1
|
Yang Z, Liang L, Xiang W, Wu Q, Wang L, Ma Q. Phylogenomic analyses re-evaluate the backbone of Corylus and unravel extensive signals of reticulate evolution. Mol Phylogenet Evol 2025; 204:108293. [PMID: 39855493 DOI: 10.1016/j.ympev.2025.108293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Phylogenomic analyses have shown that reticulate evolution greatly affects the accuracy of phylogenetic inferences, and thus may challenge the authority of bifurcating phylogenetic trees. In this study, we re-evaluated the phylogenetic backbone of the genus Corylus based on complete taxon sampling and genomic data. We assembled 581 single-copy nuclear genes and whole plastomes from 64 genome resequencing datasets to elucidate the reticulate relationships within Corylus. Nuclear coalescent and concatenation phylogenies revealed identical and fully supported backbone, clarifying the sisterhood between sect. Acanthochlamys and sect. Siphonochlamys as well as the phylogenetic position of C. fargesii and C. wangii, which have yet been addressed in previous phylogenetic studies. However, the monophyly of C. jacquemontii and C. kwechowensis and the distinction between C. ferox and C. ferox var. thibetica were not supported. Gene trees-species tree conflicts and cytonuclear discordance were identified, with multiple evidences supporting that hybridization/introgression, coupled with incomplete lineage sorting, have led to substantial phylogenetic incongruence in Corylus. Moreover, typical geographical clustering rather than strict monophyletic pattern in plastome phylogeny implies chloroplast capture within Corylus and offers evidence of cytoplasmic introgression. Overall, this study provides a robust phylogenomic backbone for Corylus and unravels that reticulate evolution can greatly shape taxonomic revision.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lisong Liang
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Weibo Xiang
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Beijing 100083, China; Rare Plants Research Institute of Yangtze River, China Three Gorges Corporation, Yichang 443133, China
| | - Qiong Wu
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lujun Wang
- Research Institute of Economic Forest Cultivation and Processing, Anhui Academy of Forestry, Hefei 230031, China
| | - Qinghua Ma
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
2
|
Xu J, Zhang H, Yang F, Zhu W, Li Q, Cao Z, Song Y, Xin P. Phylogeny of Camphora and Cinnamomum (Lauraceae) Based on Plastome and Nuclear Ribosomal DNA Data. Int J Mol Sci 2025; 26:1370. [PMID: 39941137 PMCID: PMC11818869 DOI: 10.3390/ijms26031370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Camphora Fabr. is a genus in the family Lauraceae, comprising over 20 tropical and subtropical tree species. Since the genera Camphora and Cinnamomum Schaeff. were described, there has been a long-lasting controversy regarding the phylogenetic relationships among taxa in both genera. In particular, phylogenetic inferences derived from plastid data remain debated, with varying hypotheses proposed and occasional disputes concerning the monophyly of Camphora taxa. To further investigate the relationships, We analyzed plastomes and nuclear ribosomal cistron sequences (nrDNA) of 22 Camphora taxa, 15 Cinnamomum taxa, and 13 representative taxa of related genera. The Camphora plastomes range from 152,745 to 154,190 bp, with a GC content of 39.1% to 39.2%. A total of 128 genes were identified in the Camphora plastomes, including 84 protein-coding genes, 8 rRNA genes, and 36 tRNA genes. A total of 1130 SSR loci were detected from plastomes of Camphora, and A/T base repeats looked like the most common. Comparative analyses revealed that the plastomes of Camphora exhibit high similarity in overall structure. The loci ycf1, ycf2, trnK (UUU), psbJ-psbL, and ccsA-ndhD were identified as candidate DNA barcodes for these taxa. Plastome phylogenetic analysis revealed that Camphora is not monophyletic, whereas the nrDNA dataset supported the monophyly of Camphora. We propose that intergeneric hybridization may underlie the observed discordance between plastid and nuclear data in Camphora, and we recommend enhanced taxonomic sampling and precise species identification to improve phylogenetic resolution and accuracy.
Collapse
Affiliation(s)
- Jian Xu
- Engineering Technology Research Center of National Forestry and Grassland Administration on Southwest Landscape Architecture, Southwest Forestry University, Kunming 650224, China; (J.X.); (H.Z.); (F.Y.); (W.Z.); (Q.L.); (Z.C.)
| | - Haorong Zhang
- Engineering Technology Research Center of National Forestry and Grassland Administration on Southwest Landscape Architecture, Southwest Forestry University, Kunming 650224, China; (J.X.); (H.Z.); (F.Y.); (W.Z.); (Q.L.); (Z.C.)
| | - Fan Yang
- Engineering Technology Research Center of National Forestry and Grassland Administration on Southwest Landscape Architecture, Southwest Forestry University, Kunming 650224, China; (J.X.); (H.Z.); (F.Y.); (W.Z.); (Q.L.); (Z.C.)
| | - Wen Zhu
- Engineering Technology Research Center of National Forestry and Grassland Administration on Southwest Landscape Architecture, Southwest Forestry University, Kunming 650224, China; (J.X.); (H.Z.); (F.Y.); (W.Z.); (Q.L.); (Z.C.)
| | - Qishao Li
- Engineering Technology Research Center of National Forestry and Grassland Administration on Southwest Landscape Architecture, Southwest Forestry University, Kunming 650224, China; (J.X.); (H.Z.); (F.Y.); (W.Z.); (Q.L.); (Z.C.)
| | - Zhengying Cao
- Engineering Technology Research Center of National Forestry and Grassland Administration on Southwest Landscape Architecture, Southwest Forestry University, Kunming 650224, China; (J.X.); (H.Z.); (F.Y.); (W.Z.); (Q.L.); (Z.C.)
| | - Yu Song
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin 541001, China
| | - Peiyao Xin
- Engineering Technology Research Center of National Forestry and Grassland Administration on Southwest Landscape Architecture, Southwest Forestry University, Kunming 650224, China; (J.X.); (H.Z.); (F.Y.); (W.Z.); (Q.L.); (Z.C.)
| |
Collapse
|
3
|
Wojahn JMA, Callmander MW, Buerki S. Pandanus plastomes decoded: When climate mirrors morphology and phylogenetic relationships. AMERICAN JOURNAL OF BOTANY 2025; 112:e16461. [PMID: 39887358 DOI: 10.1002/ajb2.16461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 02/01/2025]
Abstract
PREMISE Pandanus Parkinson (Pandanaceae) is a large genus of paleotropical tree-like monocots. Previous studies using small DNA regions questioned the monophyly of the seven Pandanus subgenera, but low phylogenetic branch support hindered further investigations. We aimed to (1) test Pandanus subgeneric monophyly, (2) identify clade morphological synapomorphies, (3) investigate correlations between leaf anatomy of water storage tissue and climatic differentiation across clades, and (4) construct hypotheses on the genus' spatiotemporal history. METHODS We sequenced 50 Pandanus species using genome skimming and reconstructed plastomes with MITObim. We inferred partitioned RAxML phylogenetic trees to test subgeneric monophyly using Shimodaira-Hasegawa tests. We inferred a partitioned dated BEAST phylogenetic tree used for ancestral state reconstructions of morphological traits. Phylogenetic clades were used to compare climatic (Bioclim) and soil (UNESCO Digital Soil Map) conditions using random forests. We correlated present morphology and climatic niche with past climate events. RESULTS Our phylogenetic analyses revealed two clades and four subclades. Only subgenus Coronata was monophyletic. Staminate synapomorphies were identified for three subclades. Hypertrophied and hyperplasic water-storage tissue was a synapomorphy for clade II, correlating with more seasonal temperature and precipitation regimes and more well-draining soil. Clades differentiated during the advent of the Southeast Asian monsoon in the early Miocene, whereas subclades differentiated during the Miocene Thermal Maximum. CONCLUSIONS Pandanus subgeneric classification needs to be revised. Hypertrophied hyperplasic water-storage tissue is a key trait in Pandanus evolution, possibly explaining climatic and biogeographic patterns because it is key to maintaining photosynthesis during periods of hydric stress.
Collapse
Affiliation(s)
- John M A Wojahn
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, 83725, ID, USA
| | - Martin W Callmander
- Conservatoire et Jardin botaniques de Genève, CP 71, 1292, Chambésy, Switzerland
| | - Sven Buerki
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, 83725, ID, USA
| |
Collapse
|
4
|
Jiang LQ, Drew BT, Arthan W, Yu GY, Wu H, Zhao Y, Peng H, Xiang CL. Comparative plastome analysis of Arundinelleae (Poaceae, Panicoideae), with implications for phylogenetic relationships and plastome evolution. BMC Genomics 2024; 25:1016. [PMID: 39478489 PMCID: PMC11523875 DOI: 10.1186/s12864-024-10871-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Arundinelleae is a small tribe within the Poaceae (grass family) possessing a widespread distribution that includes Asia, the Americas, and Africa. Several species of Arundinelleae are used as natural forage, feed, and raw materials for paper. The tribe is taxonomically cumbersome due to a paucity of clear diagnostic morphological characters. There has been scant genetic and genomic research conducted for this group, and as a result the phylogenetic relationships and species boundaries within Arundinelleae are poorly understood. RESULTS We compared and analyzed 11 plastomes of Arundinelleae, of which seven plastomes were newly sequenced. The plastomes range from 139,629 base pairs (bp) (Garnotia tenella) to 140,943 bp (Arundinella barbinodis), with a standard four-part structure. The average GC content was 38.39%, but varied in different regions of the plastome. In all, 110 genes were annotated, comprising 76 protein-coding genes, 30 tRNA genes, and four rRNA genes. Furthermore, 539 simple sequence repeats, 519 long repeats, and 10 hyper-variable regions were identified from the 11 plastomes of Arundinelleae. A phylogenetic reconstruction of Panicoideae based on 98 plastomes demonstrated the monophyly of Arundinella and Garnotia, but the circumscription of Arundinelleae remains unresolved. CONCLUSION Complete chloroplast genome sequences can improve phylogenetic resolution relative to single marker approaches, particularly within taxonomically challenging groups. All phylogenetic analyses strongly support the monophyly of Arundinella and Garnotia, respectively, but the monophylly of Arundinelleae was not well supported. The intergeneric phylogenetic relationships within Arundinelleae require clarification, indicating that more data is necessary to resolve generic boundaries and evaluate the monophyly of Arundinelleae. A comprehensive taxonomic revision for the tribe is necessary. In addition, the identified hyper-variable regions could function as molecular markers for clarifying phylogenetic relationships and potentially as barcoding markers for species identification in the future.
Collapse
Affiliation(s)
- Li-Qiong Jiang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Bryan T Drew
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, United States of America
| | - Watchara Arthan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Guo-Ying Yu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Hong Wu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Zhao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Hua Peng
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| | - Chun-Lei Xiang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
5
|
Wang Y, Wu X, Chen Y, Xu C, Wang Y, Wang Q. Phylogenomic analyses revealed widely occurring hybridization events across Elsholtzieae (Lamiaceae). Mol Phylogenet Evol 2024; 198:108112. [PMID: 38806075 DOI: 10.1016/j.ympev.2024.108112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Obtaining a robust phylogeny proves challenging due to the intricate evolutionary history of species, where processes such as hybridization and incomplete lineage sorting can introduce conflicting signals, thereby complicating phylogenetic inference. In this study, we conducted comprehensive sampling of Elsholtzieae, with a particular focus on its largest genus, Elsholtzia. We utilized 503 nuclear loci and complete plastome sequences obtained from 99 whole-genome sequencing datasets to elucidate the interspecific relationships within the Elsholtzieae. Additionally, we explored various sources of conflicts between gene trees and species trees. Fully supported backbone phylogenies were recovered, and the monophyly of Elsholtzia and Keiskea was not supported. Significant gene tree heterogeneity was observed at numerous nodes, particularly regarding the placement of Vuhuangia and the E. densa clade. Further investigations into potential causes of this discordance revealed that incomplete lineage sorting (ILS), coupled with hybridization events, has given rise to substantial gene tree discordance. Several species, represented by multiple samples, exhibited a closer association with geographical distribution rather than following a strictly monophyletic pattern in plastid trees, suggesting chloroplast capture within Elsholtzieae and providing evidence of hybridization. In conclusion, this study provides phylogenomic insights to untangle taxonomic problems in the tribe Elsholtzieae, especially the genus Elsholtzia.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuexue Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyi Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yinghui Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Alenazi AS, Pereira L, Christin PA, Osborne CP, Dunning LT. Identifying genomic regions associated with C 4 photosynthetic activity and leaf anatomy in Alloteropsis semialata. THE NEW PHYTOLOGIST 2024; 243:1698-1710. [PMID: 38953386 DOI: 10.1111/nph.19933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
C4 photosynthesis is a complex trait requiring multiple developmental and metabolic alterations. Despite this complexity, it has independently evolved over 60 times. However, our understanding of the transition to C4 is complicated by the fact that variation in photosynthetic type is usually segregated between species that diverged a long time ago. Here, we perform a genome-wide association study (GWAS) using the grass Alloteropsis semialata, the only known species to have C3, intermediate, and C4 accessions that recently diverged. We aimed to identify genomic regions associated with the strength of the C4 cycle (measured using δ13C), and the development of C4 leaf anatomy. Genomic regions correlated with δ13C include regulators of C4 decarboxylation enzymes (RIPK), nonphotochemical quenching (SOQ1), and the development of Kranz anatomy (SCARECROW-LIKE). Regions associated with the development of C4 leaf anatomy in the intermediate individuals contain additional leaf anatomy regulators, including those responsible for vein patterning (GSL8) and meristem determinacy (GIF1). The parallel recruitment of paralogous leaf anatomy regulators between A. semialata and other C4 lineages implies the co-option of these genes is context-dependent, which likely has implications for the engineering of the C4 trait into C3 species.
Collapse
Affiliation(s)
- Ahmed S Alenazi
- Department of Biological Sciences, College of Science, Northern Border University, Arar, 91431, Saudi Arabia
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Lara Pereira
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Pascal-Antoine Christin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Colin P Osborne
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Luke T Dunning
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
7
|
Olofsson JK, Tyler T, Dunning LT, Hjertson M, Rühling Å, Hansen AJ. Morphological and genetic evidence suggest gene flow among native and naturalized mint species. AMERICAN JOURNAL OF BOTANY 2024; 111:e16280. [PMID: 38334273 DOI: 10.1002/ajb2.16280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 02/10/2024]
Abstract
PREMISE Cultivation and naturalization of plants beyond their natural range can bring previously geographically isolated taxa together, increasing the opportunity for hybridization, the outcomes of which are not predictable. Here, we explored the phenotypic and genomic effects of interspecific gene flow following the widespread cultivation of Mentha spicata (spearmint), M. longifolia, and M. suaveolens. METHODS We morphologically evaluated 155 herbarium specimens of three Mentha species and sequenced the genomes of a subset of 93 specimens. We analyzed the whole genomes in a population and the phylogenetic framework and associated genomic classifications in conjunction with the morphological assessments. RESULTS The allopolyploid M. spicata, which likely evolved in cultivation, had altered trichome characters, that is possibly a product of human selection for a more palatable plant or a byproduct of selection for essential oils. There were signs of genetic admixture between mints, including allopolyploids, indicating that the reproductive barriers between Mentha species with differences in ploidy are likely incomplete. Still, despite gene flow between species, we found that genetic variants associated with the cultivated trichome morphology continue to segregate. CONCLUSIONS Although hybridization, allopolyploidization, and human selection during cultivation can increase species richness (e.g., by forming hybrid taxa), we showed that unless reproductive barriers are strong, these processes can also result in mixing of genes between species and the potential loss of natural biodiversity.
Collapse
Affiliation(s)
- Jill K Olofsson
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, DK-1350, Denmark
| | - Torbjörn Tyler
- Department of Biology, The Biological Museum, Lund University, Box 117, SE-221 00, Lund, Sweden
| | - Luke T Dunning
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, Western Bank, UK
| | - Mats Hjertson
- Museum of Evolution, Botany, Uppsala University, Norbyvägen 16, SE-752 36, Uppsala, Sweden
| | - Åke Rühling
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, Western Bank, UK
- Biological Museum, Gyllings väg 9, SE-572 36 Oskarshamn, Sverige
| | - Anders J Hansen
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, DK-1350, Denmark
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Øster Farimagsgade 5, Copenhagen K, 1353, Denmark
| |
Collapse
|
8
|
Qin HT, Mӧller M, Milne R, Luo YH, Zhu GF, Li DZ, Liu J, Gao LM. Multiple paternally inherited chloroplast capture events associated with Taxus speciation in the Hengduan Mountains. Mol Phylogenet Evol 2023; 189:107915. [PMID: 37666379 DOI: 10.1016/j.ympev.2023.107915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/16/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Mountainous regions provide a multitude of habitats and opportunities for complex speciation scenarios. Hybridization leading to chloroplast capture, which can be revealed by incongruent phylogenetic trees, is one possible outcome. Four allopatric Taxus lineages (three species and an undescribed lineage) from the Hengduan Mountains, southwest China, exhibit conflicting phylogenetic relationships between nuclear and chloroplast phylogenies. Here, we use multi-omic data at the population level to investigate their historical speciation processes. Population genomic analysis based on ddRAD-seq data revealed limited contemporary inter-specific gene flow involving only populations located close to another species. In a historical context, chloroplast and nuclear data (transcriptome) consistently showed conflicting phylogenetic relationships for T. florinii and the Emei type lineage. ILS and chloroplast recombination were excluded as possible causes, and transcriptome and ddRAD-seq data revealed an absence of the mosaic nuclear genomes that characterize hybrid origin scenarios. Therefore, T. florinii appears to have originated when a lineage of T. florinii captured the T. chinensis plastid type, whereas plastid introgression in the opposite direction generated the Emei Type. All four species have distinct ecological niche based on community investigations and ecological niche analyses. We propose that the origins of both species represent very rare examples of chloroplast capture events despite the paternal cpDNA inheritance of gymnosperms. Specifically, allopatrically and/or ecologically diverged parental species experienced a rare secondary contact, subsequent hybridization and reciprocal chloroplast capture, generating two new lineages, each of which acquired a unique ecological niche. These events might have been triggered by orogenic activities of the Hengduan Mountains and an intensification of the Asian monsoon in the late Miocene, and may represent a scenario more common in these mountains than presently known.
Collapse
Affiliation(s)
- Han-Tao Qin
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Michael Mӧller
- Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, United Kingdom
| | - Richard Milne
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, United Kingdom
| | - Ya-Huang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang 674100, Yunnan, China
| | - Guang-Fu Zhu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - De-Zhu Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing 100049, China; Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang 674100, Yunnan, China.
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang 674100, Yunnan, China.
| |
Collapse
|
9
|
Wan T, Qiao BX, Zhou J, Shao KS, Pan LY, An F, He XS, Liu T, Li PK, Cai YL. Evolutionary and phylogenetic analyses of 11 Cerasus species based on the complete chloroplast genome. FRONTIERS IN PLANT SCIENCE 2023; 14:1070600. [PMID: 36938043 PMCID: PMC10022824 DOI: 10.3389/fpls.2023.1070600] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The subgenus Cerasus, one of the most important groups in the genus Prunus sensu lato, comprises over 100 species; however, the taxonomic classification and phylogenetic relationships of Cerasus remain controversial. Therefore, it is necessary to reconstruct the phylogenetic tree for known Cerasus species. Here, we report the chloroplast (cp) genome sequences of 11 Cerasus species to provide insight into evolution of the plastome. The cp genomes of the 11 Cerasus species (157,571-158,830 bp) displayed a typical quadripartite circular structure. The plastomes contain 115 unique genes, including 80 protein-coding genes, four ribosomal RNAs, and 31 transfer RNAs. Twenty genes were found to be duplicated in inverted repeats as well as at the boundary. The conserved non-coding sequences showed significant divergence compared with the coding regions. We found 12 genes and 14 intergenic regions with higher nucleotide diversity and more polymorphic sites, including matK, rps16, rbcL, rps16-trnQ, petN-psbM, and trnL-trnF. During cp plastome evolution, the codon profile has been strongly biased toward the use of A/T at the third base, and leucine and isoleucine codons appear the most frequently. We identified strong purifying selection on the rpoA, cemA, atpA, and petB genes; whereas ccsA, rps19, matK, rpoC2, ycf2 and ndhI showed a signature of possible positive selection during the course of Cerasus evolution. In addition, we further analyzed the phylogenetic relationships of these species with 57 other congenic related species.Through reconstructing the Cerasus phylogeny tree, we found that true cherry is similar to the flora of China forming a distinct group, from which P. mahaleb was separated as an independent subclade. Microcerasus was genetically closer to Amygdalus, Armeniaca, and Prunus (sensu stricto) than to members of true cherry, whereas P. japonica and P. tomentosa were most closely related to P. triloba and P. pedunculata. However, P. tianshanica formed a clade with P. cerasus, P. fruticosa, P. cerasus × P. canescens 'Gisela 6', and P. avium as a true cherry group. These results provide new insights into the plastome evolution of Cerasus, along with potential molecular markers and candidate DNA barcodes for further phylogenetic and phylogeographic analyses of Cerasus species.
Collapse
Affiliation(s)
- Tian Wan
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - Bai-xue Qiao
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - Jing Zhou
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - Ke-sen Shao
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - Liu-yi Pan
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - Feng An
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - Xu-sheng He
- College of Natural Resources and Environment, Northwest Agriculture & Forestry University, Yangling, China
| | - Tao Liu
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| | - Ping-ke Li
- Center of Experimental Station, Northwest Agriculture & Forestry University, Yangling, China
| | - Yu-liang Cai
- College of Horticulture, Northwest Agriculture & Forestry University, Yangling, China
| |
Collapse
|