1
|
Santos-Perdomo I, Suárez D, Moraza ML, Arribas P, Andújar C. Towards a Canary Islands barcode database for soil biodiversity: revealing cryptic and unrecorded mite species diversity within insular soils. Biodivers Data J 2024; 12:e113301. [PMID: 38314123 PMCID: PMC10838043 DOI: 10.3897/bdj.12.e113301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/23/2023] [Indexed: 02/06/2024] Open
Abstract
Soil arthropod diversity contributes to a high proportion of the total biodiversity on Earth. However, most soil arthropods are still undescribed, hindering our understanding of soil functioning and global biodiversity estimations. Inventorying soil arthropods using conventional taxonomical approaches is particularly difficult and costly due to the great species richness, abundance and local-scale heterogeneity of mesofauna communities and the poor taxonomic background knowledge of most lineages. To alleviate this situation, we have designed and implemented a molecular barcoding framework adapted to soil fauna. This pipeline includes different steps, starting with a morphology-based selection of specimens which are imaged. Then, DNA is extracted non-destructively. Both images and voucher specimens are used to assign a taxonomic identification, based on morphology that is further checked for consistency with molecular information. Using this procedure, we studied 239 specimens of mites from the Canary Islands including representatives of Mesostigmata, Sarcoptiformes and Trombidiformes, of which we recovered barcode sequences for 168 specimens that were morphologically identified to 49 species, with nine specimens that could only be identified at the genus or family levels. Multiple species delimitation analyses were run to compare molecular delimitations with morphological identifications, including ASAP, mlPTP, BINs and 3% and 8% genetic distance thresholds. Additionally, a species-level search was carried out at the Biodiversity Databank of the Canary Islands (BIOTA) to evaluate the number of species in our dataset that were not previously recorded in the archipelago. In parallel, a sequence-level search of our sequences was performed against BOLD Systems. Our results reveal that multiple morphologically identified species correspond to different molecular lineages, which points to significant levels of unknown cryptic diversity within the archipelago. In addition, we evidenced that multiple species in our dataset constituted new records for the Canary Islands fauna and that the information for these lineages within online genetic repositories is very incomplete. Our study represents the first systematic effort to catalogue the soil arthropod mesofauna of the Canary Islands and establishes the basis for the Canary Islands Soil Biodiversity barcode database. This resource will constitute a step forward in the knowledge of these arthropods in a region of special interest.
Collapse
Affiliation(s)
- Irene Santos-Perdomo
- Island Ecology and Evolution Research Group, Institute of Natural Products and Agrobiology (IPNA-CSIC), 38206, La Laguna, SpainIsland Ecology and Evolution Research Group, Institute of Natural Products and Agrobiology (IPNA-CSIC), 38206La LagunaSpain
- School of Doctoral and Postgraduate Studies, University of La Laguna, 38206, La Laguna, SpainSchool of Doctoral and Postgraduate Studies, University of La Laguna, 38206La LagunaSpain
| | - Daniel Suárez
- Island Ecology and Evolution Research Group, Institute of Natural Products and Agrobiology (IPNA-CSIC), 38206, La Laguna, SpainIsland Ecology and Evolution Research Group, Institute of Natural Products and Agrobiology (IPNA-CSIC), 38206La LagunaSpain
- School of Doctoral and Postgraduate Studies, University of La Laguna, 38206, La Laguna, SpainSchool of Doctoral and Postgraduate Studies, University of La Laguna, 38206La LagunaSpain
| | - María L. Moraza
- Universidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008, Pamplona, SpainUniversidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008PamplonaSpain
| | - Paula Arribas
- Island Ecology and Evolution Research Group, Institute of Natural Products and Agrobiology (IPNA-CSIC), 38206, La Laguna, SpainIsland Ecology and Evolution Research Group, Institute of Natural Products and Agrobiology (IPNA-CSIC), 38206La LagunaSpain
| | - Carmelo Andújar
- Island Ecology and Evolution Research Group, Institute of Natural Products and Agrobiology (IPNA-CSIC), 38206, La Laguna, SpainIsland Ecology and Evolution Research Group, Institute of Natural Products and Agrobiology (IPNA-CSIC), 38206La LagunaSpain
| |
Collapse
|
2
|
Rieseberg L, Warschefsky E, Burton J, Huang K, Sibbett B. Editorial 2024. Mol Ecol 2024; 33:e17239. [PMID: 38146175 DOI: 10.1111/mec.17239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Affiliation(s)
- Loren Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Emily Warschefsky
- William L. Brown Center, Missouri Botanical Garden, Saint Louis, MO, USA
| | - Jade Burton
- John Wiley & Sons, Atrium Southern Gate, Chichester, West Sussex, UK
| | - Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Benjamin Sibbett
- John Wiley & Sons, Atrium Southern Gate, Chichester, West Sussex, UK
| |
Collapse
|
3
|
Gillespie RG, Bik HM, Hickerson MJ, Krehenwinkel H, Overcast I, Rominger AJ. Insights into Ecological & Evolutionary Processes via community metabarcoding. Mol Ecol 2023; 32:6083-6092. [PMID: 37999451 DOI: 10.1111/mec.17208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/05/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Affiliation(s)
- Rosemary G Gillespie
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Holly M Bik
- Department of Marine Sciences and Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Michael J Hickerson
- Graduate Center of the City University of New York, New York City, New York, USA
- Biology Department, City College of New York, New York City, New York, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York City, New York, USA
| | | | - Isaac Overcast
- School of Biology and Ecology, University of Maine, Orono, Maine, USA
- Department of Vertebrate Zoology, Division of Invertebrate Zoology, American Museum of Natural History, New York City, New York, USA
- California Academy of Sciences, San Francisco, California, USA
| | - Andrew J Rominger
- School of Biology and Ecology, University of Maine, Orono, Maine, USA
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| |
Collapse
|
4
|
Emerson BC, Borges PAV, Cardoso P, Convey P, deWaard JR, Economo EP, Gillespie RG, Kennedy S, Krehenwinkel H, Meier R, Roderick GK, Strasberg D, Thébaud C, Traveset A, Creedy TJ, Meramveliotakis E, Noguerales V, Overcast I, Morlon H, Papadopoulou A, Vogler AP, Arribas P, Andújar C. Collective and harmonized high throughput barcoding of insular arthropod biodiversity: Toward a Genomic Observatories Network for islands. Mol Ecol 2023; 32:6161-6176. [PMID: 36156326 DOI: 10.1111/mec.16683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 12/01/2022]
Abstract
Current understanding of ecological and evolutionary processes underlying island biodiversity is heavily shaped by empirical data from plants and birds, although arthropods comprise the overwhelming majority of known animal species, and as such can provide key insights into processes governing biodiversity. Novel high throughput sequencing (HTS) approaches are now emerging as powerful tools to overcome limitations in the availability of arthropod biodiversity data, and hence provide insights into these processes. Here, we explored how these tools might be most effectively exploited for comprehensive and comparable inventory and monitoring of insular arthropod biodiversity. We first reviewed the strengths, limitations and potential synergies among existing approaches of high throughput barcode sequencing. We considered how this could be complemented with deep learning approaches applied to image analysis to study arthropod biodiversity. We then explored how these approaches could be implemented within the framework of an island Genomic Observatories Network (iGON) for the advancement of fundamental and applied understanding of island biodiversity. To this end, we identified seven island biology themes at the interface of ecology, evolution and conservation biology, within which collective and harmonized efforts in HTS arthropod inventory could yield significant advances in island biodiversity research.
Collapse
Affiliation(s)
- Brent C Emerson
- Island Ecology and Evolution Research Group, Institute of Natural Products and Agrobiology (IPNA-CSIC), San Cristóbal de la Laguna, Spain
| | - Paulo A V Borges
- Centre for Ecology, Evolution and Environmental Changes (cE3c)/Azorean Biodiversity Group, Faculty of Agricultural Sciences and Environment, CHANGE - Global Change and Sustainability Institute, University of the Azores, Angra do Heroísmo, Portugal
| | - Pedro Cardoso
- Centre for Ecology, Evolution and Environmental Changes (cE3c)/Azorean Biodiversity Group, Faculty of Agricultural Sciences and Environment, CHANGE - Global Change and Sustainability Institute, University of the Azores, Angra do Heroísmo, Portugal
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History Luomus, University of Helsinki, Helsinki, Finland
| | - Peter Convey
- British Antarctic Survey, NERC, Cambridge, UK
- Department of Zoology, University of Johannesburg, Auckland Park, South Africa
| | - Jeremy R deWaard
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Canada
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Radcliffe Institute for Advanced Study, Harvard University, Cambridge, Massachusetts, USA
| | - Rosemary G Gillespie
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, California, USA
| | - Susan Kennedy
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | | | - Rudolf Meier
- Center for Integrative Biodiversity Discovery, Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde, Berlin, Germany
- Department of Biological Sciences, National University of Singapore, Singapore City, Singapore
| | - George K Roderick
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, California, USA
| | | | - Christophe Thébaud
- UMR 5174 EDB Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier Toulouse III, CNRS, IRD, Toulouse, France
| | - Anna Traveset
- Global Change Research Group, Mediterranean Institut of Advanced Studies (CSIC-UIB), Mallorca, Spain
| | - Thomas J Creedy
- Department of Life Sciences, Natural History Museum, London, UK
| | | | - Víctor Noguerales
- Island Ecology and Evolution Research Group, Institute of Natural Products and Agrobiology (IPNA-CSIC), San Cristóbal de la Laguna, Spain
| | - Isaac Overcast
- Département de Biologie, École normale supérieure, Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Université PSL, Paris, France
| | - Hélène Morlon
- Département de Biologie, École normale supérieure, Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Université PSL, Paris, France
| | - Anna Papadopoulou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Alfried P Vogler
- Department of Life Sciences, Natural History Museum, London, UK
- Department of Life Sciences, Imperial College London, London, UK
| | - Paula Arribas
- Island Ecology and Evolution Research Group, Institute of Natural Products and Agrobiology (IPNA-CSIC), San Cristóbal de la Laguna, Spain
| | - Carmelo Andújar
- Island Ecology and Evolution Research Group, Institute of Natural Products and Agrobiology (IPNA-CSIC), San Cristóbal de la Laguna, Spain
| |
Collapse
|