1
|
Belelli D, Lambert JJ, Wan MLY, Monteiro AR, Nutt DJ, Swinny JD. From bugs to brain: unravelling the GABA signalling networks in the brain-gut-microbiome axis. Brain 2025; 148:1479-1506. [PMID: 39716883 PMCID: PMC12074267 DOI: 10.1093/brain/awae413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/21/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024] Open
Abstract
Convergent data across species paint a compelling picture of the critical role of the gut and its resident microbiota in several brain functions and disorders. The chemicals mediating communication along these sophisticated highways of the brain-gut-microbiome (BGM) axis include both microbiota metabolites and classical neurotransmitters. Amongst the latter, GABA is fundamental to brain function, mediating most neuronal inhibition. Until recently, GABA's role and specific molecular targets in the periphery within the BGM axis had received limited attention. Yet, GABA is produced by neuronal and non-neuronal elements of the BGM, and recently, GABA-modulating bacteria have been identified as key players in GABAergic gut systems, indicating that GABA-mediated signalling is likely to transcend physiological boundaries and species. We review the available evidence to better understand how GABA facilitates the integration of molecularly and functionally disparate systems to bring about overall homeostasis and how GABA perturbations within the BGM axis can give rise to multi-system medical disorders, thereby magnifying the disease burden and the challenges for patient care. Analysis of transcriptomic databases revealed significant overlaps between GABAAR subunits expressed in the human brain and gut. However, in the gut, there are notable expression profiles for a select number of subunits that have received limited attention to date but could be functionally relevant for BGM axis homeostasis. GABAergic signalling, via different receptor subtypes, directly regulates BGM homeostasis by modulating the excitability of neurons within brain centres responsible for gastrointestinal (GI) function in a sex-dependent manner, potentially revealing mechanisms underlying the greater prevalence of GI disturbances in females. Apart from such top-down regulation of the BGM axis, a diverse group of cell types, including enteric neurons, glia, enteroendocrine cells, immune cells and bacteria, integrate peripheral GABA signals to influence brain functions and potentially contribute to brain disorders. We propose several priorities for this field, including the exploitation of available technologies to functionally dissect components of these GABA pathways within the BGM, with a focus on GI and brain-behaviour-disease. Furthermore, in silico ligand-receptor docking analyses using relevant bacterial metabolomic datasets, coupled with advances in knowledge of GABAAR 3D structures, could uncover new ligands with novel therapeutic potential. Finally, targeted design of dietary interventions is imperative to advancing their therapeutic potential to support GABA homeostasis across the BGM axis.
Collapse
Affiliation(s)
- Delia Belelli
- GABA Labs (Research) Ltd., Hemel Hempstead HP2 5HD, UK
- Division of Neuroscience, School of Medicine, Medical Sciences Institute, Dundee University, Dundee DD1 5HL, UK
- School of Medicine, Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Jeremy J Lambert
- Division of Neuroscience, School of Medicine, Medical Sciences Institute, Dundee University, Dundee DD1 5HL, UK
| | - Murphy Lam Yim Wan
- School of Medicine, Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Ana Rita Monteiro
- School of Medicine, Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - David J Nutt
- GABA Labs (Research) Ltd., Hemel Hempstead HP2 5HD, UK
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Jerome D Swinny
- School of Medicine, Pharmacy & Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| |
Collapse
|
2
|
Wu S, Bu X, Chen D, Wu X, Wu H, Caiyin Q, Qiao J. Molecules-mediated bidirectional interactions between microbes and human cells. NPJ Biofilms Microbiomes 2025; 11:38. [PMID: 40038292 PMCID: PMC11880406 DOI: 10.1038/s41522-025-00657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/22/2025] [Indexed: 03/06/2025] Open
Abstract
Complex molecules-mediated interactions, which are based on the bidirectional information exchange between microbes and human cells, enable the defense against diseases and health maintenance. Recently, diverse single-direction interactions based on active metabolites, immunity factors, and quorum sensing signals have largely been summarized separately. In this review, according to a simplified timeline, we proposed the framework of Molecules-mediated Bidirectional Interactions (MBI) between microbe and humans to decipher and understand their intricate interactions systematically. About the microbe-derived interactions, we summarized various molecules, such as short-chain fatty acids, bile acids, tryptophan catabolites, and quorum sensing molecules, and their corresponding human receptors. Concerning the human-derived interactions, we reviewed the effect of human molecules, including hormones, cytokines, and other circulatory metabolites on microbial characteristics and phenotypes. Finally, we discussed the challenges and trends for developing and deciphering molecule-mediated bidirectional interactions and their potential applications in the guard of human health.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China
| | - Xueying Bu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Danlei Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China
| | - Xueyan Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Hao Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China.
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
3
|
Cerna‐Vargas JP, Krell T. Exploring solute binding proteins in Pseudomonas aeruginosa that bind to γ-aminobutyrate and 5-aminovalerate and their role in activating sensor kinases. Microbiologyopen 2024; 13:e1415. [PMID: 38780167 PMCID: PMC11113362 DOI: 10.1002/mbo3.1415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
The standard method of receptor activation involves the binding of signals or signal-loaded solute binding proteins (SBPs) to sensor domains. Many sensor histidine kinases (SHKs), which are activated by SBP binding, are encoded adjacent to their corresponding sbp gene. We examined three SBPs of Pseudomonas aeruginosa PAO1, encoded near the genes for the AgtS (PA0600) and AruS (PA4982) SHKs, to determine how common this arrangement is. Ligand screening and microcalorimetric studies revealed that the SBPs PA0602 and PA4985 preferentially bind to GABA (KD = 2.3 and 0.58 μM, respectively), followed by 5-aminovalerate (KD = 30 and 1.6 μM, respectively) and ethanoldiamine (KD = 2.3 and 0.58 μM, respectively). In contrast, AgtB (PA0604) exclusively recognizes 5-aminovaleric acid (KD = 2.9 μM). However, microcalorimetric titrations did not show any binding between the AgtS sensor domain and AgtB or PA0602, regardless of the presence of ligands. Similarly, bacterial two-hybrid assays did not demonstrate an interaction between PA4985 and the AruS sensor domain. Therefore, sbp and shk genes located nearby are not always functionally linked. We previously identified PA0222 as a GABA-specific SBP. The presence of three SBPs for GABA may be linked to GABA's role as a trigger for P. aeruginosa virulence.
Collapse
Affiliation(s)
- Jean Paul Cerna‐Vargas
- Department of Biotechnology and Environmental Protection, Estación Experimental del ZaidínConsejo Superior de Investigaciones CientíficasGranadaSpain
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones CientíficasParque Científico y Tecnológico de la Universidad Politécnica de Madrid, Pozuelo de AlarcónMadridSpain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del ZaidínConsejo Superior de Investigaciones CientíficasGranadaSpain
| |
Collapse
|
4
|
The Effect of γ-Aminobutyric Acid Addition on In Vitro Ruminal Fermentation Characteristics and Methane Production of Diets Differing in Forage-to-Concentrate Ratio. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Gamma-aminobutyric acid (GABA), known as the most abundant inhibitory neurotransmitter in the mammalian brain, can permeate ruminal epithelia by passive diffusion and enrich in the rumen environment. To explore whether the addition of GABA can regulate rumen fermentation characteristics as well as methane production, a 2 × 6 factorial in vitro rumen batch culture was conducted to determine the supplemental effect of GABA at inclusion levels of 0 (Control), 10, 20, 30, 40 and 50 mg in culture fluids on rumen fermentation of two total mixed rations (HF—a high-fiber ration consisted of 70% corn silage and 30% concentrate; and LF—a low-fiber ration consisted of 30% corn silage and 70% concentrate). After 72 h in vitro incubation of two rations with mixed rumen microoganisms obtained from five rumen-cannulated lactating Holstein dairy cows, increasing GABA addition linearly increased cumulative gas production in the LF group, though in vitro dry matter digestibility was not affected in either the LF or HF group. Kinetic gas production analysis noted that increasing GABA addition mostly decreased the gas production rate (i.e., RmaxG), as well as the ration digestion rate (RmaxS) to reach maximum fermentation. The GABA addition did not affect pH or microbial growth (i.e., MCP). However, total volatile fatty acid production in both LF and HF groups all linearly increased with the increase in GABA addition. Along with the increase in GABA addition in both LF and HF groups, the ratio of non-glucogenic to glucogenic volatile fatty acids both increased, while the molar proportions of propionate and valerate were significantly decreased, and the acetate and butyrate proportions were increased after 72 h in vitro rumen fermentation. The time-course change of fermentation end-products generally showed that carbon dioxide declined from approximately 89% to 74%, and methane increased from approximately 11% to 26%. After 72 h in vitro fermentation, molar methane proportion was greater in the LF than in the HF group, and increasing GABA addition quadratically increased methane production in the LF group while a slight increase occurred in the HF group.
Collapse
|
5
|
Siani R, Stabl G, Gutjahr C, Schloter M, Radl V. Acidovorax pan-genome reveals specific functional traits for plant beneficial and pathogenic plant-associations. Microb Genom 2021; 7. [PMID: 34889729 PMCID: PMC8767351 DOI: 10.1099/mgen.0.000666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Beta-proteobacteria belonging to the genus Acidovorax have been described from various environments. Many strains can interact with a range of hosts, including humans and plants, forming neutral, beneficial or detrimental associations. In the frame of this study, we investigated the genomic properties of 52 bacterial strains of the genus Acidovorax, isolated from healthy roots of Lotus japonicus, with the intent of identifying traits important for effective plant-growth promotion. Based on single-strain inoculation bioassays with L. japonicus, performed in a gnotobiotic system, we distinguished seven robust plant-growth promoting strains from strains with no significant effects on plant-growth. We showed that the genomes of the two groups differed prominently in protein families linked to sensing and transport of organic acids, production of phytohormones, as well as resistance and production of compounds with antimicrobial properties. In a second step, we compared the genomes of the tested isolates with those of plant pathogens and free-living strains of the genus Acidovorax sourced from public repositories. Our pan-genomics comparison revealed features correlated with commensal and pathogenic lifestyle. We showed that commensals and pathogens differ mostly in their ability to use plant-derived lipids and in the type of secretion-systems being present. Most free-living Acidovorax strains did not harbour any secretion-systems. Overall, our data indicate that Acidovorax strains undergo extensive adaptations to their particular lifestyle by horizontal uptake of novel genetic information and loss of unnecessary genes.
Collapse
Affiliation(s)
- Roberto Siani
- Helmholtz Center for Environmental Health, Institute for Comparative Microbiome Analysis, Ingolstaedter Landstr, Oberschleissheim, Germany.,Technical University of Munich, School of Life Sciences, Chair for Soil Science, Freising, Germany
| | - Georg Stabl
- Technical University of Munich, School of Life Sciences, Plant Genetics, Freising, Germany
| | - Caroline Gutjahr
- Technical University of Munich, School of Life Sciences, Plant Genetics, Freising, Germany
| | - Michael Schloter
- Helmholtz Center for Environmental Health, Institute for Comparative Microbiome Analysis, Ingolstaedter Landstr, Oberschleissheim, Germany.,Technical University of Munich, School of Life Sciences, Chair for Soil Science, Freising, Germany
| | - Viviane Radl
- Helmholtz Center for Environmental Health, Institute for Comparative Microbiome Analysis, Ingolstaedter Landstr, Oberschleissheim, Germany
| |
Collapse
|
6
|
Shelp BJ, Aghdam MS, Flaherty EJ. γ-Aminobutyrate (GABA) Regulated Plant Defense: Mechanisms and Opportunities. PLANTS (BASEL, SWITZERLAND) 2021; 10:1939. [PMID: 34579473 PMCID: PMC8468876 DOI: 10.3390/plants10091939] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
Global climate change and associated adverse abiotic and biotic stress conditions affect plant growth and development, and agricultural sustainability in general. Abiotic and biotic stresses reduce respiration and associated energy generation in mitochondria, resulting in the elevated production of reactive oxygen species (ROS), which are employed to transmit cellular signaling information in response to the changing conditions. Excessive ROS accumulation can contribute to cell damage and death. Production of the non-protein amino acid γ-aminobutyrate (GABA) is also stimulated, resulting in partial restoration of respiratory processes and energy production. Accumulated GABA can bind directly to the aluminum-activated malate transporter and the guard cell outward rectifying K+ channel, thereby improving drought and hypoxia tolerance, respectively. Genetic manipulation of GABA metabolism and receptors, respectively, reveal positive relationships between GABA levels and abiotic/biotic stress tolerance, and between malate efflux from the root and heavy metal tolerance. The application of exogenous GABA is associated with lower ROS levels, enhanced membrane stability, changes in the levels of non-enzymatic and enzymatic antioxidants, and crosstalk among phytohormones. Exogenous GABA may be an effective and sustainable tolerance strategy against multiple stresses under field conditions.
Collapse
Affiliation(s)
- Barry J. Shelp
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Morteza Soleimani Aghdam
- Department of Horticultural Science, Imam Khomeini International University, Qazvin 34148-96818, Iran;
| | - Edward J. Flaherty
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
7
|
Tarkowski ŁP, Signorelli S, Höfte M. γ-Aminobutyric acid and related amino acids in plant immune responses: Emerging mechanisms of action. PLANT, CELL & ENVIRONMENT 2020; 43:1103-1116. [PMID: 31997381 DOI: 10.1111/pce.13734] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
The entanglement between primary metabolism regulation and stress responses is a puzzling and fascinating theme in plant sciences. Among the major metabolites found in plants, γ-aminobutyric acid (GABA) fulfils important roles in connecting C and N metabolic fluxes through the GABA shunt. Activation of GABA metabolism is known since long to occur in plant tissues following biotic stresses, where GABA appears to have substantially different modes of action towards different categories of pathogens and pests. While it can harm insects thanks to its inhibitory effect on the neuronal transmission, its capacity to modulate the hypersensitive response in attacked host cells was proven to be crucial for host defences in several pathosystems. In this review, we discuss how plants can employ GABA's versatility to effectively deal with all the major biotic stressors, and how GABA can shape plant immune responses against pathogens by modulating reactive oxygen species balance in invaded plant tissues. Finally, we discuss the connections between GABA and other stress-related amino acids such as BABA (β-aminobutyric acid), glutamate and proline.
Collapse
Affiliation(s)
- Łukasz P Tarkowski
- Seed Metabolism and Stress Team, INRAE Angers, UMR1345 Institut de Recherche en Horticulture et Semences, Bâtiment A, Beaucouzé cedex, France
| | - Santiago Signorelli
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Sayago CP, Montevideo, Uruguay
- The School of Molecular Sciences, Faculty of Science, The University of Western Australia, Crawley CP, WA, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley CP, WA, Australia
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Fernández M, Rico-Jiménez M, Ortega Á, Daddaoua A, García García AI, Martín-Mora D, Torres NM, Tajuelo A, Matilla MA, Krell T. Determination of Ligand Profiles for Pseudomonas aeruginosa Solute Binding Proteins. Int J Mol Sci 2019; 20:ijms20205156. [PMID: 31627455 PMCID: PMC6829864 DOI: 10.3390/ijms20205156] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 01/05/2023] Open
Abstract
Solute binding proteins (SBPs) form a heterogeneous protein family that is found in all kingdoms of life. In bacteria, the ligand-loaded forms bind to transmembrane transporters providing the substrate. We present here the SBP repertoire of Pseudomonas aeruginosa PAO1 that is composed of 98 proteins. Bioinformatic predictions indicate that many of these proteins have a redundant ligand profile such as 27 SBPs for proteinogenic amino acids, 13 proteins for spermidine/putrescine, or 9 proteins for quaternary amines. To assess the precision of these bioinformatic predictions, we have purified 17 SBPs that were subsequently submitted to high-throughput ligand screening approaches followed by isothermal titration calorimetry studies, resulting in the identification of ligands for 15 of them. Experimentation revealed that PA0222 was specific for γ-aminobutyrate (GABA), DppA2 for tripeptides, DppA3 for dipeptides, CysP for thiosulphate, OpuCC for betaine, and AotJ for arginine. Furthermore, RbsB bound D-ribose and D-allose, ModA bound molybdate, tungstate, and chromate, whereas AatJ recognized aspartate and glutamate. The majority of experimentally identified ligands were found to be chemoattractants. Data show that the ligand class recognized by SPBs can be predicted with confidence using bioinformatic methods, but experimental work is necessary to identify the precise ligand profile.
Collapse
Affiliation(s)
- Matilde Fernández
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
- present address: Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.
| | - Miriam Rico-Jiménez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Álvaro Ortega
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Abdelali Daddaoua
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Ana Isabel García García
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Noel Mesa Torres
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Ana Tajuelo
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain.
| |
Collapse
|
9
|
A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nat Methods 2019; 16:763-770. [DOI: 10.1038/s41592-019-0471-2] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/28/2019] [Indexed: 12/13/2022]
|
10
|
Desriac F, Clamens T, Rosay T, Rodrigues S, Tahrioui A, Enault J, Roquigny L, Racine PJ, Taupin L, Bazire A, Dufour A, Leprince J, Bouffartigues E, Chevalier S, Feuilloley MGJ, Lesouhaitier O. Different Dose-Dependent Modes of Action of C-Type Natriuretic Peptide on Pseudomonas aeruginosa Biofilm Formation. Pathogens 2018; 7:pathogens7020047. [PMID: 29695043 PMCID: PMC6026938 DOI: 10.3390/pathogens7020047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 01/16/2023] Open
Abstract
We have previously shown that the C-type Natriuretic Peptide (CNP), a peptide produced by lungs, is able to impact Pseudomonasaeruginosa physiology. In the present work, the effect of CNP at different concentrations on P. aeruginosa biofilm formation was studied and the mechanisms of action of this human hormone on P. aeruginosa were deciphered. CNP was shown to inhibit dynamic biofilm formation in a dose-dependent manner without affecting the bacterial growth at any tested concentrations. The most effective concentrations were 1 and 0.1 µM. At 0.1 µM, the biofilm formation inhibition was fully dependent on the CNP sensor protein AmiC, whereas it was only partially AmiC-dependent at 1 µM, revealing the existence of a second AmiC-independent mode of action of CNP on P. aeruginosa. At 1 µM, CNP reduced both P. aeruginosa adhesion on glass and di-rhamnolipid production and also increased the bacterial membrane fluidity. The various effects of CNP at 1 µM and 0.1 µM on P. aeruginosa shown here should have major consequences to design drugs for biofilm treatment or prevention.
Collapse
Affiliation(s)
- Florie Desriac
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandie Université, University Rouen-Normandy, 27000 Evreux, France.
| | - Thomas Clamens
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandie Université, University Rouen-Normandy, 27000 Evreux, France.
| | - Thibaut Rosay
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandie Université, University Rouen-Normandy, 27000 Evreux, France.
| | - Sophie Rodrigues
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandie Université, University Rouen-Normandy, 27000 Evreux, France.
- Laboratoire de Biotechnologie et Chimie Marines (LBCM), EA 3884, LBCM, IUEM Université de Bretagne-Sud, 56100 Lorient, France.
| | - Ali Tahrioui
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandie Université, University Rouen-Normandy, 27000 Evreux, France.
| | - Jérémy Enault
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandie Université, University Rouen-Normandy, 27000 Evreux, France.
| | - Lucille Roquigny
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandie Université, University Rouen-Normandy, 27000 Evreux, France.
| | - Pierre-Jean Racine
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandie Université, University Rouen-Normandy, 27000 Evreux, France.
| | - Laure Taupin
- Laboratoire de Biotechnologie et Chimie Marines (LBCM), EA 3884, LBCM, IUEM Université de Bretagne-Sud, 56100 Lorient, France.
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines (LBCM), EA 3884, LBCM, IUEM Université de Bretagne-Sud, 56100 Lorient, France.
| | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines (LBCM), EA 3884, LBCM, IUEM Université de Bretagne-Sud, 56100 Lorient, France.
| | - Jérôme Leprince
- Inserm U1239, PRIMACEN, Normandie Université, IRIB, Université de Rouen, 76000 Rouen, France.
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandie Université, University Rouen-Normandy, 27000 Evreux, France.
| | - Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandie Université, University Rouen-Normandy, 27000 Evreux, France.
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandie Université, University Rouen-Normandy, 27000 Evreux, France.
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandie Université, University Rouen-Normandy, 27000 Evreux, France.
| |
Collapse
|
11
|
Ramesh SA, Tyerman SD, Gilliham M, Xu B. γ-Aminobutyric acid (GABA) signalling in plants. Cell Mol Life Sci 2017; 74:1577-1603. [PMID: 27838745 PMCID: PMC11107511 DOI: 10.1007/s00018-016-2415-7] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/06/2016] [Accepted: 11/08/2016] [Indexed: 01/11/2023]
Abstract
The role of γ-aminobutyric acid (GABA) as a signal in animals has been documented for over 60 years. In contrast, evidence that GABA is a signal in plants has only emerged in the last 15 years, and it was not until last year that a mechanism by which this could occur was identified-a plant 'GABA receptor' that inhibits anion passage through the aluminium-activated malate transporter family of proteins (ALMTs). ALMTs are multigenic, expressed in different organs and present on different membranes. We propose GABA regulation of ALMT activity could function as a signal that modulates plant growth, development, and stress response. In this review, we compare and contrast the plant 'GABA receptor' with mammalian GABAA receptors in terms of their molecular identity, predicted topology, mode of action, and signalling roles. We also explore the implications of the discovery that GABA modulates anion flux in plants, its role in signal transduction for the regulation of plant physiology, and predict the possibility that there are other GABA interaction sites in the N termini of ALMT proteins through in silico evolutionary coupling analysis; we also explore the potential interactions between GABA and other signalling molecules.
Collapse
Affiliation(s)
- Sunita A Ramesh
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Stephen D Tyerman
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Matthew Gilliham
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Bo Xu
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
12
|
Leonard S, Hommais F, Nasser W, Reverchon S. Plant-phytopathogen interactions: bacterial responses to environmental and plant stimuli. Environ Microbiol 2017; 19:1689-1716. [DOI: 10.1111/1462-2920.13611] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/09/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Simon Leonard
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| | - Florence Hommais
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| | - William Nasser
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| | - Sylvie Reverchon
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| |
Collapse
|
13
|
Killiny N. Generous hosts: What makes Madagascar periwinkle (Catharanthus roseus) the perfect experimental host plant for fastidious bacteria? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:28-35. [PMID: 27620272 DOI: 10.1016/j.plaphy.2016.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/23/2016] [Accepted: 09/01/2016] [Indexed: 05/03/2023]
Abstract
Although much attention has been paid to the metabolism and biosynthesis of monoterpene alkaloids in Catharanthus roseus, its value as an experimental host for a variety of agriculturally and economically important phytopathogenic bacteria warrants further study. In the present study, we evaluated the chemical composition of the phloem and xylem saps of C. roseus to infer the nutritional requirements of phloem- and xylem-limited phytopathogens. Periwinkle phloem sap consisted of a rich mixture of sugars, organic acids, amino acids, amines, fatty acids, sugar acids and sugar alcohols while xylem contained similar compounds in lesser concentrations. Plant sap analysis may lead to a better understanding of the biology of fastidious Mollicutes and their complex nutritional requirements, and to successful culture of phytoplasmas and other uncultured phloem-restricted bacteria such as Candidatus Liberibacter asiaticus, the causal agent of huanglongbing in citrus.
Collapse
Affiliation(s)
- Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA.
| |
Collapse
|
14
|
Marty L, Vigouroux A, Aumont-Nicaise M, Dessaux Y, Faure D, Moréra S. Structural Basis for High Specificity of Amadori Compound and Mannopine Opine Binding in Bacterial Pathogens. J Biol Chem 2016; 291:22638-22649. [PMID: 27609514 DOI: 10.1074/jbc.m116.745562] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/31/2016] [Indexed: 11/06/2022] Open
Abstract
Agrobacterium tumefaciens pathogens genetically modify their host plants to drive the synthesis of opines in plant tumors. Opines are either sugar phosphodiesters or the products of condensed amino acids with ketoacids or sugars. They are Agrobacterium nutrients and imported into the bacterial cell via periplasmic-binding proteins (PBPs) and ABC-transporters. Mannopine, an opine from the mannityl-opine family, is synthesized from an intermediate named deoxy-fructosyl-glutamine (DFG), which is also an opine and abundant Amadori compound (a name used for any derivative of aminodeoxysugars) present in decaying plant materials. The PBP MotA is responsible for mannopine import in mannopine-assimilating agrobacteria. In the nopaline-opine type agrobacteria strain, SocA protein was proposed as a putative mannopine binding PBP, and AttC protein was annotated as a mannopine binding-like PBP. Structural data on mannityl-opine-PBP complexes is currently lacking. By combining affinity data with analysis of seven x-ray structures at high resolution, we investigated the molecular basis of MotA, SocA, and AttC interactions with mannopine and its DFG precursor. Our work demonstrates that AttC is not a mannopine-binding protein and reveals a specific binding pocket for DFG in SocA with an affinity in nanomolar range. Hence, mannopine would not be imported into nopaline-type agrobacteria strains. In contrast, MotA binds both mannopine and DFG. We thus defined one mannopine and two DFG binding signatures. Unlike mannopine-PBPs, selective DFG-PBPs are present in a wide diversity of bacteria, including Actinobacteria, α-,β-, and γ-proteobacteria, revealing a common role of this Amadori compound in pathogenic, symbiotic, and opportunistic bacteria.
Collapse
Affiliation(s)
- Loïc Marty
- From the Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Armelle Vigouroux
- From the Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Magali Aumont-Nicaise
- From the Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Yves Dessaux
- From the Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Denis Faure
- From the Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Solange Moréra
- From the Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| |
Collapse
|
15
|
Lang J, Faure D. Plant GABA:proline ratio modulates dissemination of the virulence Ti plasmid within the Agrobacterium tumefaciens hosted population. PLANT SIGNALING & BEHAVIOR 2016; 11:e1178440. [PMID: 27110651 PMCID: PMC4973755 DOI: 10.1080/15592324.2016.1178440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 06/05/2023]
Abstract
Accumulation of amino acids is a common plant response to several biotic and abiotic stresses, even if the roles of these accumulations remain often poorly understood. In a recent study we measured the levels of different amino acids in tumors of Arabidopsis thaliana induced by the phytopathogen Agrobacterium tumefaciens and correlated these data with changes of gene expressions in both organisms. This led to the demonstration that the non-protein amino acid GABA plays an important role for the adaptation of the bacteria to the plant tumor environment, and especially in the control of the virulent Ti plasmid dissemination. Here we present a model that describes how different GABA:proline ratios in the A. thaliana host may have different impacts on the conjugation of A. tumefaciens Ti plasmid, and advance the view that the amino acid metabolism of plant hosts could be critical for the propagation of the virulence genes in A. tumefaciens populations.
Collapse
Affiliation(s)
- Julien Lang
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Denis Faure
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Univ. Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette, France
| |
Collapse
|
16
|
Lang J, Gonzalez-Mula A, Taconnat L, Clement G, Faure D. The plant GABA signaling downregulates horizontal transfer of the Agrobacterium tumefaciens virulence plasmid. THE NEW PHYTOLOGIST 2016; 210:974-983. [PMID: 26714842 DOI: 10.1111/nph.13813] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
In the tumor-inducing (Ti) Agrobacterium tumefaciens, quorum sensing activates the horizontal transfer of the virulent Ti plasmid. In pure culture, this process can be impaired by the A. tumefaciens BlcC lactonase, whose expression is induced by gamma-aminobutyrate (GABA). It was therefore hypothesized that host GABA content might modulate quorum sensing and virulence gene dissemination during A. tumefaciens infection. We examined GABA metabolism and transport in Arabidopsis thaliana tumors combining transcriptomic, metabolomic and histological approaches. In addition, using genetically modified plants and bacteria, we evaluated the impact of plant host GABA content on Ti plasmid dissemination. The results showed that GABA and free proline, which acts as an antagonist of GABA uptake in A. tumefaciens, accumulated in wild-type tumors relative to uninfected plant tissues. Moreover, comparisons of tumors induced on Col-0 and her1 plants showed that the increase in the plant GABA : proline ratio was associated with both the upregulated expression of the blcC gene and the decreased dissemination of Ti plasmid in tumor-colonizing A. tumefaciens populations. This work demonstrates experimentally that the variation in the GABA content in plant tumors can interfere with the dissemination of A. tumefaciens Ti plasmids, and therefore highlights plant GABA content as an important trait in the struggle against pathogenic bacteria.
Collapse
Affiliation(s)
- Julien Lang
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Université Paris-Sud, Université Paris-Saclay, Saclay Plant Sciences, Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Almudena Gonzalez-Mula
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Université Paris-Sud, Université Paris-Saclay, Saclay Plant Sciences, Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Ludivine Taconnat
- POPS Transcriptomic Platform - Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité Université Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - Gilles Clement
- Plateforme de Chimie - Métabolisme, INRA Centre de Versailles-Grignon, Route de Saint-Cyr, 78026, Versailles Cedex, France
| | - Denis Faure
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Université Paris-Sud, Université Paris-Saclay, Saclay Plant Sciences, Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| |
Collapse
|
17
|
Grandclément C, Tannières M, Moréra S, Dessaux Y, Faure D. Quorum quenching: role in nature and applied developments. FEMS Microbiol Rev 2015; 40:86-116. [PMID: 26432822 DOI: 10.1093/femsre/fuv038] [Citation(s) in RCA: 380] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2015] [Indexed: 12/11/2022] Open
Abstract
Quorum sensing (QS) refers to the capacity of bacteria to monitor their population density and regulate gene expression accordingly: the QS-regulated processes deal with multicellular behaviors (e.g. growth and development of biofilm), horizontal gene transfer and host-microbe (symbiosis and pathogenesis) and microbe-microbe interactions. QS signaling requires the synthesis, exchange and perception of bacterial compounds, called autoinducers or QS signals (e.g. N-acylhomoserine lactones). The disruption of QS signaling, also termed quorum quenching (QQ), encompasses very diverse phenomena and mechanisms which are presented and discussed in this review. First, we surveyed the QS-signal diversity and QS-associated responses for a better understanding of the targets of the QQ phenomena that organisms have naturally evolved and are currently actively investigated in applied perspectives. Next the mechanisms, targets and molecular actors associated with QS interference are presented, with a special emphasis on the description of natural QQ enzymes and chemicals acting as QS inhibitors. Selected QQ paradigms are detailed to exemplify the mechanisms and biological roles of QS inhibition in microbe-microbe and host-microbe interactions. Finally, some QQ strategies are presented as promising tools in different fields such as medicine, aquaculture, crop production and anti-biofouling area.
Collapse
Affiliation(s)
- Catherine Grandclément
- Institut for Integrative Biology of the Cell, Department of Microbiology, CNRS CEA Paris-Sud University, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Mélanie Tannières
- Institut for Integrative Biology of the Cell, Department of Microbiology, CNRS CEA Paris-Sud University, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Solange Moréra
- Institut for Integrative Biology of the Cell, Department of Structural Biology, CNRS CEA Paris-Sud University, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Yves Dessaux
- Institut for Integrative Biology of the Cell, Department of Microbiology, CNRS CEA Paris-Sud University, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Denis Faure
- Institut for Integrative Biology of the Cell, Department of Microbiology, CNRS CEA Paris-Sud University, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
18
|
Liang R, Broussard GJ, Tian L. Imaging chemical neurotransmission with genetically encoded fluorescent sensors. ACS Chem Neurosci 2015; 6:84-93. [PMID: 25565280 DOI: 10.1021/cn500280k] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A major challenge in neuroscience is to decipher the logic of neural circuitry and to link it to learning, memory, and behavior. Synaptic transmission is a critical event underlying information processing within neural circuitry. In the extracellular space, the concentrations and distributions of excitatory, inhibitory, and modulatory neurotransmitters impact signal integration, which in turn shapes and refines the function of neural networks. Thus, the determination of the spatiotemporal relationships between these chemical signals with synaptic resolution in the intact brain is essential to decipher the codes for transferring information across circuitry and systems. Here, we review approaches and probes that have been employed to determine the spatial and temporal extent of neurotransmitter dynamics in the brain. We specifically focus on the design, screening, characterization, and application of genetically encoded indicators directly probing glutamate, the most abundant excitatory neurotransmitter. These indicators provide synaptic resolution of glutamate dynamics with cell-type specificity. We also discuss strategies for developing a suite of genetically encoded probes for a variety of neurotransmitters and neuromodulators.
Collapse
Affiliation(s)
- Ruqiang Liang
- Department
of Biochemistry and Molecular Medicine and ‡Center
for Neuroscience, University of California Davis, Davis, California 95817, United States
| | - Gerard Joseph Broussard
- Department
of Biochemistry and Molecular Medicine and ‡Center
for Neuroscience, University of California Davis, Davis, California 95817, United States
| | - Lin Tian
- Department
of Biochemistry and Molecular Medicine and ‡Center
for Neuroscience, University of California Davis, Davis, California 95817, United States
| |
Collapse
|
19
|
Forlani G, Bertazzini M, Giberti S. Differential accumulation of γ-aminobutyric acid in elicited cells of two rice cultivars showing contrasting sensitivity to the blast pathogen. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:1127-32. [PMID: 24521266 DOI: 10.1111/plb.12165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/12/2014] [Indexed: 05/22/2023]
Abstract
Intracellular free amino acid pools were quantified in suspension cultured cells of a blast-sensitive and a blast-resistant rice genotype at increasing times after treatment with Magnaporthe oryzae cell wall hydrolysates. Besides some expected variations in free phenylalanine, a remarkable early increase of γ-aminobutyric acid (GABA) levels was evident in both cultivars. Glutamate decarboxylase activity and protein levels were unaffected. GABA homeostasis was recovered in the sensitive cultivar 48 h after the treatment. In contrast, a further GABA accumulation and a general increase of most amino acids was found at this later stage in the resistant genotype, which showed a larger decrease in cell viability as a consequence of elicitor addition. Data support a recently hypothesised role of GABA metabolism in the plant response to fungal pathogens.
Collapse
Affiliation(s)
- G Forlani
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | | |
Collapse
|
20
|
Agrobacterium uses a unique ligand-binding mode for trapping opines and acquiring a competitive advantage in the niche construction on plant host. PLoS Pathog 2014; 10:e1004444. [PMID: 25299655 PMCID: PMC4192606 DOI: 10.1371/journal.ppat.1004444] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 09/02/2014] [Indexed: 11/20/2022] Open
Abstract
By modifying the nuclear genome of its host, the plant pathogen Agrobacterium tumefaciens induces the development of plant tumours in which it proliferates. The transformed plant tissues accumulate uncommon low molecular weight compounds called opines that are growth substrates for A. tumefaciens. In the pathogen-induced niche (the plant tumour), a selective advantage conferred by opine assimilation has been hypothesized, but not experimentally demonstrated. Here, using genetics and structural biology, we deciphered how the pathogen is able to bind opines and use them to efficiently compete in the plant tumour. We report high resolution X-ray structures of the periplasmic binding protein (PBP) NocT unliganded and liganded with the opine nopaline (a condensation product of arginine and α-ketoglurate) and its lactam derivative pyronopaline. NocT exhibited an affinity for pyronopaline (KD of 0.6 µM) greater than that for nopaline (KD of 3.7 µM). Although the binding-mode of the arginine part of nopaline/pyronopaline in NocT resembled that of arginine in other PBPs, affinity measurement by two different techniques showed that NocT did not bind arginine. In contrast, NocT presented specific residues such as M117 to stabilize the bound opines. NocT relatives that exhibit the nopaline/pyronopaline-binding mode were only found in genomes of the genus Agrobacterium. Transcriptomics and reverse genetics revealed that A. tumefaciens uses the same pathway for assimilating nopaline and pyronopaline. Fitness measurements showed that NocT is required for a competitive colonization of the plant tumour by A. tumefaciens. Moreover, even though the Ti-plasmid conjugal transfer was not regulated by nopaline, the competitive advantage gained by the nopaline-assimilating Ti-plasmid donors led to a preferential horizontal propagation of this Ti-plasmid amongst the agrobacteria colonizing the plant-tumour niche. This work provided structural and genetic evidences to support the niche construction paradigm in bacterial pathogens. An ecological niche is defined, in a given environment, by the availability of nutritive resources, which can be specifically assimilated by certain living organisms to promote their proliferation. The bacterial pathogen Agrobacterium tumefaciens is able to engineer an ecological niche in the infected host via the transformation of the plant genome and diversion of the plant metabolism towards production of the opine nutrients. In this work, we quantified the selective advantage conferred to a member of the phytopathogenic species A. tumefaciens which is able to assimilate the opine nopaline. This opine is a condensate of arginine and α-ketoglurate that is produced both under linear and cyclic forms in the plant tumour environment. We further determined at the molecular and atomistic levels how A. tumefaciens is able to sense the nopaline molecules, and which metabolic pathways are activated in response. Overall, this work deciphered some key molecular events in the niche construction of the pathogen A. tumefaciens that is unique among living organisms and used to develop bioengineering tools.
Collapse
|
21
|
Lund P, Tramonti A, De Biase D. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev 2014; 38:1091-125. [PMID: 24898062 DOI: 10.1111/1574-6976.12076] [Citation(s) in RCA: 306] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 02/26/2014] [Accepted: 03/14/2014] [Indexed: 12/31/2022] Open
Abstract
As part of their life cycle, neutralophilic bacteria are often exposed to varying environmental stresses, among which fluctuations in pH are the most frequent. In particular, acid environments can be encountered in many situations from fermented food to the gastric compartment of the animal host. Herein, we review the current knowledge of the molecular mechanisms adopted by a range of Gram-positive and Gram-negative bacteria, mostly those affecting human health, for coping with acid stress. Because organic and inorganic acids have deleterious effects on the activity of the biological macromolecules to the point of significantly reducing growth and even threatening their viability, it is not unexpected that neutralophilic bacteria have evolved a number of different protective mechanisms, which provide them with an advantage in otherwise life-threatening conditions. The overall logic of these is to protect the cell from the deleterious effects of a harmful level of protons. Among the most favoured mechanisms are the pumping out of protons, production of ammonia and proton-consuming decarboxylation reactions, as well as modifications of the lipid content in the membrane. Several examples are provided to describe mechanisms adopted to sense the external acidic pH. Particular attention is paid to Escherichia coli extreme acid resistance mechanisms, the activity of which ensure survival and may be directly linked to virulence.
Collapse
Affiliation(s)
- Peter Lund
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | | |
Collapse
|
22
|
Lang J, Faure D. Functions and regulation of quorum-sensing in Agrobacterium tumefaciens. FRONTIERS IN PLANT SCIENCE 2014; 5:14. [PMID: 24550924 PMCID: PMC3907764 DOI: 10.3389/fpls.2014.00014] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/12/2014] [Indexed: 05/05/2023]
Abstract
In Agrobacterium tumefaciens, horizontal transfer and vegetative replication of oncogenic Ti plasmids involve a cell-to-cell communication process called quorum-sensing (QS). The determinants of the QS-system belong to the LuxR/LuxI class. The LuxI-like protein TraI synthesizes N-acyl-homoserine lactone molecules which act as diffusible QS-signals. Beyond a threshold concentration, these molecules bind and activate the LuxR-like transcriptional regulator TraR, thereby initiating the QS-regulatory pathway. For the last 20 years, A. tumefaciens has stood as a prominent model in the understanding of the LuxR/LuxI type of QS systems. A number of studies also unveiled features which are unique to A. tumefaciens QS, some of them being directly related to the phytopathogenic lifestyle of the bacteria. In this review, we will present the current knowledge of QS in A. tumefaciens at both the genetic and molecular levels. We will also describe how interactions with plant host modulate the QS pathway of A. tumefaciens, and discuss what could be the advantages for the agrobacteria to use such a tightly regulated QS-system to disseminate the Ti plasmids.
Collapse
Affiliation(s)
| | - Denis Faure
- *Correspondence: Denis Faure, Institut des Sciences du Végétal, UPR2355, Centre National de la Recherche Scientifique, 1 Avenue de la Terrasse, 91 198 Gif-sur-Yvette, France e-mail:
| |
Collapse
|
23
|
Lang J, Planamente S, Mondy S, Dessaux Y, Moréra S, Faure D. Concerted transfer of the virulence Ti plasmid and companion At plasmid in the Agrobacterium tumefaciens-induced plant tumour. Mol Microbiol 2013; 90:1178-89. [PMID: 24118167 DOI: 10.1111/mmi.12423] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2013] [Indexed: 01/28/2023]
Abstract
The plant pathogen Agrobacterium tumefaciens C58 harbours three independent type IV secretion (T4SS) machineries. T4SST-DNA promotes the transfer of the T-DNA to host plant cells, provoking tumour development and accumulation of opines such as nopaline and agrocinopines. T4SSpTi and T4SSpAt control the bacterial conjugation of the Ti and At plasmids respectively. Expression of T4SSpTi is controlled by the agrocinopine-responsive transcriptional repressor AccR. In this work, we compared the genome-wide transcriptional profile of the wild-type A. tumefaciens strain C58 with that of its accR KO-mutant to delineate the AccR regulon. In addition to the genes that encode agrocinopine catabolism and T4SSpTi , we found that AccR also regulated genes coding for nopaline catabolism and T4SSpAt . Further opine detection and conjugation assays confirmed the enhancement of nopaline consumption and At plasmid conjugation frequency in accR. Moreover, co-regulation of the T4SSpTi and T4SSpAt correlated with the co-transfer of the At and Ti plasmids both in vitro and in plant tumours. Finally, unlike T4SSpTi , T4SSpAt activation does not require quorum-sensing. Overall this study highlights the regulatory interplays between opines, At and Ti plasmids that contribute to a concerted dissemination of the two replicons in bacterial populations colonizing the plant tumour.
Collapse
Affiliation(s)
- Julien Lang
- Centre National de la Recherche Scientifique, Institut des Sciences du Végétal, UPR2355, 1, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
24
|
Dagorn A, Chapalain A, Mijouin L, Hillion M, Duclairoir-Poc C, Chevalier S, Taupin L, Orange N, Feuilloley MGJ. Effect of GABA, a bacterial metabolite, on Pseudomonas fluorescens surface properties and cytotoxicity. Int J Mol Sci 2013; 14:12186-204. [PMID: 23743829 PMCID: PMC3709781 DOI: 10.3390/ijms140612186] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 05/23/2013] [Accepted: 05/27/2013] [Indexed: 01/22/2023] Open
Abstract
Different bacterial species and, particularly Pseudomonas fluorescens, can produce gamma-aminobutyric acid (GABA) and express GABA-binding proteins. In this study, we investigated the effect of GABA on the virulence and biofilm formation activity of different strains of P. fluorescens. Exposure of a psychotropic strain of P. fluorescens (MF37) to GABA (10-5 M) increased its necrotic-like activity on eukaryotic (glial) cells, but reduced its apoptotic effect. Conversely, muscimol and bicuculline, the selective agonist and antagonist of eukaryote GABAA receptors, respectively, were ineffective. P. fluorescens MF37 did not produce biosurfactants, and its caseinase, esterase, amylase, hemolytic activity or pyoverdine productions were unchanged. In contrast, the effect of GABA was associated to rearrangements of the lipopolysaccharide (LPS) structure, particularly in the lipid A region. The surface hydrophobicity of MF37 was marginally modified, and GABA reduced its biofilm formation activity on PVC, but not on glass, although the initial adhesion was increased. Five other P. fluorescens strains were studied, and only one, MFP05, a strain isolated from human skin, showed structural differences of biofilm maturation after exposure to GABA. These results reveal that GABA can regulate the LPS structure and cytotoxicity of P. fluorescens, but that this property is specific to some strains.
Collapse
Affiliation(s)
- Audrey Dagorn
- Laboratory of Microbiology Signal and Microenvironment LMSM, EA 4312, Normandie University, Rouen University, GRRs SSE, IRIB, VASI, Evreux F-27000, France; E-Mails: (A.D.); (A.C.); (L.M.); (M.H.); (C.D.-P.); (S.C.); (N.O.)
| | - Annelise Chapalain
- Laboratory of Microbiology Signal and Microenvironment LMSM, EA 4312, Normandie University, Rouen University, GRRs SSE, IRIB, VASI, Evreux F-27000, France; E-Mails: (A.D.); (A.C.); (L.M.); (M.H.); (C.D.-P.); (S.C.); (N.O.)
| | - Lily Mijouin
- Laboratory of Microbiology Signal and Microenvironment LMSM, EA 4312, Normandie University, Rouen University, GRRs SSE, IRIB, VASI, Evreux F-27000, France; E-Mails: (A.D.); (A.C.); (L.M.); (M.H.); (C.D.-P.); (S.C.); (N.O.)
| | - Mélanie Hillion
- Laboratory of Microbiology Signal and Microenvironment LMSM, EA 4312, Normandie University, Rouen University, GRRs SSE, IRIB, VASI, Evreux F-27000, France; E-Mails: (A.D.); (A.C.); (L.M.); (M.H.); (C.D.-P.); (S.C.); (N.O.)
| | - Cécile Duclairoir-Poc
- Laboratory of Microbiology Signal and Microenvironment LMSM, EA 4312, Normandie University, Rouen University, GRRs SSE, IRIB, VASI, Evreux F-27000, France; E-Mails: (A.D.); (A.C.); (L.M.); (M.H.); (C.D.-P.); (S.C.); (N.O.)
| | - Sylvie Chevalier
- Laboratory of Microbiology Signal and Microenvironment LMSM, EA 4312, Normandie University, Rouen University, GRRs SSE, IRIB, VASI, Evreux F-27000, France; E-Mails: (A.D.); (A.C.); (L.M.); (M.H.); (C.D.-P.); (S.C.); (N.O.)
| | - Laure Taupin
- Laboratoire de Biotechnologie et Chimie Marines, Université de Bretagne-Sud B.P. 92116, Lorient cedex 56321, France; E-Mail:
| | - Nicole Orange
- Laboratory of Microbiology Signal and Microenvironment LMSM, EA 4312, Normandie University, Rouen University, GRRs SSE, IRIB, VASI, Evreux F-27000, France; E-Mails: (A.D.); (A.C.); (L.M.); (M.H.); (C.D.-P.); (S.C.); (N.O.)
| | - Marc G. J. Feuilloley
- Laboratory of Microbiology Signal and Microenvironment LMSM, EA 4312, Normandie University, Rouen University, GRRs SSE, IRIB, VASI, Evreux F-27000, France; E-Mails: (A.D.); (A.C.); (L.M.); (M.H.); (C.D.-P.); (S.C.); (N.O.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +332-32-29-15-42; Fax: +332-32-29-15-50
| |
Collapse
|
25
|
Planamente S, Moréra S, Faure D. In planta fitness-cost of the Atu4232-regulon encoding for a selective GABA-binding sensor in Agrobacterium. Commun Integr Biol 2013; 6:e23692. [PMID: 23710277 PMCID: PMC3656012 DOI: 10.4161/cib.23692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/21/2013] [Accepted: 01/21/2013] [Indexed: 12/01/2022] Open
Abstract
GABA (gamma-aminobutyric acid) mediates cell-to-cell communication in eukaryotes and interspecies communication in host-microbe interactions. Agrobacterium tumefaciens induces the development of plant tumor in which GABA accumulates. Two periplasmic binding proteins Atu2422 and Atu4243 and their appropriate ABC-transporter are involved in the binding and importation of GABA. The structure of the selective GABA-binding Atu4243 reveals a GABA conformation similar to a proposed model of GABA bound to the mammalian GABAC receptor. The A. tumefaciens atu4243 mutant is affected for GABA uptake, aggressiveness on plant host and GABA-induced degradation of the quorum-sensing signal, hence for horizontal transfer of the tumor-inducing plasmid. Here, we report that a de-repression of atu4243 and its co-regulated neighbor genes affect the fitness of A. tumefaciens during tumor colonization. Atu4243-orthologs are present in several species of the Agrobacterium genus. This addendum highlights the recent data on the GABA transport in the A. tumefaciens plant-pathogen.
Collapse
Affiliation(s)
- Sara Planamente
- Institut des Sciences du Végétal (ISV); CNRS; Gif-sur-Yvette, France ; Laboratoire d'Enzymologie et Biochimie Structurales (LEBS); CNRS; Gif-sur-Yvette, France
| | | | | |
Collapse
|