1
|
Pekarsky A, Spadiut O. Intrinsically Magnetic Cells: A Review on Their Natural Occurrence and Synthetic Generation. Front Bioeng Biotechnol 2020; 8:573183. [PMID: 33195134 PMCID: PMC7604359 DOI: 10.3389/fbioe.2020.573183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
The magnetization of non-magnetic cells has great potential to aid various processes in medicine, but also in bioprocess engineering. Current approaches to magnetize cells with magnetic nanoparticles (MNPs) require cellular uptake or adsorption through in vitro manipulation of cells. A relatively new field of research is "magnetogenetics" which focuses on in vivo production and accumulation of magnetic material. Natural intrinsically magnetic cells (IMCs) produce intracellular, MNPs, and are called magnetotactic bacteria (MTB). In recent years, researchers have unraveled function and structure of numerous proteins from MTB. Furthermore, protein engineering studies on such MTB proteins and other potentially magnetic proteins, like ferritins, highlight that in vivo magnetization of non-magnetic hosts is a thriving field of research. This review summarizes current knowledge on recombinant IMC generation and highlights future steps that can be taken to succeed in transforming non-magnetic cells to IMCs.
Collapse
Affiliation(s)
| | - Oliver Spadiut
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Vienna, Austria
| |
Collapse
|
2
|
Sharma M, Narayanan N, Nair DT. The proofreading activity of Pfprex from Plasmodium falciparum can prevent mutagenesis of the apicoplast genome by oxidized nucleotides. Sci Rep 2020; 10:11157. [PMID: 32636411 PMCID: PMC7341739 DOI: 10.1038/s41598-020-67853-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/11/2020] [Indexed: 01/28/2023] Open
Abstract
The DNA polymerase module of the Pfprex enzyme (PfpPol) is responsible for duplication of the genome of the apicoplast organelle in the malaria parasite. We show that PfpPol can misincorporate oxidized nucleotides such as 8oxodGTP opposite dA. This event gives rise to transversion mutations that are known to lead to adverse physiological outcomes. The apicoplast genome is particularly vulnerable to the harmful effects of 8oxodGTP due to very high AT content (~ 87%). We show that the proofreading activity of PfpPol has the unique ability to remove the oxidized nucleotide from the primer terminus. Due to this property, the proofreading domain of PfpPol is able to prevent mutagenesis of the AT-rich apicoplast genome and neutralize the deleterious genotoxic effects of ROS generated in the apicoplast due to normal metabolic processes. The proofreading activity of the Pfprex enzyme may, therefore, represent an attractive target for therapeutic intervention. Also, a survey of DNA repair pathways shows that the observed property of Pfprex constitutes a novel form of dynamic error correction wherein the repair of promutagenic damaged nucleotides is concomitant with DNA replication.
Collapse
Affiliation(s)
- Minakshi Sharma
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
- Kalinga Institute of Industrial Technology, Patia, Bhubaneshwar, Odisha, 751024, India
| | - Naveen Narayanan
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
- Manipal Academy of Higher Education, Madhav Nagar, Manipal, 576104, India
| | - Deepak T Nair
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.
| |
Collapse
|
3
|
Nucleoside Diphosphate Kinase Escalates A-to-C Mutations in MutT-Deficient Strains of Escherichia coli. J Bacteriol 2019; 202:JB.00567-19. [PMID: 31591275 DOI: 10.1128/jb.00567-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/01/2019] [Indexed: 11/20/2022] Open
Abstract
The chemical integrity of the nucleotide pool and its homeostasis are crucial for genome stability. Nucleoside diphosphate kinase (NDK) is a crucial enzyme that carries out reversible conversions from nucleoside diphosphate (NDP) to nucleoside triphosphate (NTP) and deoxynucleoside diphosphate (dNDP) to deoxynucleoside triphosphate (dNTP). Guanosine nucleotides (GDP, GTP, dGDP, and dGTP) are highly susceptible to oxidative damage to 8-oxo-GDP (8-O-GDP), 8-O-dGTP, 8-O-GTP, and 8-O-dGTP. MutT proteins in cells hydrolyze 8-O-GTP to 8-O-GMP or 8-O-dGTP to 8-O-dGMP to avoid its incorporation in nucleic acids. In Escherichia coli, 8-O-dGTP is also known to be hydrolyzed by RibA (GTP cyclohydrolase II). In this study, we show that E. coli NDK catalyzes the conversion of 8-O-dGDP to 8-O-dGTP or vice versa. However, the rate of NDK-mediated phosphorylation of 8-O-dGDP to 8-O-dGTP is about thrice as efficient as the rate of dephosphorylation of 8-O-dGTP to 8-O-dGDP, suggesting an additive role of NDK in net production of 8-O-dGTP in cells. Consistent with this observation, the depletion of NDK (Δndk) in E. coli ΔmutT or ΔmutT ΔribA strains results in a decrease of A-to-C mutations. These observations suggest that NDK contributes to the physiological load of MutT in E. coli IMPORTANCE Nucleoside diphosphate kinase (NDK), a ubiquitous enzyme, is known for its critical role in homeostasis of cellular nucleotide pools. However, NDK has now emerged as a molecule with pleiotropic effects in DNA repair, protein phosphorylation, gene expression, tumor metastasis, development, and pathogen virulence and persistence inside the host. In this study, we reveal an unexpected role of NDK in genome instability because of its activity in converting 8-O-dGDP to 8-O-dGTP. This observation has important consequences in escalating A-to-C mutations in Escherichia coli The severity of NDK in enhancing these mutations may be higher in the organisms challenged with high oxidative stress, which promotes 8-O-dGDP/8-O-dGTP production.
Collapse
|
4
|
Yang CP, Liu YC. Therapeutics for Inflammatory-Related Diseases Based on Plasmon-Activated Water: A Review. Int J Mol Sci 2018; 19:E1589. [PMID: 29843406 PMCID: PMC6032129 DOI: 10.3390/ijms19061589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022] Open
Abstract
It is recognized that the properties of liquid water can be markedly different from those of bulk one when it is in contact with hydrophobic surfaces or is confined in nano-environments. Because our knowledge regarding water structure on the molecular level of dynamic equilibrium within a picosecond time scale is far from completeness all of water's conventionally known properties are based on inert "bulk liquid water" with a tetrahedral hydrogen-bonded structure. Actually, the strength of water's hydrogen bonds (HBs) decides its properties and activities. In this review, an innovative idea on preparation of metastable plasmon-activated water (PAW) with intrinsically reduced HBs, by letting deionized (DI) water flow through gold-supported nanoparticles (AuNPs) under resonant illumination at room temperature, is reported. Compared to DI water, the created stable PAW can scavenge free hydroxyl and 2,2-diphenyl-1-picrylhydrazyl radicals and effectively reduce NO release from lipopolysaccharide-induced inflammatory cells. Moreover, PAW can dramatically induce a major antioxidative Nrf2 gene in human gingival fibroblasts. This further confirms its cellular antioxidative and anti-inflammatory properties. In addition, innovatively therapeutic strategy of daily drinking PAW on inflammatory-related diseases based on animal disease models is demonstrated, examples being chronic kidney disease (CKD), chronic sleep deprivation (CSD), and lung cancer.
Collapse
Affiliation(s)
- Chih-Ping Yang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan.
| | - Yu-Chuan Liu
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan.
| |
Collapse
|
5
|
Innovatively Therapeutic Strategy on Lung Cancer by Daily Drinking Antioxidative Plasmon-Induced Activated Water. Sci Rep 2018; 8:6316. [PMID: 29679033 PMCID: PMC5910416 DOI: 10.1038/s41598-018-24752-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 03/13/2018] [Indexed: 01/22/2023] Open
Abstract
Many human diseases are inflammation-related, such as cancer and those
associated with aging. Previous studies demonstrated that plasmon-induced activated
(PIA) water with electron-doping character, created from hot electron transfer via
decay of excited Au nanoparticles (NPs) under resonant illumination, owns reduced
hydrogen-bonded networks and physchemically antioxidative properties. In this study,
it is demonstrated PIA water dramatically induced a major antioxidative Nrf2 gene in human gingival fibroblasts which further
confirms its cellular antioxidative and anti-inflammatory properties. Furthermore,
mice implanted with mouse Lewis lung carcinoma (LLC-1) cells drinking PIA water
alone or together with cisplatin treatment showed improved survival time compared to
mice which consumed only deionized (DI) water. With the combination of PIA water and
cisplatin administration, the survival time of LLC-1-implanted mice markedly
increased to 8.01 ± 0.77 days compared to 6.38 ± 0.61 days of mice given cisplatin
and normal drinking DI water. This survival time of 8.01 ± 0.77 days compared to
4.62 ± 0.71 days of mice just given normal drinking water is statistically
significant (p = 0.009). Also, the gross
observations and eosin staining results suggested that LLC-1-implanted mice drinking
PIA water tended to exhibit less metastasis than mice given only DI water.
Collapse
|
6
|
Oxygen and RNA in stress-induced mutation. Curr Genet 2018; 64:769-776. [PMID: 29294174 PMCID: PMC6028306 DOI: 10.1007/s00294-017-0801-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 01/29/2023]
Abstract
Mechanisms of mutation upregulated by stress responses have been described in several organisms from bacteria to human. These mechanisms might accelerate genetic change specifically when cells are maladapted to their environment. Stress-induced mutation mechanisms differ in their genetic requirements from mutation in growing cells, occurring by different mechanisms in different assay systems, but having in common a requirement for the induction of stress-responses. Here, we review progress in two areas relevant to stress-response-dependent mutagenic DNA break repair mechanisms in Escherichia coli. First, we review evidence that relates mutation to transcription. This connection might allow mutagenesis in transcribed regions, including those relevant to any stress being experienced, opening the possibility that mutations could be targeted to regions where mutation might be advantageous under conditions of a specific stress. We review the mechanisms by which replication initiated by transcription can lead to mutation. Second, we review recent findings that, although stress-induced mutation does not require exogenous DNA-damaging agents, it does require the presence of damaged bases in DNA. For starved E. coli, endogenous oxygen radicals cause these altered bases. We postulate that damaged bases stall the replisome, which, we suggest, is required for DNA-polymerase exchange, allowing the action of low-fidelity DNA polymerases that promote mutation.
Collapse
|
7
|
Schroeder JW, Yeesin P, Simmons LA, Wang JD. Sources of spontaneous mutagenesis in bacteria. Crit Rev Biochem Mol Biol 2017; 53:29-48. [PMID: 29108429 DOI: 10.1080/10409238.2017.1394262] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mutations in an organism's genome can arise spontaneously, that is, in the absence of exogenous stress and prior to selection. Mutations are often neutral or deleterious to individual fitness but can also provide genetic diversity driving evolution. Mutagenesis in bacteria contributes to the already serious and growing problem of antibiotic resistance. However, the negative impacts of spontaneous mutagenesis on human health are not limited to bacterial antibiotic resistance. Spontaneous mutations also underlie tumorigenesis and evolution of drug resistance. To better understand the causes of genetic change and how they may be manipulated in order to curb antibiotic resistance or the development of cancer, we must acquire a mechanistic understanding of the major sources of mutagenesis. Bacterial systems are particularly well-suited to studying mutagenesis because of their fast growth rate and the panoply of available experimental tools, but efforts to understand mutagenic mechanisms can be complicated by the experimental system employed. Here, we review our current understanding of mutagenic mechanisms in bacteria and describe the methods used to study mutagenesis in bacterial systems.
Collapse
Affiliation(s)
- Jeremy W Schroeder
- a Department of Bacteriology , University of Wisconsin - Madison , Madison , WI , USA
| | - Ponlkrit Yeesin
- a Department of Bacteriology , University of Wisconsin - Madison , Madison , WI , USA
| | - Lyle A Simmons
- b Department of Molecular, Cellular, and Developmental Biology , University of Michigan , Ann Arbor , MI , USA
| | - Jue D Wang
- a Department of Bacteriology , University of Wisconsin - Madison , Madison , WI , USA
| |
Collapse
|
8
|
Markkanen E. Not breathing is not an option: How to deal with oxidative DNA damage. DNA Repair (Amst) 2017; 59:82-105. [PMID: 28963982 DOI: 10.1016/j.dnarep.2017.09.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
Abstract
Oxidative DNA damage constitutes a major threat to genetic integrity, and has thus been implicated in the pathogenesis of a wide variety of diseases, including cancer and neurodegeneration. 7,8-dihydro-8oxo-deoxyGuanine (8-oxo-G) is one of the best characterised oxidative DNA lesions, and it can give rise to point mutations due to its miscoding potential that instructs most DNA polymerases (Pols) to preferentially insert Adenine (A) opposite 8-oxo-G instead of the correct Cytosine (C). If uncorrected, A:8-oxo-G mispairs can give rise to C:G→A:T transversion mutations. Cells have evolved a variety of pathways to mitigate the mutational potential of 8-oxo-G that include i) mechanisms to avoid incorporation of oxidized nucleotides into DNA through nucleotide pool sanitisation enzymes (by MTH1, MTH2, MTH3 and NUDT5), ii) base excision repair (BER) of 8-oxo-G in DNA (involving MUTYH, OGG1, Pol λ, and other components of the BER machinery), and iii) faithful bypass of 8-oxo-G lesions during replication (using a switch between replicative Pols and Pol λ). In the following, the fate of 8-oxo-G in mammalian cells is reviewed in detail. The differential origins of 8-oxo-G in DNA and its consequences for genetic stability will be covered. This will be followed by a thorough discussion of the different mechanisms in place to cope with 8-oxo-G with an emphasis on Pol λ-mediated correct bypass of 8-oxo-G during MUTYH-initiated BER as well as replication across 8-oxo-G. Furthermore, the multitude of mechanisms in place to regulate key proteins involved in 8-oxo-G repair will be reviewed. Novel functions of 8-oxo-G as an epigenetic-like regulator and insights into the repair of 8-oxo-G within the cellular context will be touched upon. Finally, a discussion will outline the relevance of 8-oxo-G and the proteins involved in dealing with 8-oxo-G to human diseases with a special emphasis on cancer.
Collapse
Affiliation(s)
- Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Winterthurerstr. 260, 8057 Zürich, Switzerland.
| |
Collapse
|
9
|
Nevin P, Gabbai CC, Marians KJ. Replisome-mediated translesion synthesis by a cellular replicase. J Biol Chem 2017. [PMID: 28642369 DOI: 10.1074/jbc.m117.800441] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genome integrity relies on the ability of the replisome to navigate ubiquitous DNA damage during DNA replication. The Escherichia coli replisome transiently stalls at leading-strand template lesions and can either reinitiate replication downstream of the lesion or recruit specialized DNA polymerases that can bypass the lesion via translesion synthesis. Previous results had suggested that the E. coli replicase might play a role in lesion bypass, but this possibility has not been tested in reconstituted DNA replication systems. We report here that the DNA polymerase III holoenzyme in a stalled E. coli replisome can directly bypass a single cyclobutane pyrimidine dimer or abasic site by translesion synthesis in the absence of specialized translesion synthesis polymerases. Bypass efficiency was proportional to deoxynucleotide concentrations equivalent to those found in vivo and was dependent on the frequency of primer synthesis downstream of the lesion. Translesion synthesis came at the expense of lesion-skipping replication restart. Replication of a cyclobutane pyrimidine dimer was accurate, whereas replication of an abasic site resulted in mainly -1 frameshifts. Lesion bypass was accompanied by an increase in base substitution frequency for the base preceding the lesion. These findings suggest that DNA damage at the replication fork can be replicated directly by the replisome without the need to activate error-prone pathways.
Collapse
Affiliation(s)
- Philip Nevin
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Carolina C Gabbai
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Kenneth J Marians
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
10
|
The anti/syn conformation of 8-oxo-7,8-dihydro-2'-deoxyguanosine is modulated by Bacillus subtilis PolX active site residues His255 and Asn263. Efficient processing of damaged 3'-ends. DNA Repair (Amst) 2017; 52:59-69. [PMID: 28254425 DOI: 10.1016/j.dnarep.2017.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 11/20/2022]
Abstract
8-oxo-7,8-dihydro-2'-deoxyguanosine (8oxodG) is a major lesion resulting from oxidative stress and found in both DNA and dNTP pools. Such a lesion is usually removed from DNA by the Base Excision Repair (BER), a universally conserved DNA repair pathway. 8oxodG usually adopts the favored and promutagenic syn-conformation at the active site of DNA polymerases, allowing the base to hydrogen bonding with adenine during DNA synthesis. Here, we study the structural determinants that affect the glycosidic torsion-angle of 8oxodGTP at the catalytic active site of the family X DNA polymerase from Bacillus subtilis (PolXBs). We show that, unlike most DNA polymerases, PolXBs exhibits a similar efficiency to stabilize the anti and syn conformation of 8oxodGTP at the catalytic site. Kinetic analyses indicate that at least two conserved residues of the nucleotide binding pocket play opposite roles in the anti/syn conformation selectivity, Asn263 and His255 that favor incorporation of 8oxodGMP opposite dA and dC, respectively. In addition, the presence in PolXBs of Mn2+-dependent 3'-phosphatase and 3'-phosphodiesterase activities is also shown. Those activities rely on the catalytic center of the C-terminal Polymerase and Histidinol Phosphatase (PHP) domain of PolXBs and, together with its 3'-5' exonuclease activity allows the enzyme to resume gap-filling after processing of damaged 3' termini.
Collapse
|
11
|
Determinants of spontaneous mutation in the bacterium Escherichia coli as revealed by whole-genome sequencing. Proc Natl Acad Sci U S A 2015; 112:E5990-9. [PMID: 26460006 DOI: 10.1073/pnas.1512136112] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A complete understanding of evolutionary processes requires that factors determining spontaneous mutation rates and spectra be identified and characterized. Using mutation accumulation followed by whole-genome sequencing, we found that the mutation rates of three widely diverged commensal Escherichia coli strains differ only by about 50%, suggesting that a rate of 1-2 × 10(-3) mutations per generation per genome is common for this bacterium. Four major forces are postulated to contribute to spontaneous mutations: intrinsic DNA polymerase errors, endogenously induced DNA damage, DNA damage caused by exogenous agents, and the activities of error-prone polymerases. To determine the relative importance of these factors, we studied 11 strains, each defective for a major DNA repair pathway. The striking result was that only loss of the ability to prevent or repair oxidative DNA damage significantly impacted mutation rates or spectra. These results suggest that, with the exception of oxidative damage, endogenously induced DNA damage does not perturb the overall accuracy of DNA replication in normally growing cells and that repair pathways may exist primarily to defend against exogenously induced DNA damage. The thousands of mutations caused by oxidative damage recovered across the entire genome revealed strong local-sequence biases of these mutations. Specifically, we found that the identity of the 3' base can affect the mutability of a purine by oxidative damage by as much as eightfold.
Collapse
|
12
|
Maharjan R, Ferenci T. Mutational signatures indicative of environmental stress in bacteria. Mol Biol Evol 2014; 32:380-91. [PMID: 25389207 DOI: 10.1093/molbev/msu306] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Evolutionary innovations are dependent on mutations. Mutation rates are increased by adverse conditions in the laboratory, but there is no evidence that stressful environments that do not directly impact on DNA leave a mutational imprint on extant genomes. Mutational spectra in the laboratory are normally determined with unstressed cells but are unavailable with stressed bacteria. To by-pass problems with viability, selection effects, and growth rate differences due to stressful environments, in this study we used a set of genetically engineered strains to identify the mutational spectrum associated with nutritional stress. The strain set members each had a fixed level of the master regulator protein, RpoS, which controls the general stress response of Escherichia coli. By assessing mutations in cycA gene from 485 cycloserine resistant mutants collected from as many independent cultures with three distinct perceived stress (RpoS) levels, we were able establish a dose-dependent relationship between stress and mutational spectra. The altered mutational patterns included base pair substitutions, single base pair indels, longer indels, and transpositions of different insertion sequences. The mutational spectrum of low-RpoS cells closely matches the genome-wide spectrum previously generated in laboratory environments, while the spectra of high RpoS, high perceived stress cells more closely matches spectra found in comparisons of extant genomes. Our results offer an explanation of the uneven mutational profiles such as the transition-transversion biases observed in extant genomes and provide a framework for assessing the contribution of stress-induced mutagenesis to evolutionary transitions and the mutational emergence of antibiotic resistance and disease states.
Collapse
Affiliation(s)
- Ram Maharjan
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Thomas Ferenci
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Gordon AJE, Satory D, Wang M, Halliday JA, Golding I, Herman C. Removal of 8-oxo-GTP by MutT hydrolase is not a major contributor to transcriptional fidelity. Nucleic Acids Res 2014; 42:12015-26. [PMID: 25294823 PMCID: PMC4231768 DOI: 10.1093/nar/gku912] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Living in an oxygen-rich environment is dangerous for a cell. Reactive oxygen species can damage DNA, RNA, protein and lipids. The MutT protein in Escherichia coli removes 8-oxo-deoxyguanosine triphosphate (8-oxo-dGTP) and 8-oxo-guanosine triphosphate (8-oxo-GTP) from the nucleotide pools precluding incorporation into DNA and RNA. While 8-oxo-dGTP incorporation into DNA is mutagenic, it is not clear if 8-oxo-GTP incorporation into RNA can have phenotypic consequences for the cell. We use a bistable epigenetic switch sensitive to transcription errors in the Escherichia coli lacI transcript to monitor transient RNA errors. We do not observe any increase in epigenetic switching in mutT cells. We revisit the original observation of partial phenotypic suppression of a lacZamber allele in a mutT background that was attributed to RNA errors. We find that Lac+ revertants can completely account for the increase in β-galactosidase levels in mutT lacZamber cultures, without invoking participation of transient transcription errors. Moreover, we observe a fluctuation type of distribution of β-galactosidase appearance in a growing culture, consistent with Lac+ DNA revertant events. We conclude that the absence of MutT produces a DNA mutator but does not equally create an RNA mutator.
Collapse
Affiliation(s)
- Alasdair J E Gordon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dominik Satory
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mengyu Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Jennifer A Halliday
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ido Golding
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas, 77030, USA Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
14
|
Méhi O, Bogos B, Csörgő B, Pál F, Nyerges A, Papp B, Pál C. Perturbation of iron homeostasis promotes the evolution of antibiotic resistance. Mol Biol Evol 2014; 31:2793-804. [PMID: 25063442 PMCID: PMC4166929 DOI: 10.1093/molbev/msu223] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Evolution of antibiotic resistance in microbes is frequently achieved by acquisition of spontaneous mutations during antimicrobial therapy. Here, we demonstrate that inactivation of a central transcriptional regulator of iron homeostasis (Fur) facilitates laboratory evolution of ciprofloxacin resistance in Escherichia coli. To decipher the underlying molecular mechanisms, we first performed a global transcriptome analysis and demonstrated that the set of genes regulated by Fur changes substantially in response to antibiotic treatment. We hypothesized that the impact of Fur on evolvability under antibiotic pressure is due to the elevated intracellular concentration of free iron and the consequent enhancement of oxidative damage-induced mutagenesis. In agreement with expectations, overexpression of iron storage proteins, inhibition of iron transport, or anaerobic conditions drastically suppressed the evolution of resistance, whereas inhibition of the SOS response-mediated mutagenesis had only a minor effect. Finally, we provide evidence that a cell permeable iron chelator inhibits the evolution of resistance. In sum, our work revealed the central role of iron metabolism in the de novo evolution of antibiotic resistance, a pattern that could influence the development of novel antimicrobial strategies.
Collapse
Affiliation(s)
- Orsolya Méhi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Balázs Bogos
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Bálint Csörgő
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Ferenc Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Akos Nyerges
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
15
|
Dwyer DJ, Collins JJ, Walker GC. Unraveling the physiological complexities of antibiotic lethality. Annu Rev Pharmacol Toxicol 2014; 55:313-32. [PMID: 25251995 DOI: 10.1146/annurev-pharmtox-010814-124712] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We face an impending crisis in our ability to treat infectious disease brought about by the emergence of antibiotic-resistant pathogens and a decline in the development of new antibiotics. Urgent action is needed. This review focuses on a less well-understood aspect of antibiotic action: the complex metabolic events that occur subsequent to the interaction of antibiotics with their molecular targets and play roles in antibiotic lethality. Independent lines of evidence from studies of the action of bactericidal antibiotics on diverse bacteria collectively suggest that the initial interactions of drugs with their targets cannot fully account for the antibiotic lethality and that these interactions elicit the production of reactive oxidants including reactive oxygen species that contribute to bacterial cell death. Recent challenges to this concept are considered in the context of the broader literature of this emerging area of research. Possible ways that this new knowledge might be exploited to improve antibiotic therapy are also considered.
Collapse
Affiliation(s)
- Daniel J Dwyer
- Department of Cell Biology and Molecular Genetics, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742;
| | | | | |
Collapse
|
16
|
Tsai TH, Lin SY, Yang KH, Yang CP, Liu YC. More healthy teas innovatively treated utilizing gold nanoparticles. RSC Adv 2014. [DOI: 10.1039/c4ra05771f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Chen HC, Hwang BJ, Mai FD, Liu YC, Lin CM, Kuo HS, Chou DS, Lee MJ, Yang KH, Yu CC, Chen JR, Lo TY, Tsai HY, Yang CP, Wang C, Hsieh HT, Rick J. Active and stable liquid water innovatively prepared using resonantly illuminated gold nanoparticles. ACS NANO 2014; 8:2704-2713. [PMID: 24533852 DOI: 10.1021/nn406403c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The properties of confined liquid water, or liquid water in contact with hydrophobic surfaces, are significantly different from those of bulk liquid water. However, all of water's commonly described properties are related to inert "bulk liquid water" which comprises a tetrahedral hydrogen-bonded network. In this work, we report an innovative and facile method for preparing small water clusters (SWCs) with reduced affinity hydrogen bonds by letting bulk water flow through supported Au nanoparticles (NPs) under resonant illumination to give NP-treated (AuNT) water at constant temperature. Utilizing localized surface plasmon resonance on illuminated Au NPs, the strong hydrogen bonds of bulk water can be disordered when water is located at the illuminated Au/water interface. The prepared SWCs are free of Au NPs. The energy efficiency for creating SWCs is ∼17%. The resulting stable AuNT water exhibits distinct properties at room temperature, which are significantly different from the properties of untreated bulk water, examples being their ability to scavenge free hydroxyl and 2,2-diphenyl-1-picrylhydrazyl radicals and to effectively reduce NO release from lipopolysaccharide-induced inflammatory cells.
Collapse
Affiliation(s)
- Hsiao-Chien Chen
- Department of Biochemistry, School of Medicine, College of Medicine, Taipei Medical University , No. 250, Wu-Hsing Street, Taipei 11031, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Characterization of Streptococcus tigurinus small-colony variants causing prosthetic joint infection by comparative whole-genome analyses. J Clin Microbiol 2013; 52:467-74. [PMID: 24478475 DOI: 10.1128/jcm.02801-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Small-colony variants (SCVs) of bacteria are associated with recurrent and persistent infections. We describe for the first time SCVs of Streptococcus tigurinus in a patient with a prosthetic joint infection. S. tigurinus is a novel pathogen of the Streptococcus mitis group and causes invasive infections. We sought to characterize S. tigurinus SCVs using experimental methods and find possible genetic explanations for their phenotypes. The S. tigurinus SCVs were compared with the wild-type (WT) isolate using phenotypic methods, including growth under different conditions, autolysis, and visualization of the cell ultrastructure by use of transmission electron microscopy (TEM). Furthermore, comparative genome analyses were performed. The S. tigurinus SCVs displayed reduced growth compared to the WT and showed either a very stable or a fluctuating SCV phenotype. TEM analyses revealed major alterations in cell separation and morphological abnormalities, which were partially explained by impaired autolytic behavior. Intriguingly, the SCVs were more resistant to induced autolysis. Whole-genome sequencing revealed mutations in the genes involved in general cell metabolism, cell division, stringent response, and virulence. Clinically, the patient recovered after a 2-stage exchange of the prosthesis. Comparative whole-genome sequencing in clinical strains is a useful tool for identifying novel genetic signatures leading to the most persistent bacterial forms. The detection of viridans streptococcal SCVs is challenging in a clinical laboratory due to the small colony size. Thus, it is of major clinical importance for microbiologists and clinicians to be aware of viridans streptococcal SCVs, such as those of S. tigurinus, which lead to difficult-to-treat infections.
Collapse
|
19
|
Abstract
Recent observations have suggested that classic antibiotics kill bacteria by stimulating the formation of reactive oxygen species (ROS). If true, this notion might guide new strategies to improve antibiotic efficacy. In this study, the model was directly tested. Contrary to the hypothesis, antibiotic treatment did not accelerate the formation of hydrogen peroxide in Escherichia coli and did not elevate intracellular free iron, an essential reactant for the production of lethal damage. Lethality persisted in the absence of oxygen, and DNA repair mutants were not hypersensitive, undermining the idea that toxicity arose from oxidative DNA lesions. We conclude that these antibiotic exposures did not produce ROS and that lethality more likely resulted from the direct inhibition of cell-wall assembly, protein synthesis, and DNA replication.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Microbiology, University of Illinois, Urbana, IL 61801; USA
| | - James A. Imlay
- Department of Microbiology, University of Illinois, Urbana, IL 61801; USA
| |
Collapse
|