular and biological data and can be applied to any lineage of sister species, chronospecies, or cryptic species. Through the evaluation of the karyotypic macrostructure, as the physical location of genes e satellites DNAs, in addition to phylogenetic reconstructions from mitochondrial and nuclear genes, per example, we have observed morphologically indistinguishable individuals presenting different locally fixed karyomorphs with phylogeographic discontinuity. The biological process behind this pattern is seen in many groups of cryptic species, in which variation lies mainly in the organization of their genomes but not necessarily in the ecosystems they inhabit or in their external morphology. It's similar to the processes behind other events observed in the distribution of lineages. In this work, we explore the hypothesis of a process analogous to ecological-evolutionary radiation, which we called Chromosomal Radiation. Chromosomal Radiation can be adaptive or non-adaptive and applied to different groups of organisms.
Collapse
Affiliation(s)
- Karine Frehner Kavalco
- Universidade Federal de Viçosa, Instituto de Ciências Biológicas e da Saúde, Laboratório de Genética Ecológica e Evolutiva (LaGEEvo), Campus Rio Paranaíba, Rio Paranaíba, MG, Brazil
- Universidade Federal de Viçosa, Instituto de Ciências Biológicas e da Saúde, Laboratório de Bioinformática e Genômica, Campus Rio Paranaíba, Rio Paranaíba, MG, Brazil
| | - Rubens Pasa
- Universidade Federal de Viçosa, Instituto de Ciências Biológicas e da Saúde, Laboratório de Genética Ecológica e Evolutiva (LaGEEvo), Campus Rio Paranaíba, Rio Paranaíba, MG, Brazil
- Universidade Federal de Viçosa, Instituto de Ciências Biológicas e da Saúde, Laboratório de Bioinformática e Genômica, Campus Rio Paranaíba, Rio Paranaíba, MG, Brazil
| |
Collapse
|
9
|
Olito C, Abbott JK. The evolution of suppressed recombination between sex chromosomes and the lengths of evolutionary strata. Evolution 2023; 77:1077-1090. [PMID: 36794986 DOI: 10.1093/evolut/qpad023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
The idea that sex differences in selection drive the evolution of suppressed recombination between sex chromosomes is well developed in population genetics. Yet, despite a now classic body of theory, empirical evidence that sexually antagonistic selection drives the evolution of recombination arrest remains equivocal and alternative hypotheses underdeveloped. Here, we investigate whether the length of "evolutionary strata" formed by chromosomal inversions (or other large-effect recombination modifiers) expanding the non-recombining sex-linked region (SLR) on sex chromosomes can be informative of how selection influenced their fixation. We develop population genetic models to show how the length of an SLR-expanding inversion, and the presence of partially recessive deleterious mutational variation, affect the fixation probability of three different classes of inversions: (1) intrinsically neutral, (2) directly beneficial (i.e., due to breakpoint or positional effects), and (3) those capturing sexually antagonistic (SA) loci. Our models indicate that neutral inversions, and those capturing an SA locus in linkage disequilibrium with the ancestral SLR, will exhibit a strong fixation bias toward small inversions; while unconditionally beneficial inversions, and those capturing a genetically unlinked SA locus, will favor fixation of larger inversions. The footprint of evolutionary stratum size left behind by different selection regimes is strongly influenced by parameters affecting the deleterious mutation load, the physical position of the ancestral SLR, and the distribution of new inversion lengths.
Collapse
Affiliation(s)
- Colin Olito
- Department of Biology, Section for Evolutionary Ecology, Lund University, Lund, Sweden
| | - Jessica K Abbott
- Department of Biology, Section for Evolutionary Ecology, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Dagilis AJ. What inversion lengths can tell us about their evolution. Mol Ecol 2022; 31:3513-3515. [PMID: 35612998 DOI: 10.1111/mec.16546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
Abstract
Genome structural differences, such as inversions, are extremely common between species and within populations. Theoretical models of how and why such inversions evolve have affirmed that they are able to evolve under both adaptive and non-adaptive scenarios (reviewed in Kirkpatrick 2010). What has remained difficult, however, is distinguishing these scenarios from each other. In this issue of Molecular Ecology, Connallon and Olito (2022) present a model that examines how adaptive and non-adaptive scenarios lead to different distributions of inversion sizes. The authors present several important predictions including an expectation that larger inversions should evolve under local adaptation scenarios and much smaller inversions should evolve when they are either underdominant or directly beneficial. Finally, the authors ask how the presence of deleterious mutations within populations affects the probability of fixing inversions of different types. The paper is therefore an important step in synthesizing decades of inversion theory.
Collapse
Affiliation(s)
- Andrius J Dagilis
- Biology Department, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
11
|
Hodgens C, Akpa BS, Long TA. Solving the puzzle of Fe homeostasis by integrating molecular, mathematical, and societal models. CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102149. [PMID: 34839201 DOI: 10.1016/j.pbi.2021.102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/22/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
To ensure optimal utilization and bioavailability, iron uptake, transport, subcellular localization, and assimilation are tightly regulated in plants. Herein, we examine recent advances in our understanding of cellular responses to Fe deficiency. We then use intracellular mechanisms of Fe homeostasis to discuss how formalizing cell biology knowledge via a mathematical model can advance discovery even when quantitative data is limited. Using simulation-based inference to identify plausible systems mechanisms that conform to known emergent phenotypes can yield novel, testable hypotheses to guide targeted experiments. However, this approach relies on the accurate encoding of domain-expert knowledge in exploratory mathematical models. We argue that this would be facilitated by fostering more "systems thinking" life scientists and that diversifying your research team may be a practical path to achieve that goal.
Collapse
Affiliation(s)
- Charles Hodgens
- Plant & Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Belinda S Akpa
- Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Terri A Long
- Plant & Microbial Biology, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
12
|
Connallon T, Olito C. Natural selection and the distribution of chromosomal inversion lengths. Mol Ecol 2021; 31:3627-3641. [PMID: 34297880 DOI: 10.1111/mec.16091] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/28/2022]
Abstract
Chromosomal inversions contribute substantially to genome evolution, yet the processes governing their evolutionary dynamics remain poorly understood. Theory suggests that a readily measurable property of inversions-their length-can potentially affect their evolutionary fates. Emerging data on the lengths of polymorphic and fixed inversions may therefore provide clues to the evolutionary processes promoting inversion establishment. However, formal predictions for the distribution of inversion lengths remain incomplete, making empirical patterns difficult to interpret. We model the relation between inversion length and establishment probability for four inversion types: (1) neutral, (2) underdominant, (3) directly beneficial, and (4) indirectly beneficial, with selection favouring the latter because they capture locally adapted alleles at migration-selection balance and suppress recombination between them. We also consider how deleterious mutations affect the lengths of established inversions. We show that length distributions of common polymorphic and fixed inversions systematically differ among inversion types. Small rearrangements contribute the most to genome evolution under neutral and underdominant scenarios of selection, with the lengths of neutral inversion substitutions increasing, and those of underdominant substitutions decreasing, with effective population size. Among directly beneficial inversions, small rearrangements are preferentially fixed, whereas intermediate-to-large inversions are maintained as balanced polymorphisms via associative overdominance. Finally, inversions established under the local adaptation scenario are predominantly intermediate-to-large. Such inversions remain polymorphic or approach fixation within the local populations where they are favoured. Our models clarify how inversion length distributions relate to processes of inversion establishment, providing a platform for testing how natural selection shapes the evolution of genome structure.
Collapse
Affiliation(s)
- Tim Connallon
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Clayton, Victoria, Australia
| | - Colin Olito
- Department of Biology, Section for Evolutionary Ecology, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Rieseberg L, Geraldes A, Taberlet P. Editorial 2020. Mol Ecol 2020; 29:1-19. [DOI: 10.1111/mec.15328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 11/27/2022]
|
14
|
Wellenreuther M, Mérot C, Berdan E, Bernatchez L. Going beyond SNPs: The role of structural genomic variants in adaptive evolution and species diversification. Mol Ecol 2019; 28:1203-1209. [PMID: 30834648 DOI: 10.1111/mec.15066] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Maren Wellenreuther
- The New Zealand Institute for Plant & Food Research Ltd, Nelson, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Claire Mérot
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Emma Berdan
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|