1
|
Gutiérrez-Valencia J, Zervakis PI, Postel Z, Fracassetti M, Losvik A, Mehrabi S, Bunikis I, Soler L, Hughes PW, Désamoré A, Laenen B, Abdelaziz M, Pettersson OV, Arroyo J, Slotte T. Genetic Causes and Genomic Consequences of Breakdown of Distyly in Linum trigynum. Mol Biol Evol 2024; 41:msae087. [PMID: 38709782 PMCID: PMC11114476 DOI: 10.1093/molbev/msae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/22/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
Distyly is an iconic floral polymorphism governed by a supergene, which promotes efficient pollen transfer and outcrossing through reciprocal differences in the position of sexual organs in flowers, often coupled with heteromorphic self-incompatibility. Distyly has evolved convergently in multiple flowering plant lineages, but has also broken down repeatedly, often resulting in homostylous, self-compatible populations with elevated rates of self-fertilization. Here, we aimed to study the genetic causes and genomic consequences of the shift to homostyly in Linum trigynum, which is closely related to distylous Linum tenue. Building on a high-quality genome assembly, we show that L. trigynum harbors a genomic region homologous to the dominant haplotype of the distyly supergene conferring long stamens and short styles in L. tenue, suggesting that loss of distyly first occurred in a short-styled individual. In contrast to homostylous Primula and Fagopyrum, L. trigynum harbors no fixed loss-of-function mutations in coding sequences of S-linked distyly candidate genes. Instead, floral gene expression analyses and controlled crosses suggest that mutations downregulating the S-linked LtWDR-44 candidate gene for male self-incompatibility and/or anther height could underlie homostyly and self-compatibility in L. trigynum. Population genomic analyses of 224 whole-genome sequences further demonstrate that L. trigynum is highly self-fertilizing, exhibits significantly lower genetic diversity genome-wide, and is experiencing relaxed purifying selection and less frequent positive selection on nonsynonymous mutations relative to L. tenue. Our analyses shed light on the loss of distyly in L. trigynum, and advance our understanding of a common evolutionary transition in flowering plants.
Collapse
Affiliation(s)
- Juanita Gutiérrez-Valencia
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Panagiotis-Ioannis Zervakis
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Zoé Postel
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Marco Fracassetti
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Aleksandra Losvik
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Sara Mehrabi
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Ignas Bunikis
- Department of Immunology, Genetics and Pathology, Uppsala Genome Center, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucile Soler
- Department of Medical Biochemistry and Microbiology, Uppsala University, National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - P William Hughes
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Aurélie Désamoré
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Benjamin Laenen
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | | | - Olga Vinnere Pettersson
- Department of Immunology, Genetics and Pathology, Uppsala Genome Center, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Juan Arroyo
- Department of Plant Biology and Ecology, University of Seville, Seville, Spain
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
2
|
Zeng ZH, Zhong L, Sun HY, Wu ZK, Wang X, Wang H, Li DZ, Barrett SCH, Zhou W. Parallel evolution of morphological and genomic selfing syndromes accompany the breakdown of heterostyly. THE NEW PHYTOLOGIST 2024; 242:302-316. [PMID: 38214455 DOI: 10.1111/nph.19522] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Evolutionary transitions from outcrossing to selfing in flowering plants have convergent morphological and genomic signatures and can involve parallel evolution within related lineages. Adaptive evolution of morphological traits is often assumed to evolve faster than nonadaptive features of the genomic selfing syndrome. We investigated phenotypic and genomic changes associated with transitions from distyly to homostyly in the Primula oreodoxa complex. We determined whether the transition to selfing occurred more than once and investigated stages in the evolution of morphological and genomic selfing syndromes using 22 floral traits and both nuclear and plastid genomic data from 25 populations. Two independent transitions were detected representing an earlier and a more recently derived selfing lineage. The older lineage exhibited classic features of the morphological and genomic selfing syndrome. Although features of both selfing syndromes were less developed in the younger selfing lineage, they exhibited parallel development with the older selfing lineage. This finding contrasts with the prediction that some genomic changes should lag behind adaptive changes to morphological traits. Our findings highlight the value of comparative studies on the timing and extent of transitions from outcrossing to selfing between related lineages for investigating the tempo of morphological and molecular evolution.
Collapse
Affiliation(s)
- Zhi-Hua Zeng
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhong
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua-Ying Sun
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Zhi-Kun Wu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550002, China
| | - Xin Wang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Hong Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Wei Zhou
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, Yunnan, 674100, China
| |
Collapse
|
3
|
Xia C, Zuo Y, Xue T, Kang M, Zhang H, Zhang X, Wang B, Zhang J, Deng H. The genetic structure and demographic history revealed by whole-genome resequencing provide insights into conservation of critically endangered Artocarpus nanchuanensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1224308. [PMID: 37575939 PMCID: PMC10415164 DOI: 10.3389/fpls.2023.1224308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023]
Abstract
Introduction Whole-genome resequencing technology covers almost all nucleotide variations in the genome, which makes it possible to carry out conservation genomics research on endangered species at the whole-genome level. Methods In this study, based on the whole-genome resequencing data of 101 critically endangered Artocarpus nanchuanensis individuals, we evaluated the genetic diversity and population structure, inferred the demographic history and genetic load, predicted the potential distributions in the past, present and future, and classified conservation units to propose targeted suggestions for the conservation of this critically endangered species. Results Whole-genome resequencing for A. nanchuanensis generated approximately 2 Tb of data. Based on abundant mutation sites (25,312,571 single nucleotide polymorphisms sites), we revealed that the average genetic diversity (nucleotide diversity, π) of different populations of A. nanchuanensis was relatively low compared with other trees that have been studied. And we also revealed that the NHZ and QJT populations harboured unique genetic backgrounds and were significantly separated from the other five populations. In addition, positive genetic selective signals, significantly enriched in biological processes related to terpene synthesis, were identified in the NHZ population. The analysis of demographic history of A. nanchuanensis revealed the existence of three genetic bottleneck events. Moreover, abundant genetic loads (48.56% protein-coding genes) were identified in Artocarpus nanchuanensis, especially in genes related to early development and immune function of plants. The predication analysis of suitable habitat areas indicated that the past suitable habitat areas shifted from the north to the south due to global temperature decline. However, in the future, the actual distribution area of A. nanchuanensis will still maintain high suitability. Discussion Based on total analyses, we divided the populations of A. nanchuanensis into four conservation units and proposed a number of practical management suggestions for each conservation unit. Overall, our study provides meaningful guidance for the protection of A. nanchuanensis and important insight into conservation genomics research.
Collapse
Affiliation(s)
- Changying Xia
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Youwei Zuo
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Tiantian Xue
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Huan Zhang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiaoxia Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Binru Wang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Jiabin Zhang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Hongping Deng
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Low Carbon and Ecological Environment Protection Research Center, Chongqing Academy of Science and Technology, Chongqing, China
| |
Collapse
|
4
|
Zhang Y, Zhang J, Zou S, Liu Z, Huang H, Feng C. Genome-wide analysis of the cellulose toolbox of Primulina eburnea, a calcium-rich vegetable. BMC PLANT BIOLOGY 2023; 23:259. [PMID: 37189063 DOI: 10.1186/s12870-023-04266-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Human-guided crop domestication has lasted for more than 10,000 years. In terms of the domestication and breeding of vegetables, cellulose content in edible tissues is one of the most important traits. Primulina eburnea is a recently developed calcium-rich vegetable with a high soluble and bioavailable calcium content in its leaves. However, the high cellulose content in the leaves hampers the taste, and no research has been reported on the genetic basis of cellulose biosynthesis in this calcium-rich vegetable. RESULTS We identified 36 cellulose biosynthesis-involved genes belonging to eight gene families in the P. eburnea genome. The cellulose accumulated decreasingly throughout leaf development. Nineteen genes were considered core genes in cellulose biosynthesis, which were highly expressed in buds but lowly expressed in mature leaves. In the nitrogen fertilization experiment, exogenous nitrogen decreased the cellulose content in the buds. The expressing pattern of 14 genes were consistent with phenotypic variation in the nitrogen fertilization experiment, and thus they were proposed as cellulose toolbox genes. CONCLUSIONS The present study provides a strong basis for the subsequent functional research of cellulose biosynthesis-involved genes in P. eburnea, and provides a reference for breeding and/or engineering this calcium-rich vegetable with decreased leaf cellulose content to improve the taste.
Collapse
Affiliation(s)
- Yi Zhang
- College of Life Science, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, No. 9, Zhiqing Rd, Jiujiang, 332900, Jiangxi, China
| | - Jie Zhang
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, No. 9, Zhiqing Rd, Jiujiang, 332900, Jiangxi, China
| | - Shuaiyu Zou
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, No. 9, Zhiqing Rd, Jiujiang, 332900, Jiangxi, China
| | - Ziwei Liu
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, No. 9, Zhiqing Rd, Jiujiang, 332900, Jiangxi, China
| | - Hongwen Huang
- College of Life Science, Nanchang University, Nanchang, China.
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, No. 9, Zhiqing Rd, Jiujiang, 332900, Jiangxi, China.
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Chen Feng
- College of Life Science, Nanchang University, Nanchang, China.
- Jiangxi Provincial Key Laboratory of ex situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, No. 9, Zhiqing Rd, Jiujiang, 332900, Jiangxi, China.
| |
Collapse
|
5
|
Zhang X, Comes HP, Qiu Y. Did Late Quaternary climate change trigger shifts in mating system in temperate plant species of the Sino-Japanese Floristic Region? A commentary on 'Genetic and demographic signatures accompanying the evolution of the selfing syndrome in Daphne kiusiana, an evergreen shrub'. ANNALS OF BOTANY 2023; 131:iii-v. [PMID: 36869730 PMCID: PMC10184437 DOI: 10.1093/aob/mcad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This article comments on:
Eun-Kyeong Han, Ichiro Tamaki, Sang-Hun Oh, Jong-Soo Park, Won-Bum Cho, Dong-Pil Jin, Bo-Yun Kim, Sungyu Yang, Dong Chan Son, Hyeok-Jae Choi, Amarsanaa Gantsetseg, Yuji Isagi, and Jung-Hyun Lee. Genetic and demographic signatures accompanying the evolution of the selfing syndrome in Daphne kiusiana, an evergreen shrub, Annals of Botany, Volume 131, Issue 5, 11 April 2023, Pages 751–767, https://doi.org/10.1093/aob/mcac142
Collapse
Affiliation(s)
- Xinyi Zhang
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Systematic & Evolutionary Botany and Biodiversity Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hans Peter Comes
- Department of Environment & Biodiversity, Salzburg University, Salzburg, Austria
| | - Yingxiong Qiu
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| |
Collapse
|
6
|
Further Mining and Characterization of miRNA Resource in Chinese Fir (Cunninghamia lanceolata). Genes (Basel) 2022; 13:genes13112137. [DOI: 10.3390/genes13112137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
In this study, we aimed to expand the current miRNA data bank of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) regarding its potential value for further genetic and genomic use in this species. High-throughput small RNA sequencing successfully captured 140 miRNAs from a Chinese fir selfing family harboring vigor and depressed progeny. Strikingly, 75.7% (n = 106) of these miRNAs have not been documented previously, and most (n = 105) of them belong to the novel set with 6858 putative target genes. The new datasets were then integrated with the previous information to gain insight into miRNA genetic architecture in Chinese fir. Collectively, a relatively high proportion (62%, n = 110) of novel miRNAs were found. Furthermore, we identified one MIR536 family that has not been previously documented in this species and four overlapped miRNA families (MIR159, MIR164, MIR171_1, and MIR396) from new datasets. Regarding the stability, we calculated the secondary structure free energy and found a relatively low R2 value (R2 < 0.22) between low minimal folding free energy (MFE) of pre-miRNAs and MFE of its corresponding mature miRNAs in most datasets. When in view of the conservation aspect, the phylogenetic trees showed that MIR536 and MIR159 sequences were highly conserved in gymnosperms.
Collapse
|