1
|
Zhang K, Yin M, Lei S, Zhang H, Yin X, Niu Q. Bacillus sp. YC7 from intestines of Lasioderma serricorne degrades nicotine due to nicotine dehydrogenase. AMB Express 2023; 13:87. [PMID: 37603100 PMCID: PMC10441963 DOI: 10.1186/s13568-023-01593-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
A large number of nicotine-containing wastes produced during the tobacco manufacturing process are seriously harmful to the environment and human health. The degradation and transformation of nicotine-containing environmental contaminants to harmless substances has become an urgent requirement. Lasioderma serricorne can grow and reproduce in nicotine-rich sources, and their intestinal microbiota show promising potential to degrade and utilize nicotine. The purpose of this study is to screen and identify nicotine-degrading bacteria from the intestines of L. serricorne and explore their degradation characteristics. A dominant strain, YC7, with significant nicotine degradation capabilities was isolated from the intestines of L. serricorne. The strain was identified as Bacillus using a polyphasic approach. The test results showed it can produce multiple enzymes that include β-glucosidase, cellulase, proteases, and amylases. The nicotine-degrading bacteria were functionally annotated using databases. Nicotine dehydrogenase (NDH) was found by combining an activity tracking test and protein mass spectrometry analysis. The YC-7 NDH in the pathway was molecularly docked and functionally verified via the gene knockdown method. The binding ability of nicotine to nicotine-degrading enzymes was investigated using molecular docking. A high-efficiency nicotine-degrading bacteria, YC-7, was isolated and screened from tobacco, and the gene functions related to degradation were verified. This investigation provides a new hypothesis for screening nicotine-degrading bacteria and increases our knowledge of potential nicotine-degrading microbial sources.
Collapse
Affiliation(s)
- Ke Zhang
- College of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, 90 Wangcheng Road, Luoyang, 471023, Henan, China
| | - Mingshen Yin
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Shengwei Lei
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Hongxin Zhang
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Xiaoyan Yin
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Qiuhong Niu
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China.
| |
Collapse
|
2
|
Structural, Mechanistic, and Functional Insights into an Arthrobacter nicotinovorans Molybdenum Hydroxylase Involved in Nicotine Degradation. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26144387. [PMID: 34299660 PMCID: PMC8305194 DOI: 10.3390/molecules26144387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/09/2023]
Abstract
Arthrobacter nicotinovorans decomposes nicotine through the pyridine pathway. 6-hydroxypseudooxynicotine 2-oxidoreductase (also named ketone dehydrogenase, Kdh) is an important enzyme in nicotine degradation pathway of A. nicotinovorans, and is responsible for the second hydroxylation of nicotine. Kdh belongs to the molybdenum hydroxylase family, and catalyzes the oxidation of 6-hydroxy-pseudooxynicotine (6-HPON) to 2,6-dihydroxy-pseudooxynicotine (2,6-DHPON). We determined the crystal structure of the Kdh holoenzyme from A. nicotinovorans, with its three subunits KdhL, KdhM, and KdhS, and their associated cofactors molybdopterin cytosine dinucleotide (MCD), two iron-sulfur clusters (Fe2S2), and flavin adenine dinucleotide (FAD), respectively. In addition, we obtained a structural model of the substrate 6-HPON-bound Kdh through molecular docking, and performed molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) calculations to unveil the catalytic mechanism of Kdh. The residues Glu345, Try551, and Glu748 of KdhL were found to participate in substrate binding, and Phe269 and Arg383 of KdhL were found to contribute to stabilize the MCD conformation. Furthermore, site-directed mutagenesis and enzymatic activity assays were performed to support our structural and computational results, which also revealed a trend of increasing catalytic efficiency with the increase in the buffer pH. Lastly, our electrochemical results demonstrated electron transfer among the various cofactors of Kdh. Therefore, our work provides a comprehensive structural, mechanistic, and functional study on the molybdenum hydroxylase Kdh in the nicotine degradation pathway of A. nicotinovorans.
Collapse
|
3
|
Huang H, Shang J, Wang S. Physiology of a Hybrid Pathway for Nicotine Catabolism in Bacteria. Front Microbiol 2020; 11:598207. [PMID: 33281798 PMCID: PMC7688666 DOI: 10.3389/fmicb.2020.598207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/07/2020] [Indexed: 11/21/2022] Open
Abstract
Nicotine is a major N-heterocyclic aromatic alkaloid produced in tobacco plants and the main toxic chemical in tobacco waste. Due to its complex physiological effects and toxicity, it has become a concern both in terms of public health and the environment. A number of bacteria belonging to the genera Arthrobacter and Pseudomonas can degrade nicotine via the pyridine and pyrrollidine pathways. Recently, a novel hybrid of the pyridine and pyrrolidine pathways (also known as the VPP pathway) was found in the Rhizobiale group bacteria Agrobacterium tumefaciens S33, Shinella sp. HZN7 and Ochrobactrum sp. SJY1 as well as in other group bacteria. The special mosaic pathway has attracted much attention from microbiologists in terms of the study of their molecular and biochemical mechanisms. This will benefit the development of new biotechnologies in terms of the use of nicotine, the enzymes involved in its catabolism, and the microorganisms capable of degrading the alkaloid. In this pathway, some metabolites are hydroxylated in the pyridine ring or modified in the side chain with active groups, which can be used as precursors for the synthesis of some important compounds in the pharmaceutical and agricultural industries. Moreover, some enzymes may be used for industrial biocatalysis to transform pyridine derivatives into desired chemicals. Here, we review the molecular and biochemical basis of the hybrid nicotine-degrading pathway and discuss the electron transport in its oxidative degradation for energy conservation and bacterial growth.
Collapse
Affiliation(s)
- Haiyan Huang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China.,Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Jinmeng Shang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Shuning Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Structural Insights into 6-Hydroxypseudooxynicotine Amine Oxidase from Pseudomonas geniculata N1, the Key Enzyme Involved in Nicotine Degradation. Appl Environ Microbiol 2020; 86:AEM.01559-20. [PMID: 32737127 DOI: 10.1128/aem.01559-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/23/2020] [Indexed: 11/20/2022] Open
Abstract
Bacteria degrade nicotine mainly using pyridine and pyrrolidine pathways. Previously, we discovered a hybrid of the pyridine and pyrrolidine pathways (the VPP pathway) in Pseudomonas geniculata N1 and characterized its key enzyme, 6-hydroxypseudooxynicotine amine oxidase (HisD). It catalyzes oxidative deamination of 6-hydroxypseudooxynicotine to 6-hydroxy-3-succinoylsemialdehyde-pyridine, which is the crucial step connecting upstream and downstream portions of the VPP pathway. We determined the crystal structure of wild-type HisD to 2.6 Å. HisD is a monomer that contains a flavin mononucleotide, an iron-sulfur cluster, and ADP. On the basis of sequence alignment and structure comparison, a difference has been found among HisD, closely related trimethylamine dehydrogenase (TMADH), and histamine dehydrogenase (HADH). The flavin mononucleotide (FMN) cofactor is not covalently bound to any residue, and the FMN isoalloxazine ring is planar in HisD compared to TMADH or HADH, which forms a 6-S-cysteinyl flavin mononucleotide cofactor and has an FMN isoalloxazine ring in a "butterfly bend" conformation. Based on the structure, docking study, and site-directed mutagenesis, the residues Glu60, Tyr170, Asp262, and Trp263 may be involved in substrate binding. The expanded understanding of the substrate binding mode from this study may guide rational engineering of such enzymes for biodegradation of potential pollutants or for bioconversion to generate desired products.IMPORTANCE Nicotine is a major tobacco alkaloid in tobacco waste. Pyridine and pyrrolidine pathways are the two best-elucidated nicotine metabolic pathways; Pseudomonas geniculata N1 catabolizes nicotine via a hybrid between the pyridine and pyrrolidine pathways. The crucial enzyme, 6-hydroxypseudooxynicotine amine oxidase (HisD), links the upstream and downstream portions of the VPP pathway; however, there is little structural information about this important enzyme. In this study, we determined the crystal structure of HisD from Pseudomonas geniculata N1. Its basic insights about the structure may help us to guide the engineering of such enzymes for bioremediation and bioconversion applications.
Collapse
|
5
|
Molecular Deceleration Regulates Toxicant Release to Prevent Cell Damage in Pseudomonas putida S16 (DSM 28022). mBio 2020; 11:mBio.02012-20. [PMID: 32873764 PMCID: PMC7468206 DOI: 10.1128/mbio.02012-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The underlying molecular mechanisms of flavin-dependent amine oxidases remain relatively poorly understood, even though many of these enzymes have been reported. The nicotine oxidoreductase NicA2 is a crucial enzyme for the first step of nicotine degradation in Pseudomonas putida S16 (DSM 28022). Here, we present the crystal structure of a ternary complex comprising NicA2 residues 21 to 482, flavin adenine dinucleotide (FAD), and nicotine at 2.25 Å resolution. Unlike other, related structures, NicA2 does not have an associated diacyl glycerophospholipid, wraps its substrate more tightly, and has an intriguing exit passage in which nine bulky amino acid residues occlude the release of its toxic product, pseudooxynicotine (PN). The replacement of these bulky residues by amino acids with small side chains effectively increases the catalytic turnover rate of NicA2. Our results indicate that the passage in wild-type NicA2 effectively controls the rate of PN release and thus prevents its rapid intracellular accumulation. It gives ample time for PN to be converted to less-harmful substances by downstream enzymes such as pseudooxynicotine amine oxidase (Pnao) before its accumulation causes cell damage or even death. The temporal metabolic regulation mode revealed in this study may shed light on the production of cytotoxic compounds.IMPORTANCE Flavin-dependent amine oxidases have received extensive attention because of their importance in drug metabolism, Parkinson's disease, and neurotransmitter catabolism. However, the underlying molecular mechanisms remain relatively poorly understood. Here, combining the crystal structure of NicA2 (an enzyme in the first step of the bacterial nicotine degradation pathway in Pseudomonas putida S16 (DSM 28022)), biochemical analysis, and mutant construction, we found an intriguing exit passage in which bulky amino acid residues occlude the release of the toxic product of NicA2, in contrast to other, related structures. The selective product exportation register for NicA2 has proven to be beneficial to cell growth. Those seeking to produce cytotoxic compounds could greatly benefit from the use of such an export register mechanism.
Collapse
|
6
|
Wu Z, Liu C, Zhang Z, Zheng R, Zheng Y. Amidase as a versatile tool in amide-bond cleavage: From molecular features to biotechnological applications. Biotechnol Adv 2020; 43:107574. [PMID: 32512219 DOI: 10.1016/j.biotechadv.2020.107574] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022]
Abstract
Amidases (EC 3. 5. 1. X) are versatile biocatalysts for synthesis of chiral carboxylic acids, α-amino acids and amides due to their hydrolytic and acyl transfer activity towards the C-N linkages. They have been extensively exploited and studied during the past years for their high specific activity and excellent enantioselectivity involved in various biotechnological applications in pharmaceutical and agrochemical industries. Additionally, they have attracted considerable attentions in biodegradation and bioremediation owing to environmental pressures. Motivated by industrial demands, crystallographic investigations and catalytic mechanisms of amidases based on structural biology have witnessed a dramatic promotion in the last two decades. The protein structures showed that different types of amidases have their typical stuctural elements, such as the conserved AS domains in signature amidases and the typical architecture of metal-associated active sites in acetamidase/formamidase family amidases. This review provides an overview of recent research advances in various amidases, with a focus on their structural basis of phylogenetics, substrate specificities and catalytic mechanisms as well as their biotechnological applications. As more crystal structures of amidases are determined, the structure/function relationships of these enzymes will also be further elucidated, which will facilitate molecular engineering and design of amidases to meet industrial requirements.
Collapse
Affiliation(s)
- Zheming Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Changfeng Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhaoyu Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Renchao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
7
|
Qi W, Long J, Feng C, Feng Y, Cheng D, Liu Y, Xue J, Li Z. Fe 3+ enhanced degradation of oxytetracycline in water by pseudomonas. WATER RESEARCH 2019; 160:361-370. [PMID: 31158618 DOI: 10.1016/j.watres.2019.05.058] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/09/2019] [Accepted: 05/18/2019] [Indexed: 05/26/2023]
Abstract
The application and fate of antibiotics are closely related to human health and the ecological balance, which has gradually aroused the widespread global concerns. Long-term antibiotic residues can easily induce antibiotic resistance and antibiotic resistance genes (ARGs) in the environment. Although many studies have investigated the metabolic pathways of biosynthesis or degradation of oxytetracycline (OTC) and its influencing factors under laboratory or controlled conditions, the understanding of OTC degradation pathways and influencing factors in the environment is still poor. In the present study, the role of Pseudomonas (T4) in OTC biodegradation were investigated with different carbon sources, metal ions, substrate concentrations, temperatures, and pH values, as well as the temporal changes in the relative abundance of OTC ARGs. It was found that OTC could be degraded by T4 as a sole carbon source. Comparison with Cu2+, the addition of Fe3+ could significantly promote the growth of T4, and then increased the OTC degradation percentage to 65.3%. The initial concentration of OTC, temperature, and pH had significant impacts on OTC degradation. At the initial OTC concentration of 50 mg L-1, the percentage degradation of OTC by T4 could reach 81.0% at the presence of Fe3+, and at 40 °C and pH = 7. Common tetracycline ARGs were not found during the OTC degradation by T4 in the present study. The eight main putative OTC degradation byproducts were identified by ultra-high definition accurate-mass quadrupole time-of-flight tandem mass spectrometry (QTOF/MS). Six different reaction types and seven possible degradation pathways were proposed, including enol-ketone conversion, hydroxylation, dehydration, deamination, demethylation and decarbonylation. Under optimal conditions, the OTC degradation percentages by T4 could reach to 88.2%, 91.6% and 92.0% in pond water, fish wastewater and industrial wastewater, respectively. These results demonstrate the high effectiveness of T4 at the presence of Fe3+ for the enhanced biodegradation of OTC in water environment, without resulting in the occurrence of ARGs. This has important implications for the removal of OTC from aquatic environments by the technology proposed from this study.
Collapse
Affiliation(s)
- Weining Qi
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, 550001, PR China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jian Long
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, 550001, PR China
| | - Changqing Feng
- College of Life Science, Shanxi Normal University, Linfen, 041004, PR China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yao Feng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Dengmiao Cheng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yuanwang Liu
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jianming Xue
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China; Scion, Private Bag 29237, Christchurch, New Zealand
| | - Zhaojun Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
8
|
Zolotareva D, Zazybin A, Rafikova K, Dembitsky VM, Dauletbakov A, Yu V. Ionic liquids assisted desulfurization and denitrogenation of fuels. VIETNAM JOURNAL OF CHEMISTRY 2019. [DOI: 10.1002/vjch.201900008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Darya Zolotareva
- School of Chemical & Biochemical Engineering; Satbayev University, 22a Satpayev Str.; Almaty 050013 Kazakhstan
| | - Alexey Zazybin
- School of Chemical & Biochemical Engineering; Satbayev University, 22a Satpayev Str.; Almaty 050013 Kazakhstan
- Center of Chemical Engineering; Kazakh-British Technical University, 59 Tole-bi Str.; Almaty, 050000 Kazakhstan
| | - Khadichakhan Rafikova
- School of Chemical & Biochemical Engineering; Satbayev University, 22a Satpayev Str.; Almaty 050013 Kazakhstan
- Suleyman Demirel University, Abylai khan street 1/1; Almaty, Kaskelen city, 040900 Kazakhstan
| | - Valery M. Dembitsky
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences. Leninsky Prospect 47; Moscow, 119991 Russia
| | - Anuar Dauletbakov
- School of Chemical & Biochemical Engineering; Satbayev University, 22a Satpayev Str.; Almaty 050013 Kazakhstan
- Center of Chemical Engineering; Kazakh-British Technical University, 59 Tole-bi Str.; Almaty, 050000 Kazakhstan
| | - Valentina Yu
- A.B. Bekturov Institute of Chemical Sciences, 106 Walikhanov Str.; Almaty, 050000 Kazakhstan
| |
Collapse
|
9
|
Hicks KA, Yuen ME, Zhen WF, Gerwig TJ, Story RW, Kopp MC, Snider MJ. Structural and Biochemical Characterization of 6-Hydroxynicotinic Acid 3-Monooxygenase, A Novel Decarboxylative Hydroxylase Involved in Aerobic Nicotinate Degradation. Biochemistry 2016; 55:3432-46. [DOI: 10.1021/acs.biochem.6b00105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Katherine A. Hicks
- Department
of Chemistry, SUNY Cortland, Cortland, New York 13045, United States
| | - Meigan E. Yuen
- Department
of Chemistry, SUNY Cortland, Cortland, New York 13045, United States
| | - Wei Feng Zhen
- Department
of Chemistry, SUNY Cortland, Cortland, New York 13045, United States
| | - Tyler J. Gerwig
- Department
of Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
| | - Ryan W. Story
- Department
of Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
| | - Megan C. Kopp
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Mark J. Snider
- Department
of Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
| |
Collapse
|