1
|
Wardhani K, Levina A, Grau GER, Lay PA. Fluorescent, phosphorescent, magnetic resonance contrast and radioactive tracer labelling of extracellular vesicles. Chem Soc Rev 2024; 53:6779-6829. [PMID: 38828885 DOI: 10.1039/d2cs00238h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This review focusses on the significance of fluorescent, phosphorescent labelling and tracking of extracellular vesicles (EVs) for unravelling their biology, pathophysiology, and potential diagnostic and therapeutic uses. Various labeling strategies, such as lipid membrane, surface protein, luminal, nucleic acid, radionuclide, quantum dot labels, and metal complex-based stains, are evaluated for visualizing and characterizing EVs. Direct labelling with fluorescent lipophilic dyes is simple but generally lacks specificity, while surface protein labelling offers selectivity but may affect EV-cell interactions. Luminal and nucleic acid labelling strategies have their own advantages and challenges. Each labelling approach has strengths and weaknesses, which require a suitable probe and technique based on research goals, but new tetranuclear polypyridylruthenium(II) complexes as phosphorescent probes have strong phosphorescence, selective staining, and stability. Future research should prioritize the design of novel fluorescent probes and labelling platforms that can significantly enhance the efficiency, accuracy, and specificity of EV labeling, while preserving their composition and functionality. It is crucial to reduce false positive signals and explore the potential of multimodal imaging techniques to gain comprehensive insights into EVs.
Collapse
Affiliation(s)
- Kartika Wardhani
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Biochemistry and Biotechnology (B-TEK) Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Georges E R Grau
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
2
|
Wardhani K, Levina A, Sun B, Zou H, Grau GER, Keene FR, Collins JG, Lay PA. Tetranuclear Polypyridylruthenium(II) Complexes as Selective Nucleic Acid Stains for Flow Cytometric Analysis of Monocytic and Epithelial Lung Carcinoma Large Extracellular Vesicles. Biomolecules 2024; 14:664. [PMID: 38927067 PMCID: PMC11202172 DOI: 10.3390/biom14060664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Selective staining of extracellular vesicles (EVs) is a major challenge for diagnostic and therapeutic applications. Herein, the EV labeling properties of a new class of tetranuclear polypyridylruthenium(II) complexes, Rubb7-TNL and Rubb7-TL, as phosphorescent stains are described. These new stains have many advantages over standard stains to detect and characterize EVs, including: high specificity for EV staining versus cell staining; high phosphorescence yields; photostability; and a lack of leaching from EVs until incorporation with target cells. As an example of their utility, large EVs released from control (basal) or lipopolysaccharide (LPS)-stimulated THP-1 monocytic leukemia cells were studied as a model of immune system EVs released during bacterial infection. Key findings from EV staining combined with flow cytometry were as follows: (i) LPS-stimulated THP-1 cells generated significantly larger and more numerous large EVs, as compared with those from unstimulated cells; (ii) EVs retained native EV physical properties after staining; and (iii) the new stains selectively differentiated intact large EVs from artificial liposomes, which are models of cell membrane fragments or other lipid-containing debris, as well as distinguished two distinct subpopulations of monocytic EVs within the same experiment, as a result of biochemical differences between unstimulated and LPS-stimulated monocytes. Comparatively, the staining patterns of A549 epithelial lung carcinoma-derived EVs closely resembled those of THP-1 cell line-derived EVs, which highlighted similarities in their selective staining despite their distinct cellular origins. This is consistent with the hypothesis that these new phosphorescent stains target RNA within the EVs.
Collapse
Affiliation(s)
- Kartika Wardhani
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; (K.W.); (H.Z.)
- Biochemistry and Biotechnology (B-TEK) Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; (K.W.); (H.Z.)
| | - Biyun Sun
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| | - Haipei Zou
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; (K.W.); (H.Z.)
| | - Georges E. R. Grau
- Sydney Nano, The University of Sydney, Sydney, NSW 2006, Australia;
- Sydney Cancer Network, The University of Sydney, Sydney, NSW 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, NSW 2006, Australia
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - F. Richard Keene
- Discipline of Chemistry, School of Physics, Chemistry, and Earth Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Australian Institute of Tropical Health and Medicine/Centre for Molecular Therapeutics, James Cook University, Townsville, QLD 4811, Australia
| | - J. Grant Collins
- School of Science, The University of New South Wales, Australian Defence Force Academy, Canberra, ACT 2612, Australia;
| | - Peter A. Lay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; (K.W.); (H.Z.)
- Sydney Nano, The University of Sydney, Sydney, NSW 2006, Australia;
- Sydney Cancer Network, The University of Sydney, Sydney, NSW 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Rocco E, Grimaldi MC, Maino A, Cappannoli L, Pedicino D, Liuzzo G, Biasucci LM. Advances and Challenges in Biomarkers Use for Coronary Microvascular Dysfunction: From Bench to Clinical Practice. J Clin Med 2022; 11:2055. [PMID: 35407662 PMCID: PMC8999821 DOI: 10.3390/jcm11072055] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 02/01/2023] Open
Abstract
Coronary microvascular dysfunction (CMD) is related to a broad variety of clinical scenarios in which cardiac microvasculature is morphologically and functionally affected, and it is associated with impaired responses to vasoactive stimuli. Although the prevalence of CMD involves about half of all patients with chronic coronary syndromes and more than 20% of those with acute coronary syndrome, the diagnosis of CMD is often missed, leading to the underestimation of its clinical importance. The established and validated techniques for the measurement of coronary microvascular function are invasive and expensive. An ideal method to assess endothelial dysfunction should be accurate, non-invasive, cost-effective and accessible. There are varieties of biomarkers available, potentially involved in microvascular disease, but none have been extensively validated in this heterogeneous clinical population. The investigation of potential biomarkers linked to microvascular dysfunction might improve the assessment of the diagnosis, risk stratification, disease progression and therapy response. This review article offers an update about traditional and novel potential biomarkers linked to CMD.
Collapse
Affiliation(s)
- Erica Rocco
- Department of Medical-Surgical Sciences and Biotechnologies, Cardiology Unit, ICOT Hospital, Sapienza University of Rome, 04110 Latina, Italy;
| | - Maria Chiara Grimaldi
- Department of Cardiovascular and Pneumological Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.M.); (L.C.); (D.P.); (G.L.); (L.M.B.)
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Alessandro Maino
- Department of Cardiovascular and Pneumological Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.M.); (L.C.); (D.P.); (G.L.); (L.M.B.)
| | - Luigi Cappannoli
- Department of Cardiovascular and Pneumological Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.M.); (L.C.); (D.P.); (G.L.); (L.M.B.)
| | - Daniela Pedicino
- Department of Cardiovascular and Pneumological Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.M.); (L.C.); (D.P.); (G.L.); (L.M.B.)
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanna Liuzzo
- Department of Cardiovascular and Pneumological Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.M.); (L.C.); (D.P.); (G.L.); (L.M.B.)
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Luigi Marzio Biasucci
- Department of Cardiovascular and Pneumological Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.M.); (L.C.); (D.P.); (G.L.); (L.M.B.)
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
4
|
Steele E, Alebous HD, Vickers M, Harris ME, Johnson MD. Co-culturing experiments reveal the uptake of myo-inositol phosphate synthase (EC 5.5.1.4) in an inositol auxotroph of Saccharomyces cerevisiae. Microb Cell Fact 2021; 20:138. [PMID: 34281557 PMCID: PMC8287684 DOI: 10.1186/s12934-021-01610-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 06/08/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Myo-Inositol Phosphate Synthase (MIP) catalyzes the conversion of glucose 6- phosphate into inositol phosphate, an essential nutrient and cell signaling molecule. Data obtained, first in bovine brain and later in plants, established MIP expression in organelles and in extracellular environments. A physiological role for secreted MIP has remained elusive since its first detection in intercellular space. To provide further insight into the role of MIP in intercellular milieus, we tested the hypothesis that MIP may function as a growth factor, synthesizing inositol phosphate in intercellular locations requiring, but lacking ability to produce or transport adequate quantities of the cell-cell communicator. This idea was experimentally challenged, utilizing a Saccharomyces cerevisiae inositol auxotroph with no MIP enzyme, permeable membranes with a 0.4 µm pore size, and cellular supernatants as external sources of inositol isolated from S. cerevisiae cells containing either wild-type enzyme (Wt-MIP), no MIP enzyme, auxotroph (Aux), or a green fluorescent protein (GFP) tagged reporter enzyme (MIP- GFP) in co- culturing experiments. RESULTS Resulting cell densities and microscopic studies with corroborating biochemical and molecular analyses, documented sustained growth of Aux cells in cellular supernatant, concomitant with the uptakeof MIP, detected as MIP-GFP reporter enzyme. These findings revealed previously unknown functions, suggesting that the enzyme can: (1) move into and out of intercellular space, (2) traverse cell walls, and (3) act as a growth factor to promote cellular proliferation of an inositol requiring cell. CONCLUSIONS Co-culturing experiments, designed to test a probable function for MIP secreted in extracellular vesicles, uncovered previously unknown functions for the enzyme and advanced current knowledge concerning spatial control of inositol phosphate biosynthesis. Most importantly, resulting data identified an extracellular vesicle (a non-viral vector) that is capable of synthesizing and transporting inositol phosphate, a biological activity that can be used to enhance specificity of current inositol phosphate therapeutics.
Collapse
Affiliation(s)
- Erika Steele
- The University of Alabama, The Institute of Social Science Research, PO Box 8702161, Tuscaloosa, AL 35487 USA
| | - Hana D. Alebous
- Department of Biological Sciences, School of Science, The University of Jordan, PO Box 11942, Amman-Jordan, Jordan
| | - Macy Vickers
- Department of Biological Sciences, The University of Alabama, PO Box 870344, Tuscaloosa, AL 35487 USA
| | - Mary E. Harris
- Department of Biological Sciences, The University of Alabama, PO Box 870344, Tuscaloosa, AL 35487 USA
| | - Margaret D. Johnson
- Department of Biological Sciences, The University of Alabama, PO Box 870344, Tuscaloosa, AL 35487 USA
| |
Collapse
|
5
|
Abstract
Cerebral malaria (CM) remains a major problem of public health at the world level (Idro et al. 2010; WHO 2009), in spite of numerous efforts from various disciplines to improve our knowledge of disease mechanisms (Hunt and Grau 2003; Schofield and Grau 2005; van der Heyde et al. 2006). Our approach to a better understanding of CM pathogenesis has involved the dissection of immunopathological pathways which, in addition to direct changes caused by malaria parasite-infected erythrocytes (IE), lead to neurovascular lesions. We posited that immunopathology is important in CM because a role for cells and soluble mediators of the immune system has been widely recognised as contributing to the complications of viral, bacterial, fungal and many parasitic infections. As detailed earlier, it would be extraordinary if malaria did not conform to this general pattern. As a matter of fact, there now is strong evidence to support immune mechanisms in malarial pathogenesis (Grau and Hunt 2014).Extracellular vesicles (EV) and their subtypes have been described and reviewed by a number of investigators (Hosseini-Beheshti and Grau 2018, 2019; Raposo and Stahl 2019; Witwer et al. 2017; Zijlstra and Di Vizio 2018) and in others chapters of the present book.
Collapse
Affiliation(s)
- Georges Emile Raymond Grau
- Vascular Immunology Unit, Discipline of Pathology, School of Medical Sciences; Marie Bashir Institute and The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, Australia.
| | - Elham Hosseini-Beheshti
- Vascular Immunology Unit, Discipline of Pathology, School of Medical Sciences; Marie Bashir Institute and The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
6
|
Steinke I, Ghanei N, Govindarajulu M, Yoo S, Zhong J, Amin RH. Drug Discovery and Development of Novel Therapeutics for Inhibiting TMAO in Models of Atherosclerosis and Diabetes. Front Physiol 2020; 11:567899. [PMID: 33192565 PMCID: PMC7658318 DOI: 10.3389/fphys.2020.567899] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus exists as a comorbidity with congestive heart failure (CHF). However, the exact molecular signaling mechanism linking CHF as the major form of mortality from diabetes remains unknown. Type 2 diabetic patients display abnormally high levels of metabolic products associated with gut dysbiosis. One such metabolite, trimethylamine N-oxide (TMAO), has been observed to be directly related with increased incidence of cardiovascular diseases (CVD) in human patients. TMAO a gut-liver metabolite, comes from the metabolic degenerative product trimethylamine (TMA) that is produced from gut microbial metabolism. Elevated levels of TMAO in diabetics and obese patients are observed to have a direct correlation with increased risk for major adverse cardiovascular events. The pro-atherogenic effect of TMAO is attributed to enhancing inflammatory pathways with cholesterol and bile acid dysregulation, promoting foam cell formation. Recent studies have revealed several potential therapeutic strategies for reducing TMAO levels and will be the central focus for the current review. However, few have focused on developing rational drug therapeutics and may be due to the gaps in knowledge for understanding the mechanism by which microbial TMA producing enzymes and hepatic flavin-containing monoxygenase (FMO) can work together in preventing elevation of TMAO levels. Therefore, it is critical to understand the advantages of developing a novel rational drug design strategy that manipulates FMO production of TMAO and TMA production by microbial enzymes. This review will focus on the inspection of FMO manipulation, as well as gut microbiota dysbiosis and its influence on metabolic disorders including cardiovascular disease and describe novel potential pharmacological therapeutic development.
Collapse
Affiliation(s)
- Ian Steinke
- Drug Discovery and Development, Auburn University, Auburn, AL, United States
| | - Nila Ghanei
- Drug Discovery and Development, Auburn University, Auburn, AL, United States
| | - Manoj Govindarajulu
- Drug Discovery and Development, Auburn University, Auburn, AL, United States
| | - Sieun Yoo
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, United States
| | - Juming Zhong
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, United States
| | - Rajesh H Amin
- Drug Discovery and Development, Auburn University, Auburn, AL, United States
| |
Collapse
|
7
|
Mensah SA, Nersesyan AA, Ebong EE. Endothelial Glycocalyx-Mediated Intercellular Interactions: Mechanisms and Implications for Atherosclerosis and Cancer Metastasis. Cardiovasc Eng Technol 2020; 12:72-90. [PMID: 33000443 PMCID: PMC7904750 DOI: 10.1007/s13239-020-00487-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022]
Abstract
Purpose The endothelial glycocalyx (GCX) plays a critical role in the health of the vascular system. Degradation of the GCX has been implicated in the onset of diseases like atherosclerosis and cancer because it disrupts endothelial cell (EC) function that is meant to protect from atherosclerosis and cancer. Examples of such EC function include interendothelial cell communication via gap junctions and receptor-mediated interactions between endothelial and tumor cells. This review focuses on GCX-dependent regulation of these intercellular interactions in healthy and diseased states. The ultimate goal is to build new knowledge that can be applied to developing GCX regeneration strategies that can control intercellular interaction in order to combat the progression of diseases such as atherosclerosis and cancer. Methods In vitro and in vivo studies were conducted to determine the baseline expression of GCX in physiologically relevant conditions. Chemical and mechanical GCX degradation approaches were employed to degrade the GCX. The impact of intact versus degraded GCX on intercellular interactions was assessed using cytochemistry, histochemistry, a Lucifer yellow dye transfer assay, and confocal, intravital, and scanning electron microscopy techniques. Results Relevant to atherosclerosis, we found that GCX stability determines the expression and functionality of Cx43 in gap junction-mediated EC-to-EC communication. Relevant to cancer metastasis, we found that destabilizing the GCX through either disturbed flow-induced or enzyme induced GCX degradation results in increased E-selectin receptor-mediated EC-tumor cell interactions. Conclusion Our findings lay a foundation for future endothelial GCX-targeted therapy, to control intercellular interactions and limit the progression of atherosclerosis and cancer.
Collapse
Affiliation(s)
- Solomon A Mensah
- Department of Bioengineering, Northeastern University, Boston, MA, USA.,Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Alina A Nersesyan
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Eno E Ebong
- Department of Bioengineering, Northeastern University, Boston, MA, USA. .,Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 335 Interdisciplinary Science and Engineering Complex, Boston, MA, 02115, USA. .,Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Biessels GJ, Nobili F, Teunissen CE, Simó R, Scheltens P. Understanding multifactorial brain changes in type 2 diabetes: a biomarker perspective. Lancet Neurol 2020; 19:699-710. [PMID: 32445622 DOI: 10.1016/s1474-4422(20)30139-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/20/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022]
Abstract
People with type 2 diabetes are at an increased risk of cognitive impairment and dementia (including Alzheimer's disease), as well as subtle forms of cognitive dysfunction. Current diabetes guidelines recommend screening for cognitive impairment in groups at high risk and providing guidance for diabetes management in patients with diabetes and cognitive impairment. Yet, no disease-modifying treatment is available and important questions remain about the mechanisms underlying diabetes-associated cognitive dysfunction. These mechanisms are likely to be multifactorial and different for subtle and more severe forms of diabetes-associated cognitive dysfunction. Over the past years, research on dementia, brain ageing, diabetes, and vascular disease has identified novel biomarkers of specific dementia aetiologies, brain parenchymal injury, and cerebral blood flow and metabolism. These markers shed light on the processes underlying diabetes-associated cognitive dysfunction, have clear applications in current research and increasingly in clinical diagnosis, and might ultimately guide targeted treatment.
Collapse
Affiliation(s)
- Geert Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands.
| | - Flavio Nobili
- Department of Neuroscience, Ophthalmology, Genetics, and Child and Mother Health, University of Genoa, Genoa, Italy; Clinical Neurology Unit, IRCSS Ospedale Policlinico San Martino, Genoa, Italy
| | - Charlotte E Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam, Netherlands
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Philip Scheltens
- Department of Neurology and Alzheimer Center, VU University Medical Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
9
|
Ahmadzada T, Kao S, Reid G, Clarke S, Grau GE, Hosseini-Beheshti E. Extracellular vesicles as biomarkers in malignant pleural mesothelioma: A review. Crit Rev Oncol Hematol 2020; 150:102949. [PMID: 32330840 DOI: 10.1016/j.critrevonc.2020.102949] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EV) are secreted by all cells, including cancer cells, as a mode of intercellular transport and communication. The main types of EV known to date include exosomes, microvesicles and apoptotic bodies, as well as oncosomes and large oncosomes, which are specific to cancer cells. These different EV populations carry specific cargo from one cell to another to stimulate a specific response. They can be found in all body fluids and can be detected in liquid biopsies. EV released from mesothelioma cells can reveal important information about the molecules and signalling pathways involved in the development and progression of the tumour. The presence of tumour-derived EV in circulating body fluids makes them potential novel biomarkers for early diagnosis, prognostication and surveillance of cancer. In this review, we explore the characteristics and functional roles of EV reported in the literature, with a focus on their role in malignant pleural mesothelioma.
Collapse
Affiliation(s)
- Tamkin Ahmadzada
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.
| | - Steven Kao
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia; Chris O'Brien Lifehouse, Sydney, NSW, Australia; Asbestos Diseases Research Institute (ADRI), Sydney, NSW, Australia
| | - Glen Reid
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | - Stephen Clarke
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia; Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Georges E Grau
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia; Vascular Immunology Unit, Department of Pathology, School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Elham Hosseini-Beheshti
- Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia; Vascular Immunology Unit, Department of Pathology, School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
10
|
Macia L, Nanan R, Hosseini-Beheshti E, Grau GE. Host- and Microbiota-Derived Extracellular Vesicles, Immune Function, and Disease Development. Int J Mol Sci 2019; 21:ijms21010107. [PMID: 31877909 PMCID: PMC6982009 DOI: 10.3390/ijms21010107] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/14/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are blebs of either plasma membrane or intracellular membranes carrying a cargo of proteins, nucleic acids, and lipids. EVs are produced by eukaryotic cells both under physiological and pathological conditions. Genetic and environmental factors (diet, stress, etc.) affecting EV cargo, regulating EV release, and consequences on immunity will be covered. EVs are found in virtually all body fluids such as plasma, saliva, amniotic fluid, and breast milk, suggesting key roles in immune development and function at different life stages from in utero to aging. These will be reviewed here. Under pathological conditions, plasma EV levels are increased and exacerbate immune activation and inflammatory reaction. Sources of EV, cells targeted, and consequences on immune function and disease development will be discussed. Both pathogenic and commensal bacteria release EV, which are classified as outer membrane vesicles when released by Gram-negative bacteria or as membrane vesicles when released by Gram-positive bacteria. Bacteria derived EVs can affect host immunity with pathogenic bacteria derived EVs having pro-inflammatory effects of host immune cells while probiotic derived EVs mostly shape the immune response towards tolerance.
Collapse
Affiliation(s)
- Laurence Macia
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia;
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia;
- Correspondence: (L.M.); (G.E.G.); Tel.: +61-2-8627-6525 (L.M.); +61-2-9036-3260 (G.E.G.)
| | - Ralph Nanan
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia;
- The University of Sydney, Sydney Medical School Nepean, Penrith 2751, Australia
| | - Elham Hosseini-Beheshti
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia;
- Vascular Immunology Unit, The University of Sydney, NSW 2006, Australia
| | - Georges E. Grau
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia;
- Vascular Immunology Unit, The University of Sydney, NSW 2006, Australia
- Correspondence: (L.M.); (G.E.G.); Tel.: +61-2-8627-6525 (L.M.); +61-2-9036-3260 (G.E.G.)
| |
Collapse
|
11
|
Mianehsaz E, Mirzaei HR, Mahjoubin-Tehran M, Rezaee A, Sahebnasagh R, Pourhanifeh MH, Mirzaei H, Hamblin MR. Mesenchymal stem cell-derived exosomes: a new therapeutic approach to osteoarthritis? Stem Cell Res Ther 2019; 10:340. [PMID: 31753036 PMCID: PMC6873475 DOI: 10.1186/s13287-019-1445-0] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/05/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Degenerative disorders of joints, especially osteoarthritis (OA), result in persistent pain and disability and high costs to society. Nevertheless, the molecular mechanisms of OA have not yet been fully explained. OA is characterized by destruction of cartilage and loss of extracellular matrix (ECM). It is generally agreed that there is an association between pro-inflammatory cytokines and the development of OA. There is increased expression of matrix metalloproteinase (MMP) and “a disintegrin and metalloproteinase with thrombospondin motifs” (ADAMTS). Mesenchymal stem cells (MSCs) have been explored as a new treatment for OA during the last decade. It has been suggested that paracrine secretion of trophic factors, in which exosomes have a crucial role, contributes to the mechanism of MSC-based treatment of OA. The paracrine secretion of exosomes may play a role in the repair of joint tissue as well as MSC-based treatments for other disorders. Exosomes isolated from various stem cells may contribute to tissue regeneration in the heart, limbs, skin, and other tissues. Recent studies have indicated that exosomes (or similar particles) derived from MSCs may suppress OA development. Herein, for first time, we summarize the recent findings of studies on various exosomes derived from MSCs and their effectiveness in the treatment of OA. Moreover, we highlight the likely mechanisms of actions of exosomes in OA.
Collapse
Affiliation(s)
- Elaheh Mianehsaz
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Trauma Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Rezaee
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Roxana Sahebnasagh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA.
| |
Collapse
|
12
|
Li JJ, Hosseini-Beheshti E, Grau GE, Zreiqat H, Little CB. Stem Cell-Derived Extracellular Vesicles for Treating Joint Injury and Osteoarthritis. NANOMATERIALS 2019; 9:nano9020261. [PMID: 30769853 PMCID: PMC6409698 DOI: 10.3390/nano9020261] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are nanoscale particles secreted by almost all cell types to facilitate intercellular communication. Stem cell-derived EVs theoretically have the same biological functions as stem cells, but offer the advantages of small size, low immunogenicity, and removal of issues such as low cell survival and unpredictable long-term behaviour associated with direct cell transplantation. They have been an area of intense interest in regenerative medicine, due to the potential to harness their anti-inflammatory and pro-regenerative effects to induce healing in a wide variety of tissues. However, the potential of using stem cell-derived EVs for treating joint injury and osteoarthritis has not yet been extensively explored. The pathogenesis of osteoarthritis, with or without prior joint injury, is not well understood, and there is a longstanding unmet clinical need to develop new treatments that provide a therapeutic effect in preventing or stopping joint degeneration, rather than merely relieving the symptoms of the disease. This review summarises the current evidence relating to stem cell-derived EVs in joint injury and osteoarthritis, providing a concise discussion of their characteristics, advantages, therapeutic effects, limitations and outlook in this exciting new area.
Collapse
Affiliation(s)
- Jiao Jiao Li
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW 2065, Australia.
- Biomaterials and Tissue Engineering Research Unit, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006, Australia.
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, NSW 2006, Australia.
| | - Elham Hosseini-Beheshti
- Vascular Immunology Unit, Discipline of Pathology, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| | - Georges E Grau
- Vascular Immunology Unit, Discipline of Pathology, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW 2006, Australia.
- Australian Research Council Training Centre for Innovative BioEngineering, Sydney, NSW 2006, Australia.
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW 2065, Australia.
| |
Collapse
|
13
|
Tare M. Microcirculation at Mooloolaba. Microcirculation 2019; 26:e12533. [PMID: 30703277 DOI: 10.1111/micc.12533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Marianne Tare
- Monash Rural Health, Monash University, Churchill, Victoria, Australia.,Department of Physiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Doreille A, Dieudé M, Cardinal H. The determinants, biomarkers, and consequences of microvascular injury in kidney transplant recipients. Am J Physiol Renal Physiol 2018; 316:F9-F19. [PMID: 30379097 DOI: 10.1152/ajprenal.00163.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Independent of the initial cause of kidney disease, microvascular injury to the peritubular capillary network appears to play a central role in the development of interstitial fibrosis in both native and transplanted kidney disease. This association is explained by mechanisms such as the upregulation of profibrotic genes and epigenetic changes induced by hypoxia, capillary leakage, endothelial and pericyte transition to interstitial fibroblasts, as well as modifications in the secretome of endothelial cells. Alloimmune injury due to antibody-mediated rejection and ischemia-reperfusion injury are the two main etiologies of microvascular damage in kidney transplant recipients. The presence of circulating donor-specific anti-human leukocyte antigen (HLA) antibodies, histological findings, such as diffuse C4d staining in peritubular capillaries, and the extent and severity of peritubular capillaritis, are commonly used clinically to provide both diagnostic and prognostic information. Complement-dependent assays, circulating non-HLA antibodies, or evaluation of the microvasculature with novel imaging techniques are the subject of ongoing studies.
Collapse
Affiliation(s)
- Alice Doreille
- Research Centre, Centre Hospitalier de l'Université de Montréal , Montreal, Quebec , Canada.,Université Paris-Sud , Paris , France
| | - Mélanie Dieudé
- Research Centre, Centre Hospitalier de l'Université de Montréal , Montreal, Quebec , Canada.,Canadian Donation and Transplantation Research Program, Montreal, Quebec, Canada
| | - Heloise Cardinal
- Research Centre, Centre Hospitalier de l'Université de Montréal , Montreal, Quebec , Canada.,Canadian Donation and Transplantation Research Program, Montreal, Quebec, Canada
| |
Collapse
|