1
|
Zamunér CFC, Carhuaricra-Huaman D, Ragupathy R, Redfern J, Rodriguez-Cueva CL, Behlau F, Enright MC, Ferreira H, Setubal JC. Evolution and spread of Xanthomonas citri subsp. citri in the São Paulo, Brazil, citrus belt inferred from 758 novel genomes. Microb Genom 2025; 11:001338. [PMID: 39817540 PMCID: PMC11736806 DOI: 10.1099/mgen.0.001338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/25/2024] [Indexed: 01/18/2025] Open
Abstract
The São Paulo state citrus belt in Brazil is a major citrus production region. Since at least 1957, citrus plantations in this region have been affected by citrus canker, an economically damaging disease caused by Xanthomonas citri subsp. citri (Xcc). For about 50 years, until 2017, a citrus canker eradication programme was carried out in this region. In this work, our aim was to investigate the effects of the eradication programme on genetic variability and evolution of Xcc. To this end, we sequenced and analysed 758 Xcc genomes sampled in the São Paulo citrus belt, together with 730 publicly available Xcc genomes from around the world. Our phylogenomic analyses show that these genomes can be grouped into seven major lineages and that in São Paulo, lineage L7 is dominant. Our time estimate for its appearance closely matches the date when citrus production expanded. L7 can be subdivided into lineages L7.1 and L7.2. In our samples, L7.2, which we estimate to have emerged around 1964, is by far the most abundant, showing that the eradication programme had little impact on strain diversification. On the other hand, oscillations in the estimated effective population size of L7.2 strains over time closely match the shifts in the eradication programme. In sum, we present a detailed view of the genomic diversity of Xcc in the world and in São Paulo, the largest such effort in terms of a number of genomes for a crop pathogen undertaken so far. The methods employed here can form the basis for active genomic surveillance of Xcc in major citrus production areas.
Collapse
Affiliation(s)
- Caio Felipe Cavicchia Zamunér
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, Rio Claro, 13506-900, São Paulo, Brazil
| | | | - Roobinidevi Ragupathy
- Department of Life Sciences, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - James Redfern
- Department of Natural Sciences, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | | | - Franklin Behlau
- Fundo de Defesa da Citricultura - Fundecitrus, Av. Dr. Adhemar Pereira de Barros, 201, Araraquara, 14.807-040, São Paulo, Brazil
| | - Mark C. Enright
- Department of Life Sciences, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Henrique Ferreira
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, Rio Claro, 13506-900, São Paulo, Brazil
| | - João C. Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Pruvost O, Boyer K, Labbé F, Weishaar M, Vynisale A, Melot C, Hoareau C, Cellier G, Ravigné V. Genetic Signatures of Contrasted Outbreak Histories of " Candidatus Liberibacter asiaticus", the Bacterium That Causes Citrus Huanglongbing, in Three Outermost Regions of the European Union. Evol Appl 2024; 17:e70053. [PMID: 39691746 PMCID: PMC11649586 DOI: 10.1111/eva.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024] Open
Abstract
In an era of trade globalization and climate change, crop pathogens and pests are a genuine threat to food security. The detailed characterization of emerging pathogen populations is a prerequisite for managing invasive species pathways and designing sustainable disease control strategies. Huanglongbing is the disease that causes the most damage to citrus, a crop that ranks #1 worldwide in terms of fruit production. Huanglongbing can be caused by three species of the phloem-limited alpha-proteobacterium, "Candidatus Liberibacter," which are transmitted by psyllids. Two of these bacteria are of highest concern, "Ca. Liberibacter asiaticus" and "Ca. Liberibacter africanus," and have distinct thermal optima. These pathogens are unculturable, which complicates their high-throughput genetic characterization. In the present study, we used several genotyping techniques and an extensive sample collection to characterize Ca. Liberibacter populations associated with the emergence of huanglongbing in three French outermost regions of the European Union (Guadeloupe, Martinique and Réunion). The outbreaks were primarily caused by "Ca. Liberibacter asiaticus," as "Ca. Liberibacter africanus" was only found at a single location in Réunion. We emphasize the low diversity and high genetic relatedness between samples from Guadeloupe and Martinique, which suggests the putative movement of the pathogen between the two islands and/or the independent introduction of closely related strains. These samples were markedly different from the samples from Réunion, where the higher genetic diversity revealed by tandem-repeat markers suggests that the disease was probably overlooked for years before being officially identified in 2015. We show that "Ca. Liberibacter asiaticus" occurs from sea level to an altitude of 950 m above sea level and lacks spatial structure. This suggests the pathogen's medium- to long-distance movement. We also suggest that backyard trees acted as relays for disease spread. We discuss the implications of population biology data for surveillance and management of this threatful disease.
Collapse
|
3
|
Subedi A, Iruegas-Bocardo F, Luo L, Minsavage GV, Roberts PD, Jones JB, Goss EM. Amylase-associated genetic pattern in Xanthomonas euvesicatoria on pepper. Appl Environ Microbiol 2024; 90:e0131324. [PMID: 39291986 PMCID: PMC11497833 DOI: 10.1128/aem.01313-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Bacterial leaf spot of pepper (BSP), primarily caused by Xanthomonas euvesicatoria (Xe), poses a significant challenge to pepper production worldwide. Despite its impact, the genetic diversity of this pathogen remains underexplored, which limits our understanding of its population structure. To bridge this knowledge gap, we conducted a comprehensive analysis using 103 Xe strains isolated from pepper in southwest Florida to characterize genomic and type III effector (T3E) variation in this population. Phylogenetic analysis of core genomes revealed a major distinct genetic lineage associated with amylolytic activity. This amylolytic lineage was represented in Xe strains globally. Molecular clock analysis dated the emergence of amylolytic strains in Xe to around 1972. Notably, non-amylolytic strains possessed a single base pair frameshift deletion in the ⍺-amylase gene yet retained a conserved C-terminus. GUS assay revealed the expression of two open reading frames in non-amylolytic strains, one at the N-terminus and another that starts 136 base pairs upstream of the ⍺-amylase gene. Analysis of T3Es in the Florida Xe population identified variation in 12 effectors, including two classes of mutations in avrBs2 that prevent AvrBs2 from triggering a hypersensitive response in Bs2-resistant pepper plants. Knowledge of T3E variation could be used for effector-targeted disease management. This study revealed previously undescribed population structure in this economically important pathogen.IMPORTANCEBacterial leaf spot (BSP), a significant threat to pepper production globally, is primarily caused by Xanthomonas euvesicatoria (Xe). Limited genomic data has hindered detailed studies on its population diversity. This study analyzed the whole-genome sequences of 103 Xe strains from peppers in southwest Florida, along with additional global strains, to explore the pathogen's diversity. The study revealed two major distinct genetic groups based on their amylolytic activity, the ability to break down starch, with non-amylolytic strains having a mutation in the ⍺-amylase gene. Additionally, two classes of mutations in the avrBs2 gene were found, leading to susceptibility in pepper plants with the Bs2 resistance gene, a commercially available resistance gene for BSP. These findings highlight the need to forecast the emergence of such strains, identify genetic factors for innovative disease management, and understand how this pathogen evolves and spreads.
Collapse
Affiliation(s)
- Aastha Subedi
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | | | - Laixin Luo
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Gerald V. Minsavage
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Pamela D. Roberts
- Southwest Florida Research & Education Center, University of Florida, Immokalee, Florida, USA
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Erica M. Goss
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Timilsina S, Kaur A, Sharma A, Ramamoorthy S, Vallad GE, Wang N, White FF, Potnis N, Goss EM, Jones JB. Xanthomonas as a Model System for Studying Pathogen Emergence and Evolution. PHYTOPATHOLOGY 2024; 114:1433-1446. [PMID: 38648116 DOI: 10.1094/phyto-03-24-0084-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In this review, we highlight studies in which whole-genome sequencing, comparative genomics, and population genomics have provided unprecedented insights into past and ongoing pathogen evolution. These include new understandings of the adaptive evolution of secretion systems and their effectors. We focus on Xanthomonas pathosystems that have seen intensive study and improved our understanding of pathogen emergence and evolution, particularly in the context of host specialization: citrus canker, bacterial blight of rice, and bacterial spot of tomato and pepper. Across pathosystems, pathogens appear to follow a pattern of bursts of evolution and diversification that impact host adaptation. There remains a need for studies on the mechanisms of host range evolution and genetic exchange among closely related but differentially host-specialized species and to start moving beyond the study of specific strain and host cultivar pairwise interactions to thinking about these pathosystems in a community context.
Collapse
Affiliation(s)
- Sujan Timilsina
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Amandeep Kaur
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Anuj Sharma
- Department of Horticultural Sciences, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | | | - Gary E Vallad
- Department of Plant Pathology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | - Nian Wang
- Department of Microbiology and Cell Science, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Frank F White
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Erica M Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| |
Collapse
|
5
|
Sharma A, Timilsina S, Abrahamian P, Minsavage GV, Jones JB, Vallad GE, Goss EM. Bacterial Mutation During Seasonal Epidemics. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:93-97. [PMID: 38105425 DOI: 10.1094/mpmi-10-23-0164-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Rapidly evolving bacterial pathogens pose a unique challenge for long-term plant disease management. In this study, we investigated the types and rate of mutations in bacterial populations during seasonal disease epidemics. Two phylogenetically distinct strains of the bacterial spot pathogen, Xanthomonas perforans, were marked, released in tomato fields, and recaptured at several time points during the growing season. Genomic variations in recaptured isolates were identified by comparative analysis of their whole-genome sequences. In total, 180 unique variations (116 substitutions, 57 insertions/deletions, and 7 structural variations) were identified from 300 genomes, resulting in the overall host-associated mutation rate of ∼0.3 to 0.9/genome/week. This result serves as a benchmark for bacterial mutation during epidemics in similar pathosystems. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, U.S.A
| | - Sujan Timilsina
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| | - Peter Abrahamian
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, U.S.A
| | - Gerald V Minsavage
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| | - Gary E Vallad
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, U.S.A
| | - Erica M Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
| |
Collapse
|
6
|
Subedi A, Barrera LBTDL, Ivey ML, Egel DS, Kebede M, Kara S, Aysan Y, Minsavage GV, Roberts PD, Jones JB, Goss EM. Population Genomics Reveals an Emerging Lineage of Xanthomonas perforans on Pepper. PHYTOPATHOLOGY 2024; 114:241-250. [PMID: 37432099 DOI: 10.1094/phyto-04-23-0128-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Xanthomonas perforans-the dominant causal agent of bacterial leaf spot of tomato-is an emerging pathogen of pepper, indicative of a potential host expansion across the southeastern United States. However, studies of the genetic diversity and evolution of X. perforans from pepper remain limited. In this study, the whole-genome sequences of 35 X. perforans strains isolated from pepper from four fields and two transplant facilities across southwest Florida between 2019 and 2021 were used to compare genomic divergence, evolution, and variation in type III secreted effectors. Phylogenetic analysis based on core genes revealed that all 35 X. perforans strains formed one genetic cluster with pepper and tomato strains from Alabama and Turkey and were closely related to strains isolated from tomato in Indiana, Mexico, and Louisiana. The in planta population growth of tomato strains isolated from Indiana, Mexico, Louisiana, and Turkey in pepper leaf mesophyll was on par with pepper X. perforans and X. euvesicatoria strains. Molecular clock analysis of the 35 Florida strains dated their emergence to approximately 2017. While strains varied in copper tolerance, all sequenced strains harbored the avrHah1 transcription activation-like effector located on a conjugative plasmid, not previously reported in Florida. Our findings suggest that there is a geographically distributed lineage of X. perforans strains on tomato that has the genetic background to cause disease on pepper. Moreover, this study clarifies potential adaptive variants of X. perforans on pepper that could help forecast the emergence of such strains and enable immediate or preemptive intervention.
Collapse
Affiliation(s)
- Aastha Subedi
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| | | | - Melanie Lewis Ivey
- Department of Plant Pathology, The Ohio State University, Wooster, OH, U.S.A
| | - Daniel S Egel
- Botany and Plant Pathology Department, Purdue University, West Lafayette, IN, U.S.A
| | - Misrak Kebede
- Biotechnology Department, Collage of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Serhat Kara
- Alata Horticulture Research Institute, Mersin, Turkey
| | - Yesim Aysan
- Department of Plant Protection, Cukurova University, Adana, Turkey
| | - Gerald V Minsavage
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| | - Pamela D Roberts
- Southwest Florida Research & Education Center, University of Florida, Immokalee, FL, U.S.A
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| | - Erica M Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
| |
Collapse
|
7
|
Campos PE, Pruvost O, Boyer K, Chiroleu F, Cao TT, Gaudeul M, Baider C, Utteridge TMA, Becker N, Rieux A, Gagnevin L. Herbarium specimen sequencing allows precise dating of Xanthomonas citri pv. citri diversification history. Nat Commun 2023; 14:4306. [PMID: 37474518 PMCID: PMC10359311 DOI: 10.1038/s41467-023-39950-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Herbarium collections are an important source of dated, identified and preserved DNA, whose use in comparative genomics and phylogeography can shed light on the emergence and evolutionary history of plant pathogens. Here, we reconstruct 13 historical genomes of the bacterial crop pathogen Xanthomonas citri pv. citri (Xci) from infected Citrus herbarium specimens. Following authentication based on ancient DNA damage patterns, we compare them with a large set of modern genomes to estimate their phylogenetic relationships, pathogenicity-associated gene content and several evolutionary parameters. Our results indicate that Xci originated in Southern Asia ~11,500 years ago (perhaps in relation to Neolithic climate change and the development of agriculture) and diversified during the beginning of the 13th century, after Citrus diversification and before spreading to the rest of the world (probably via human-driven expansion of citriculture through early East-West trade and colonization).
Collapse
Affiliation(s)
- Paola E Campos
- CIRAD, UMR PVBMT, F-97410, St Pierre, La Réunion, France
- Institut de Systématique, Évolution, Biodiversité (ISyEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005, Paris, France
| | | | - Karine Boyer
- CIRAD, UMR PVBMT, F-97410, St Pierre, La Réunion, France
| | | | - Thuy Trang Cao
- CIRAD, UMR PVBMT, F-97410, St Pierre, La Réunion, France
| | - Myriam Gaudeul
- Institut de Systématique, Évolution, Biodiversité (ISyEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005, Paris, France
- Herbier national, Muséum national d'Histoire naturelle, CP39, 57 rue Cuvier, 75005, Paris, France
| | - Cláudia Baider
- The Mauritius Herbarium, Agricultural Services, Ministry of Agro-Industry and Food Security, R.E. Vaughan Building (MSIRI Compound), Reduit, 80835, Mauritius
| | | | - Nathalie Becker
- Institut de Systématique, Évolution, Biodiversité (ISyEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005, Paris, France
| | - Adrien Rieux
- CIRAD, UMR PVBMT, F-97410, St Pierre, La Réunion, France.
| | - Lionel Gagnevin
- PHIM Plant Health Institute, Univ. Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France.
- CIRAD, UMR PHIM, Montpellier, France.
| |
Collapse
|
8
|
Bellanger N, Dereeper A, Koebnik R. Clustered Regularly Interspaced Short Palindromic Repeats in Xanthomonas citri—Witnesses to a Global Expansion of a Bacterial Pathogen over Time. Microorganisms 2022; 10:microorganisms10091715. [PMID: 36144317 PMCID: PMC9504256 DOI: 10.3390/microorganisms10091715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/09/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Xanthomonas citri pv. citri, a Gram-negative bacterium, is the causal agent of citrus canker, a significant threat to citrus production. Understanding of global expansion of the pathogen and monitoring introduction into new regions are of interest for integrated disease management at the local and global level. Genetic diversity can be assessed using genomic approaches or information from partial gene sequences, satellite markers or clustered regularly interspaced short palindromic repeats (CRISPR). Here, we compared CRISPR loci from 355 strains of X. citri pv. citri, including a sample from ancient DNA, and generated the genealogy of the spoligotypes, i.e., the absence/presence patterns of CRISPR spacers. We identified 26 novel spoligotypes and constructed their likely evolutionary trajectory based on the whole-genome information. Moreover, we analyzed ~30 additional pathovars of X. citri and found that the oldest part of the CRISPR array was present in the ancestor of several pathovars of X. citri. This work presents a framework for further analyses of CRISPR loci and allows drawing conclusions about the global spread of the citrus canker pathogen, as exemplified by two introductions in West Africa.
Collapse
|
9
|
Licciardello G, Caruso P, Bella P, Boyer C, Smith MW, Pruvost O, Robene I, Cubero J, Catara V. Pathotyping Citrus Ornamental Relatives with Xanthomonas citri pv. citri and X. citri pv. aurantifolii Refines Our Understanding of Their Susceptibility to These Pathogens. Microorganisms 2022; 10:microorganisms10050986. [PMID: 35630430 PMCID: PMC9148020 DOI: 10.3390/microorganisms10050986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Xanthomonas citri pv. citri (Xcc) and X. citri pv. aurantifolii (Xca) are causal agents of Citrus Bacterial Canker (CBC), a devastating disease that severely affects citrus plants. They are harmful organisms not reported in Europe or the Mediterranean Basin. Host plants are in the Rutaceae family, including the genera Citrus, Poncirus, and Fortunella, and their hybrids. In addition, other genera of ornamental interest are reported as susceptible, but results are not uniform and sometimes incongruent. We evaluated the susceptibility of 32 ornamental accessions of the Rutaceae family belonging to the genera Citrus, Fortunella, Atalantia, Clausena, Eremocitrus, Glycosmis, Microcitrus, Murraya, Casimiroa, Calodendrum, and Aegle, and three hybrids to seven strains of Xcc and Xca. Pathotyping evaluation was assessed by scoring the symptomatic reactions on detached leaves. High variability in symptoms and bacterial population was shown among the different strains in the different hosts, indicative of complex host–pathogen interactions. The results are mostly consistent with past findings, with the few discrepancies probably due to our more complete experimental approach using multiple strains of the pathogen and multiple hosts. Our work supports the need to regulate non-citrus Rutaceae plant introductions into areas, like the EU and Mediterranean, that are currently free of this economically important pathogen.
Collapse
Affiliation(s)
- Grazia Licciardello
- Dipartimento di Agricoltura Alimentazione e Ambiente, Università degli Studi di Catania, 95130 Catania, Italy;
- Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura-Consiglio per la Ricerca in Agricoltura e L’analisi Dell’Economia Agraria (CREA), 95024 Acireale, Italy;
| | - Paola Caruso
- Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura-Consiglio per la Ricerca in Agricoltura e L’analisi Dell’Economia Agraria (CREA), 95024 Acireale, Italy;
| | - Patrizia Bella
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, 90128 Palermo, Italy;
| | - Claudine Boyer
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), 97410 Saint Pierre, La Réunion, France; (C.B.); (O.P.); (I.R.)
| | - Malcolm W. Smith
- Department of Agriculture & Fisheries, Bundaberg Research Station, Bundaberg, QLD 4670, Australia;
| | - Olivier Pruvost
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), 97410 Saint Pierre, La Réunion, France; (C.B.); (O.P.); (I.R.)
| | - Isabelle Robene
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), 97410 Saint Pierre, La Réunion, France; (C.B.); (O.P.); (I.R.)
| | - Jaime Cubero
- Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain;
| | - Vittoria Catara
- Dipartimento di Agricoltura Alimentazione e Ambiente, Università degli Studi di Catania, 95130 Catania, Italy;
- Correspondence: ; Tel.: +39-095-714-7370
| |
Collapse
|
10
|
Huang CJ, Wu TL, Zheng PX, Ou JY, Ni HF, Lin YC. Comparative Genomic Analysis Uncovered Evolution of Pathogenicity Factors, Horizontal Gene Transfer Events, and Heavy Metal Resistance Traits in Citrus Canker Bacterium Xanthomonas citri subsp. citri. Front Microbiol 2021; 12:731711. [PMID: 34557177 PMCID: PMC8453159 DOI: 10.3389/fmicb.2021.731711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/18/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Worldwide citrus production is severely threatened by Asiatic citrus canker which is caused by the proteobacterium Xanthomonas citri subsp. citri. Foliar sprays of copper-based bactericides are frequently used to control plant bacterial diseases. Despite the sequencing of many X. citri strains, the genome diversity and distribution of genes responsible for metal resistance in X. citri subsp. citri strains from orchards with different management practices in Taiwan are not well understood. Results: The genomes of three X. citri subsp. citri strains including one copper-resistant strain collected from farms with different management regimes in Taiwan were sequenced by Illumina and Nanopore sequencing and assembled into complete circular chromosomes and plasmids. CRISPR spoligotyping and phylogenomic analysis indicated that the three strains were located in the same phylogenetic lineages and shared ∼3,000 core-genes with published X. citri subsp. citri strains. These strains differed mainly in the CRISPR repeats and pathogenicity-related plasmid-borne transcription activator-like effector (TALE)-encoding pthA genes. The copper-resistant strain has a unique, large copper resistance plasmid due to an unusual ∼40 kbp inverted repeat. Each repeat contains a complete set of the gene cluster responsible for copper and heavy metal resistance. Conversely, the copper sensitive strains carry no metal resistance genes in the plasmid. Through comparative analysis, the origin and evolution of the metal resistance clusters was resolved. Conclusion: Chromosomes remained constant among three strains collected in Taiwan, but plasmids likely played an important role in maintaining pathogenicity and developing bacterial fitness in the field. The evolution of pathogenicity factors and horizontal gene transfer events were observed in the three strains. These data suggest that agricultural management practices could be a potential trigger for the evolution of citrus canker pathogens. The decrease in the number of CRISPR repeats and pthA genes might be the result of adaptation to a less stressful environment. The metal resistance genes in the copper resistant X. citri strain likely originated from the Mauritian strain not the local copper-resistant X. euvesicatoria strain. This study highlights the importance of plasmids as 'vehicles' for exchanging genetic elements between plant pathogenic bacteria and contributing to bacterial adaptation to the environment.
Collapse
Affiliation(s)
- Chien-Jui Huang
- Department of Plant Medicine, National Chiayi University, Chiayi, Taiwan
| | - Ting-Li Wu
- Biotechnology Center in Southern Taiwan, Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
| | - Po-Xing Zheng
- Biotechnology Center in Southern Taiwan, Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
| | - Jheng-Yang Ou
- Biotechnology Center in Southern Taiwan, Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
| | - Hui-Fang Ni
- Department of Plant Protection, Chiayi Agricultural Experiment Station, Taiwan Agricultural Research Institute, Chiayi, Taiwan
| | - Yao-Cheng Lin
- Biotechnology Center in Southern Taiwan, Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
| |
Collapse
|
11
|
Campos PE, Groot Crego C, Boyer K, Gaudeul M, Baider C, Richard D, Pruvost O, Roumagnac P, Szurek B, Becker N, Gagnevin L, Rieux A. First historical genome of a crop bacterial pathogen from herbarium specimen: Insights into citrus canker emergence. PLoS Pathog 2021; 17:e1009714. [PMID: 34324594 PMCID: PMC8320980 DOI: 10.1371/journal.ppat.1009714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/14/2021] [Indexed: 12/30/2022] Open
Abstract
Over the past decade, ancient genomics has been used in the study of various pathogens. In this context, herbarium specimens provide a precious source of dated and preserved DNA material, enabling a better understanding of plant disease emergences and pathogen evolutionary history. We report here the first historical genome of a crop bacterial pathogen, Xanthomonas citri pv. citri (Xci), obtained from an infected herbarium specimen dating back to 1937. Comparing the 1937 genome within a large set of modern genomes, we reconstructed their phylogenetic relationships and estimated evolutionary parameters using Bayesian tip-calibration inferences. The arrival of Xci in the South West Indian Ocean islands was dated to the 19th century, probably linked to human migrations following slavery abolishment. We also assessed the metagenomic community of the herbarium specimen, showed its authenticity using DNA damage patterns, and investigated its genomic features including functional SNPs and gene content, with a focus on virulence factors.
Collapse
Affiliation(s)
- Paola E. Campos
- CIRAD, UMR PVBMT, Saint-Pierre, La Réunion, France
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, SU, EPHE, UA, Paris, France
| | | | - Karine Boyer
- CIRAD, UMR PVBMT, Saint-Pierre, La Réunion, France
| | - Myriam Gaudeul
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, SU, EPHE, UA, Paris, France
- Herbier national (P), Muséum national d’Histoire naturelle, Paris, France
| | - Claudia Baider
- Ministry of Agro Industry and Food Security, Mauritius Herbarium, R.E. Vaughan Building (MSIRI compound), Agricultural Services, Réduit, Mauritius
| | | | | | - Philippe Roumagnac
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
- CIRAD, UMR PHIM, Montpellier, France
| | - Boris Szurek
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Nathalie Becker
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, SU, EPHE, UA, Paris, France
| | - Lionel Gagnevin
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
- CIRAD, UMR PHIM, Montpellier, France
| | - Adrien Rieux
- CIRAD, UMR PVBMT, Saint-Pierre, La Réunion, France
| |
Collapse
|