1
|
Nicoletti R, Russo E, Becchimanzi A. Cladosporium-Insect Relationships. J Fungi (Basel) 2024; 10:78. [PMID: 38276024 PMCID: PMC10820778 DOI: 10.3390/jof10010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The range of interactions between Cladosporium, a ubiquitous fungal genus, and insects, a class including about 60% of the animal species, is extremely diverse. The broad case history of antagonism and mutualism connecting Cladosporium and insects is reviewed in this paper based on the examination of the available literature. Certain strains establish direct interactions with pests or beneficial insects or indirectly influence them through their endophytic development in plants. Entomopathogenicity is often connected to the production of toxic secondary metabolites, although there is a case where these compounds have been reported to favor pollinator attraction, suggesting an important role in angiosperm reproduction. Other relationships include mycophagy, which, on the other hand, may reflect an ecological advantage for these extremely adaptable fungi using insects as carriers for spreading in the environment. Several Cladosporium species colonize insect structures, such as galleries of ambrosia beetles, leaf rolls of attelabid weevils and galls formed by cecidomyid midges, playing a still uncertain symbiotic role. Finally, the occurrence of Cladosporium in the gut of several insect species has intriguing implications for pest management, also considering that some strains have proven to be able to degrade insecticides. These interactions especially deserve further investigation to understand the impact of these fungi on pest control measures and strategies to preserve beneficial insects.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Center for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.R.); (A.B.)
| | - Elia Russo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.R.); (A.B.)
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.R.); (A.B.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
2
|
Swenie RA, Looney BP, Ke YH, Alejandro Rojas J, Cubeta MA, Langer GJ, Vilgalys R, Matheny PB. PacBio high-throughput multi-locus sequencing reveals high genetic diversity in mushroom-forming fungi. Mol Ecol Resour 2024; 24:e13885. [PMID: 37902171 DOI: 10.1111/1755-0998.13885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/31/2023]
Abstract
Multi-locus sequence data are widely used in fungal systematic and taxonomic studies to delimit species and infer evolutionary relationships. We developed and assessed the efficacy of a multi-locus pooled sequencing method using PacBio long-read high-throughput sequencing. Samples included fresh and dried voucher specimens, cultures and archival DNA extracts of Agaricomycetes with an emphasis on the order Cantharellales. Of the 283 specimens sequenced, 93.6% successfully amplified at one or more loci with a mean of 3.3 loci amplified. Our method recovered multiple sequence variants representing alleles of rDNA loci and single copy protein-coding genes rpb1, rpb2 and tef1. Within-sample genetic variation differed by locus and taxonomic group, with the greatest genetic divergence observed among sequence variants of rpb2 and tef1 from corticioid Cantharellales. Our method is a cost-effective approach for generating accurate multi-locus sequence data coupled with recovery of alleles from polymorphic samples and multi-organism specimens. These results have important implications for understanding intra-individual genomic variation among genetic loci commonly used in species delimitation of fungi.
Collapse
Affiliation(s)
- Rachel A Swenie
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Brian P Looney
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Yi-Hong Ke
- Department of Biology, Duke University, Durham, North Carolina, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - J Alejandro Rojas
- Department of Biology, Duke University, Durham, North Carolina, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Marc A Cubeta
- Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, North Carolina, USA
| | - Gitta J Langer
- Department of Forest Protection, Northwest German Forest Research Institute, Göttingen, Germany
| | - Rytas Vilgalys
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - P Brandon Matheny
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
3
|
Tyagi K, Kumar P, Pandey A, Ginwal HS, Barthwal S, Nautiyal R, Meena RK. First record of Cladosporium oxysporum as a potential novel fungal hyperparasite of Melampsora medusae f. sp. deltoidae and screening of Populus deltoides clones against leaf rust. 3 Biotech 2023; 13:213. [PMID: 37251733 PMCID: PMC10212908 DOI: 10.1007/s13205-023-03623-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Melampsora medusae f. sp. deltoidae is causing serious foliar rust disease on Populus deltoides clones in India. In the present study, a novel fungal hyperparasite on M. medusae has been reported. The hyperparasitic fungus was isolated from the uredeniospores of the rust fungi and identified as Cladosporium oxysporum by morphological characterization and DNA barcode technique based on the Internal Transcribed Spacer (ITS) region of nrDNA and beta-tubulin (TUB) gene region. Hyperparasitism was further confirmed through leaf assay and cavity slide methods. Leaf assay method showed no adverse effect of C. oxysporum on poplar leaves. However, the mean germination percentage of urediniospores was significantly decreased (p < 0.05) in the cavity slide method when a conidial suspension (1.5 × 107 conidia per ml) of C. oxysporum was applied in different deposition sequences. Scanning and light microscopic observations were made to explore the mode of action of the hyperparasitism. The antagonistic fungus vividly showed three different types of antagonism mechanisms, including enzymatic, direct, and contact parasitism. Alternatively, by screening 25 high-yielding clones of P. deltoides, five clones (FRI-FS-83, FRI-FS-92, FRI-FS-140, FRI-AM-111, and D-121) were enlisted under highly resistant category. Present study revealed an antagonistic relationship between C. oxysporum and M. medusae, which could be an effective method of biocontrol in field plantations of poplar. Combining this biocontrol approach with the use of resistant host germplasm could be an environment friendly strategy for preventing foliar rust and increasing poplar productivity in northern India. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03623-x.
Collapse
Affiliation(s)
- Kalpana Tyagi
- Division of Genetics and Tree Improvement, ICFRE-Forest Research Institute, Dehradun, 248195 Uttarakhand India
| | - Prabal Kumar
- Division of Silviculture and Forest Management, ICFRE-Forest Research Institute, Dehradun, 248006 Uttarakhand India
| | - Amit Pandey
- Division of Forest Protection, ICFRE-Forest Research Institute, Dehradun, 248006 Uttarakhand India
| | - Harish S. Ginwal
- Division of Genetics and Tree Improvement, ICFRE-Forest Research Institute, Dehradun, 248195 Uttarakhand India
| | - Santan Barthwal
- Division of Genetics and Tree Improvement, ICFRE-Forest Research Institute, Dehradun, 248195 Uttarakhand India
| | - Raman Nautiyal
- Division of Forestry Statistics, Indian Council of Forestry Research and Education, Dehradun, 248006 Uttarakhand India
- Present Address: Institute of Green Economy, Gurugram, India
| | - Rajendra K. Meena
- Division of Genetics and Tree Improvement, ICFRE-Forest Research Institute, Dehradun, 248195 Uttarakhand India
| |
Collapse
|
4
|
Müller M, Kües U, Budde KB, Gailing O. Applying molecular and genetic methods to trees and their fungal communities. Appl Microbiol Biotechnol 2023; 107:2783-2830. [PMID: 36988668 PMCID: PMC10106355 DOI: 10.1007/s00253-023-12480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
Forests provide invaluable economic, ecological, and social services. At the same time, they are exposed to several threats, such as fragmentation, changing climatic conditions, or increasingly destructive pests and pathogens. Trees, the inherent species of forests, cannot be viewed as isolated organisms. Manifold (micro)organisms are associated with trees playing a pivotal role in forest ecosystems. Of these organisms, fungi may have the greatest impact on the life of trees. A multitude of molecular and genetic methods are now available to investigate tree species and their associated organisms. Due to their smaller genome sizes compared to tree species, whole genomes of different fungi are routinely compared. Such studies have only recently started in forest tree species. Here, we summarize the application of molecular and genetic methods in forest conservation genetics, tree breeding, and association genetics as well as for the investigation of fungal communities and their interrelated ecological functions. These techniques provide valuable insights into the molecular basis of adaptive traits, the impacts of forest management, and changing environmental conditions on tree species and fungal communities and can enhance tree-breeding cycles due to reduced time for field testing. It becomes clear that there are multifaceted interactions among microbial species as well as between these organisms and trees. We demonstrate the versatility of the different approaches based on case studies on trees and fungi. KEY POINTS: • Current knowledge of genetic methods applied to forest trees and associated fungi. • Genomic methods are essential in conservation, breeding, management, and research. • Important role of phytobiomes for trees and their ecosystems.
Collapse
Affiliation(s)
- Markus Müller
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany.
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Katharina B Budde
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
5
|
Busby PE, Newcombe G, Neat AS, Averill C. Facilitating Reforestation Through the Plant Microbiome: Perspectives from the Phyllosphere. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:337-356. [PMID: 35584884 DOI: 10.1146/annurev-phyto-021320-010717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tree planting and natural regeneration contribute to the ongoing effort to restore Earth's forests. Our review addresses how the plant microbiome can enhance the survival of planted and naturally regenerating seedlings and serve in long-term forest carbon capture and the conservation of biodiversity. We focus on fungal leaf endophytes, ubiquitous defensive symbionts that protect against pathogens. We first show that fungal and oomycetous pathogen richness varies greatly for tree species native to the United States (n = 0-876 known pathogens per US tree species), with nearly half of tree species either without pathogens in these major groups or with unknown pathogens. Endophytes are insurance against the poorly known and changing threat of tree pathogens. Next, we review studies of plant phyllosphere feedback, but knowledge gaps prevent us from evaluating whether adding conspecific leaf litter to planted seedlings promotes defensive symbiosis, analogous to adding soil to promote positive feedback. Finally, we discuss research priorities for integrating the plant microbiome into efforts to expand Earth's forests.
Collapse
Affiliation(s)
- Posy E Busby
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA;
| | - George Newcombe
- Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, Idaho, USA
| | - Abigail S Neat
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA;
| | - Colin Averill
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|