1
|
Zong G, Cao G, Fu J, Zhang P, Chen X, Yan W, Xin L, Wang Z, Xu Y, Zhang R. Novel mechanism of hydrogen peroxide for promoting efficient natamycin synthesis in Streptomyces. Microbiol Spectr 2023; 11:e0087923. [PMID: 37695060 PMCID: PMC10580950 DOI: 10.1128/spectrum.00879-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/21/2023] [Indexed: 09/12/2023] Open
Abstract
The mechanism of regulation of natamycin biosynthesis by Streptomyces in response to oxidative stress is unclear. Here, we first show cholesterol oxidase SgnE, which catalyzes the formation of H2O2 from sterols, triggered a series of redox-dependent interactions to stimulate natamycin production in S. gilvosporeus. In response to reactive oxygen species, residues Cys212 and Cys221 of the H2O2-sensing consensus sequence of OxyR were oxidized, resulting in conformational changes in the protein: OxyR extended its DNA-binding domain to interact with four motifs of promoter p sgnM . This acted as a redox-dependent switch to turn on/off gene transcription of sgnM, which encodes a cluster-situated regulator, by controlling the affinity between OxyR and p sgnM , thus regulating the expression of 12 genes in the natamycin biosynthesis gene cluster. OxyR cooperates with SgnR, another cluster-situated regulator and an upstream regulatory factor of SgnM, synergistically modulated natamycin biosynthesis by masking/unmasking the -35 region of p sgnM depending on the redox state of OxyR in response to the intracellular H2O2 concentration. IMPORTANCE Cholesterol oxidase SgnE is an indispensable factor, with an unclear mechanism, for natamycin biosynthesis in Streptomyces. Oxidative stress has been attributed to the natamycin biosynthesis. Here, we show that SgnE catalyzes the formation of H2O2 from sterols and triggers a series of redox-dependent interactions to stimulate natamycin production in S. gilvosporeus. OxyR, which cooperates with SgnR, acted as a redox-dependent switch to turn on/off gene transcription of sgnM, which encodes a cluster-situated regulator, by masking/unmasking its -35 region, to control the natamycin biosynthesis gene cluster. This work provides a novel perspective on the crosstalk between intracellular ROS homeostasis and natamycin biosynthesis. Application of these findings will improve antibiotic yields via control of the intracellular redox pressure in Streptomyces.
Collapse
Affiliation(s)
- Gongli Zong
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Guangxiang Cao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Jiafang Fu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Peipei Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Xi Chen
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Wenxiu Yan
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Lulu Xin
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Zhongxue Wang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, China
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Wang W, Wu H, Xiao Q, Zhou H, Li M, Xu Q, Wang Q, Yu F, He J. Crystal structure details of Vibrio fischeri DarR and mutant DarR-M202I from LTTR family reveals their activation mechanism. Int J Biol Macromol 2021; 183:2354-2363. [PMID: 34081954 DOI: 10.1016/j.ijbiomac.2021.05.186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/05/2021] [Accepted: 05/26/2021] [Indexed: 02/02/2023]
Abstract
DarR, a novel member of the LTTR family derived from Vibrio fischeri, activates transcription in response to d-Asp and regulates the overexpression of the racD genes encoding a putative aspartate racemase, RacD. Here, the crystal structure of full-length DarR and its mutant DarR-M202I were obtained by X-ray crystallography. According to the electron density map analysis of full-length DarR, the effector binding site of DarR is occupied by 2-Morpholinoethanesulfonic acid monohydrate (MES), which could interact with amino acids in the effector binding site and stabilize the effector binding site. Furthermore, we elaborated the structure of DarR-M202I, where methionine is replaced by isoleucine resulting in overexpression of the downstream operon. By comparing DarR-MES and DarR-M202I, we found similar behavior of DarR-MES in terms of the stability of the RD active pocket and the deflection angle of the DBD. The Isothermal titration calorimetry and Gel-filtration chromatography experiments showed that only when the target DNA sequence of a particular quasi-palindromic sequence exceeds 19 bp, DarR can effectively bind to racD promoter. This study will help enhance our understanding of the mechanism in the transcriptional regulation of LTTR family transcription factors.
Collapse
Affiliation(s)
- Weiwei Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai Wu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingjie Xiao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Huan Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Minjun Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Qin Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Qisheng Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Feng Yu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Jianhua He
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
3
|
Sen A, Imlay JA. How Microbes Defend Themselves From Incoming Hydrogen Peroxide. Front Immunol 2021; 12:667343. [PMID: 33995399 PMCID: PMC8115020 DOI: 10.3389/fimmu.2021.667343] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/19/2021] [Indexed: 12/02/2022] Open
Abstract
Microbes rely upon iron as a cofactor for many enzymes in their central metabolic processes. The reactive oxygen species (ROS) superoxide and hydrogen peroxide react rapidly with iron, and inside cells they can generate both enzyme and DNA damage. ROS are formed in some bacterial habitats by abiotic processes. The vulnerability of bacteria to ROS is also apparently exploited by ROS-generating host defense systems and bacterial competitors. Phagocyte-derived O 2 - can toxify captured bacteria by damaging unidentified biomolecules on the cell surface; it is unclear whether phagocytic H2O2, which can penetrate into the cell interior, also plays a role in suppressing bacterial invasion. Both pathogenic and free-living microbes activate defensive strategies to defend themselves against incoming H2O2. Most bacteria sense the H2O2via OxyR or PerR transcription factors, whereas yeast uses the Grx3/Yap1 system. In general these regulators induce enzymes that reduce cytoplasmic H2O2 concentrations, decrease the intracellular iron pools, and repair the H2O2-mediated damage. However, individual organisms have tailored these transcription factors and their regulons to suit their particular environmental niches. Some bacteria even contain both OxyR and PerR, raising the question as to why they need both systems. In lab experiments these regulators can also respond to nitric oxide and disulfide stress, although it is unclear whether the responses are physiologically relevant. The next step is to extend these studies to natural environments, so that we can better understand the circumstances in which these systems act. In particular, it is important to probe the role they may play in enabling host infection by microbial pathogens.
Collapse
Affiliation(s)
| | - James A. Imlay
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
4
|
Kim S, Chung HY, Kwon JG, Choi SH, Lee JH. Fresh Crab Plays an Important Role as a Nutrient Reservoir for the Rapid Propagation of Vibrio vulnificus. Front Microbiol 2021; 12:645860. [PMID: 33767684 PMCID: PMC7985530 DOI: 10.3389/fmicb.2021.645860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/12/2021] [Indexed: 12/19/2022] Open
Abstract
Vibrio vulnificus is a well-known opportunistic pathogen causing food-borne illnesses by ingestion of contaminated seafood. A new strain of V. vulnificus FORC_016 was isolated from a patient's blood sample in South Korea. The genome consists of two circular DNA chromosomes: chromosome I (3,234,424 bp with a G + C contents of 46.60% containing 2,889 ORFs, 106 tRNA genes, and 31 rRNA genes) and chromosome II (1,837,945 bp with a GC content of 47.00% containing 1,572 ORFs, 13 tRNA genes, and 3 rRNA genes). In addition, chromosome I has a super integron (SI) containing 209 ORFs, which is probably associated with various additional functions including antibiotic resistance and pathogenicity. Pan-genome analysis with other V. vulnificus genomes revealed that core genome regions contain most of the important virulence factors. However, accessory genome regions are located in the SI region and contain unique genes regarding cell wall biosynthesis and generation of host cell protecting capsule, suggesting possible resistance ability against environmental stresses. Comparative RNA-Seq analysis of samples between contact and no contact to the crab conditions showed that expressions of amino acid/peptide and carbohydrate transport and utilization genes were down-regulated, but expressions of cell division and growth-related genes were up-regulated, suggesting that the crab may be a nutrition reservoir for rapid propagation of V. vulnificus. Therefore, consumption of the contaminated fresh crab would provide a large number of V. vulnificus to humans, which may be more dangerous. Consequently, biocontrol of V. vulnificus may be critical to ensure the safety in seafood consumption.
Collapse
Affiliation(s)
- Suyeon Kim
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Han Young Chung
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Joon-Gi Kwon
- Food Microbiome Laboratory, Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Ju-Hoon Lee
- Food Microbiome Laboratory, Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| |
Collapse
|
5
|
Hwang SH, Park JH, Lee B, Choi SH. A Regulatory Network Controls cabABC Expression Leading to Biofilm and Rugose Colony Development in Vibrio vulnificus. Front Microbiol 2020; 10:3063. [PMID: 32010109 PMCID: PMC6978666 DOI: 10.3389/fmicb.2019.03063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022] Open
Abstract
Biofilms provide bacteria with protection from environmental stresses and host immune defenses. The pathogenic marine bacterium Vibrio vulnificus forms biofilms and colonizes environmental niches such as oysters. The cabABC operon encodes an extracellular matrix protein CabA and the corresponding type I secretion system, which are essential for biofilm and rugose colony development of V. vulnificus. In this study, molecular biological analyses revealed the roles of three transcriptional regulators BrpR, BrpT, and BrpS in the regulatory pathway for the cabABC operon. BrpR induces brpT and BrpT in turn activates the cabABC operon in a sequential cascade, contributing to development of robust biofilm structures. BrpT also activates brpS, but BrpS represses brpT, constituting a negative feedback loop that stabilizes brpT expression. BrpT and BrpS directly bind to specific sequences upstream of cabA, and they constitute a feedforward loop in which BrpT induces brpS and together with BrpS activates cabABC, leading to precise regulation of cabABC expression. Accordingly, BrpS as well as BrpT plays a crucial role in complete development of rugose colonies. This elaborate network of three transcriptional regulators BrpR, BrpT, and BrpS thus tightly controls cabABC regulation, and contributes to successful development of robust biofilms and rugose colonies in V. vulnificus.
Collapse
Affiliation(s)
- Seung-Ho Hwang
- National Research Laboratory of Molecular Microbiology and Toxicology, Center for Food Safety and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jin Hwan Park
- National Research Laboratory of Molecular Microbiology and Toxicology, Center for Food Safety and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Byungho Lee
- National Research Laboratory of Molecular Microbiology and Toxicology, Center for Food Safety and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Center for Food Safety and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| |
Collapse
|
6
|
Kim D, Na EJ, Kim S, Kim JS, Jung YH, Cao J, Han HJ, Bang IS, Yoo JW, Ha NC, Choi SH. Transcriptomic Identification and Biochemical Characterization of HmpA, a Nitric Oxide Dioxygenase, Essential for Pathogenesis of Vibrio vulnificus. Front Microbiol 2019; 10:2208. [PMID: 31616401 PMCID: PMC6768983 DOI: 10.3389/fmicb.2019.02208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/09/2019] [Indexed: 12/29/2022] Open
Abstract
Nitric oxide (NO) and its derivatives are important effectors of host innate immunity, disrupting cellular function of infecting pathogens. Transcriptome analysis of Vibrio vulnificus, an opportunistic human pathogen, identified a set of genes induced upon exposure to NO. Among them, VvhmpA (V. vulnificus hmpA), encoding a multidomain NO dioxygenase, was the most greatly induced upon exposure to NO and was thus further characterized. Absorption spectra demonstrated that VvHmpA is a heme protein in which the heme iron can exist in either reduced, NO-bound, or oxidized state. Biochemical studies revealed that VvHmpA is a flavohemoglobin containing equimolar amounts of heme and FAD as cofactors. The KM and kcat values of VvHmpA for NO at 37°C, the temperature encountered by V. vulnificus in the host, were greater than those at 30°C, indicating that VvHmpA detoxifies high levels of NO effectively during infection. Compared with the wild type, the VvhmpA mutant exhibited a lower NO-decomposition activity and impaired growth in the presence of NO in vitro. Also, the cytotoxicity and survival of the VvhmpA mutant infecting the NO-producing murine macrophage cells were lower than those of the wild type. Furthermore, the mouse lethality of the VvhmpA mutant was reduced compared to that of the parental wild type. The combined results revealed that VvHmpA is a potent virulence factor that is induced upon exposure to NO and important for the survival and pathogenesis of V. vulnificus during infection.
Collapse
Affiliation(s)
- Dukyun Kim
- National Research Laboratory of Molecular Microbiology and Toxicology, Seoul National University, Seoul, South Korea.,Department of Agricultural Biotechnology, and Center for Food Safety and Toxicology, Seoul National University, Seoul, South Korea
| | - Eun Jung Na
- National Research Laboratory of Molecular Microbiology and Toxicology, Seoul National University, Seoul, South Korea.,Department of Agricultural Biotechnology, and Center for Food Safety and Toxicology, Seoul National University, Seoul, South Korea
| | - Suhyeon Kim
- Department of Agricultural Biotechnology, and Center for Food Safety and Toxicology, Seoul National University, Seoul, South Korea
| | - Jung Sung Kim
- Department of Microbiology and Immunology, Chosun University School of Dentistry, Gwangju, South Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Medicine, BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea
| | - Jiafu Cao
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Medicine, BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, South Korea
| | - Iel Soo Bang
- Department of Microbiology and Immunology, Chosun University School of Dentistry, Gwangju, South Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, and Center for Food Safety and Toxicology, Seoul National University, Seoul, South Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Seoul National University, Seoul, South Korea.,Department of Agricultural Biotechnology, and Center for Food Safety and Toxicology, Seoul National University, Seoul, South Korea
| |
Collapse
|
7
|
Sevilla E, Bes MT, González A, Peleato ML, Fillat MF. Redox-Based Transcriptional Regulation in Prokaryotes: Revisiting Model Mechanisms. Antioxid Redox Signal 2019; 30:1651-1696. [PMID: 30073850 DOI: 10.1089/ars.2017.7442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE The successful adaptation of microorganisms to ever-changing environments depends, to a great extent, on their ability to maintain redox homeostasis. To effectively maintain the redox balance, cells have developed a variety of strategies mainly coordinated by a battery of transcriptional regulators through diverse mechanisms. Recent Advances: This comprehensive review focuses on the main mechanisms used by major redox-responsive regulators in prokaryotes and their relationship with the different redox signals received by the cell. An overview of the corresponding regulons is also provided. CRITICAL ISSUES Some regulators are difficult to classify since they may contain several sensing domains and respond to more than one signal. We propose a classification of redox-sensing regulators into three major groups. The first group contains one-component or direct regulators, whose sensing and regulatory domains are in the same protein. The second group comprises the classical two-component systems involving a sensor kinase that transduces the redox signal to its DNA-binding partner. The third group encompasses a heterogeneous group of flavin-based photosensors whose mechanisms are not always fully understood and are often involved in more complex regulatory networks. FUTURE DIRECTIONS Redox-responsive transcriptional regulation is an intricate process as identical signals may be sensed and transduced by different transcription factors, which often interplay with other DNA-binding proteins with or without regulatory activity. Although there is much information about some key regulators, many others remain to be fully characterized due to the instability of their clusters under oxygen. Understanding the mechanisms and the regulatory networks operated by these regulators is essential for the development of future applications in biotechnology and medicine.
Collapse
Affiliation(s)
- Emma Sevilla
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - María Teresa Bes
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - Andrés González
- 2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain.,4 Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - María Luisa Peleato
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - María F Fillat
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| |
Collapse
|
8
|
Young D, Pedre B, Ezeriņa D, De Smet B, Lewandowska A, Tossounian MA, Bodra N, Huang J, Astolfi Rosado L, Van Breusegem F, Messens J. Protein Promiscuity in H 2O 2 Signaling. Antioxid Redox Signal 2019; 30:1285-1324. [PMID: 29635930 DOI: 10.1089/ars.2017.7013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Decrypting the cellular response to oxidative stress relies on a comprehensive understanding of the redox signaling pathways stimulated under oxidizing conditions. Redox signaling events can be divided into upstream sensing of oxidants, midstream redox signaling of protein function, and downstream transcriptional redox regulation. Recent Advances: A more and more accepted theory of hydrogen peroxide (H2O2) signaling is that of a thiol peroxidase redox relay, whereby protein thiols with low reactivity toward H2O2 are instead oxidized through an oxidative relay with thiol peroxidases. CRITICAL ISSUES These ultrareactive thiol peroxidases are the upstream redox sensors, which form the first cellular port of call for H2O2. Not all redox-regulated interactions between thiol peroxidases and cellular proteins involve a transfer of oxidative equivalents, and the nature of redox signaling is further complicated through promiscuous functions of redox-regulated "moonlighting" proteins, of which the precise cellular role under oxidative stress can frequently be obscured by "polygamous" interactions. An ultimate goal of redox signaling is to initiate a rapid response, and in contrast to prokaryotic oxidant-responsive transcription factors, mammalian systems have developed redox signaling pathways, which intersect both with kinase-dependent activation of transcription factors, as well as direct oxidative regulation of transcription factors through peroxiredoxin (Prx) redox relays. FUTURE DIRECTIONS We highlight that both transcriptional regulation and cell fate can be modulated either through oxidative regulation of kinase pathways, or through distinct redox-dependent associations involving either Prxs or redox-responsive moonlighting proteins with functional promiscuity. These protein associations form systems of crossregulatory networks with multiple nodes of potential oxidative regulation for H2O2-mediated signaling.
Collapse
Affiliation(s)
- David Young
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Brandan Pedre
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Daria Ezeriņa
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Barbara De Smet
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Aleksandra Lewandowska
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Maria-Armineh Tossounian
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nandita Bodra
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jingjing Huang
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Leonardo Astolfi Rosado
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Frank Van Breusegem
- 2 Brussels Center for Redox Biology, Brussels, Belgium.,4 Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,5 Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Joris Messens
- 1 Center for Structural Biology, VIB, Brussels, Belgium.,2 Brussels Center for Redox Biology, Brussels, Belgium.,3 Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
9
|
Abstract
The bacterial transcription factor OxyR is a model example of a highly sensitive and specific hydrogen peroxide (H2O2) sensor. H2O2 reduction by its active-site cysteine triggers protein structural changes leading to an increased transcription of antioxidant genes. By solving the crystal structures of full-length OxyR in both reduced and oxidized states, we provide molecular insight into these structural changes. We also present a H2O2-bound structure with a threonine activating the peroxide, and argue that this H2O2-bound structure may be catalytically more relevant than that seen previously in the study of a sulfinic acid-mimic mutant of the active-site cysteine. Finally, we discuss the commonalities and differences between the peroxidatic mechanisms of peroxiredoxins and OxyR. Hydrogen peroxide (H2O2) is a strong oxidant capable of oxidizing cysteinyl thiolates, yet only a few cysteine-containing proteins have exceptional reactivity toward H2O2. One such example is the prokaryotic transcription factor OxyR, which controls the antioxidant response in bacteria, and which specifically and rapidly reduces H2O2. In this study, we present crystallographic evidence for the H2O2-sensing mechanism and H2O2-dependent structural transition of Corynebacterium glutamicum OxyR by capturing the reduced and H2O2-bound structures of a serine mutant of the peroxidatic cysteine, and the full-length crystal structure of disulfide-bonded oxidized OxyR. In the H2O2-bound structure, we pinpoint the key residues for the peroxidatic reduction of H2O2, and relate this to mutational assays showing that the conserved active-site residues T107 and R278 are critical for effective H2O2 reduction. Furthermore, we propose an allosteric mode of structural change, whereby a localized conformational change arising from H2O2-induced intramolecular disulfide formation drives a structural shift at the dimerization interface of OxyR, leading to overall changes in quaternary structure and an altered DNA-binding topology and affinity at the catalase promoter region. This study provides molecular insights into the overall OxyR transcription mechanism regulated by H2O2.
Collapse
|
10
|
Chung HY, Lee B, Na EJ, Lee KH, Ryu S, Yoon H, Lee JH, Kim HB, Kim H, Jeong HG, Kim BS, Choi SH. Potential Survival and Pathogenesis of a Novel Strain, Vibrio parahaemolyticus FORC_022, Isolated From a Soy Sauce Marinated Crab by Genome and Transcriptome Analyses. Front Microbiol 2018; 9:1504. [PMID: 30034383 PMCID: PMC6043650 DOI: 10.3389/fmicb.2018.01504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
Vibrio parahaemolyticus can cause gastrointestinal illness through consumption of seafood. Despite frequent food-borne outbreaks of V. parahaemolyticus, only 19 strains have subjected to complete whole-genome analysis. In this study, a novel strain of V. parahaemolyticus, designated FORC_022 (Food-borne pathogen Omics Research Center_022), was isolated from soy sauce marinated crabs, and its genome and transcriptome were analyzed to elucidate the pathogenic mechanisms. FORC_022 did not include major virulence factors of thermostable direct hemolysin (tdh) and TDH-related hemolysin (trh). However, FORC_022 showed high cytotoxicity and had several V. parahaemolyticus islands (VPaIs) and other virulence factors, such as various secretion systems (types I, II, III, IV, and VI), in comparative genome analysis with CDC_K4557 (the most similar strain) and RIMD2210633 (genome island marker strain). FORC_022 harbored additional virulence genes, including accessory cholera enterotoxin, zona occludens toxin, and tight adhesion (tad) locus, compared with CDC_K4557. In addition, O3 serotype specific gene and the marker gene of pandemic O3:K6 serotype (toxRS) were detected in FORC_022. The expressions levels of genes involved in adherence and carbohydrate transporter were high, whereas those of genes involved in motility, arginine biosynthesis, and proline metabolism were low after exposure to crabs. Moreover, the virulence factors of the type III secretion system, tad locus, and thermolabile hemolysin were overexpressed. Therefore, the risk of foodborne-illness may be high following consumption of FORC_022 contaminated crab. These results provided molecular information regarding the survival and pathogenesis of V. parahaemolyticus FORC_022 strain in contaminated crab and may have applications in food safety.
Collapse
Affiliation(s)
- Han Y Chung
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul, South Korea.,Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, South Korea
| | - Byungho Lee
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul, South Korea.,Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, South Korea
| | - Eun J Na
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul, South Korea.,Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, South Korea
| | - Kyu-Ho Lee
- Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, South Korea.,Department of Life Science, Sogang University, Seoul, South Korea
| | - Sangryeol Ryu
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul, South Korea.,Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, South Korea
| | - Hyunjin Yoon
- Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, South Korea.,Department of Applied Chemistry & Biological Engineering, Ajou University, Suwon, South Korea
| | - Ju-Hoon Lee
- Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, South Korea.,Department of Food Science and Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Hyeun B Kim
- Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, South Korea.,Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Heebal Kim
- Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, South Korea.,Department of Animal Science and Biotechnology, Seoul National University, Seoul, South Korea
| | - Hee G Jeong
- Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, South Korea.,Department of Food Science and Technology, Chungnam National University, Daejeon, South Korea
| | - Bong-Soo Kim
- Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, South Korea.,Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, South Korea
| | - Sang H Choi
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul, South Korea.,Food-borne Pathogen Omics Research Center (FORC), Seoul National University, Seoul, South Korea
| |
Collapse
|
11
|
Jang KK, Lee ZW, Kim B, Jung YH, Han HJ, Kim MH, Kim BS, Choi SH. Identification and characterization of Vibrio vulnificus plpA encoding a phospholipase A 2 essential for pathogenesis. J Biol Chem 2017; 292:17129-17143. [PMID: 28855258 DOI: 10.1074/jbc.m117.791657] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/28/2017] [Indexed: 12/23/2022] Open
Abstract
The marine bacterium Vibrio vulnificus causes food-borne diseases, which may lead to life-threatening septicemia in some individuals. Therefore, identifying virulence factors in V. vulnificus is of high priority. We performed a transcriptome analysis on V. vulnificus after infection of human intestinal HT29-methotrexate cells and found induction of plpA, encoding a putative phospholipase, VvPlpA. Bioinformatics, biochemical, and genetic analyses demonstrated that VvPlpA is a phospholipase A2 secreted in a type II secretion system-dependent manner. Compared with the wild type, the plpA mutant exhibited reduced mortality, systemic infection, and inflammation in mice as well as low cytotoxicity toward the human epithelial INT-407 cells. Moreover, plpA mutation attenuated the release of actin and cytosolic cyclophilin A from INT-407 cells, indicating that VvPlpA is a virulence factor essential for causing lysis and necrotic death of the epithelial cells. plpA transcription was growth phase-dependent, reaching maximum levels during the early stationary phase. Also, transcription factor HlyU and cAMP receptor protein (CRP) mediate additive activation and host-dependent induction of plpA Molecular biological analyses revealed that plpA expression is controlled via the promoter, P plpA , and that HlyU and CRP directly bind to P plpA upstream sequences. Taken together, this study demonstrated that VvPlpA is a type II secretion system-dependent secretory phospholipase A2 regulated by HlyU and CRP and is essential for the pathogenicity of V. vulnificus.
Collapse
Affiliation(s)
- Kyung Ku Jang
- From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, and
| | - Zee-Won Lee
- From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, and
| | - Bityeoul Kim
- From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, and
| | - Young Hyun Jung
- the Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Medicine, BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul 08826, South Korea and
| | - Ho Jae Han
- the Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Medicine, BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul 08826, South Korea and
| | - Myung Hee Kim
- the Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
| | - Byoung Sik Kim
- the Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
| | - Sang Ho Choi
- From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, and
| |
Collapse
|
12
|
Li K, Wang P, Chen C, Chen C, Li L, Song T. Light irradiation helps magnetotactic bacteria eliminate intracellular reactive oxygen species. Environ Microbiol 2017; 19:3638-3648. [PMID: 28752909 DOI: 10.1111/1462-2920.13864] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 02/02/2023]
Abstract
Magnetotactic bacteria (MTB) demonstrate photoresponse. However, little is known about the biological significance of this behaviour. Magnetosomes exhibit peroxidase-like activity and can scavenge reactive oxygen species (ROS). Magnetosomes extracted from the Magnetospirillum magneticum strain AMB-1 show enhanced peroxidase-like activity under illumination. The present study investigated the effects of light irradiation on nonmagnetic (without magnetosomes) and magnetic (with magnetosomes) AMB-1 cells. Results showed that light irradiation did not affect the growth of nonmagnetic and magnetic cells but significantly increased magnetosome synthesis and reduced intracellular ROS level in magnetic cells. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to analyse the expression level of magnetosome formation-associated genes (mamA, mms6, mms13 and mmsF) and stress-related genes (recA, oxyR, SOD, amb0664 and amb2684). Results showed that light irradiation upregulated the expression of mms6, mms13 and mmsF. Furthermore, light irradiation upregulated the expression of stress-related genes in nonmagnetic cells but downregulated them in magnetic cells. Additionally, magnetic cells exhibited stronger phototactic behaviour than nonmagnetic ones. These results suggested that light irradiation could heighten the ability of MTB to eliminate intracellular ROS and help them adapt to lighted environments. This phenomenon may be related to the enhanced peroxidase-like activity of magnetosomes under light irradiation.
Collapse
Affiliation(s)
- Kefeng Li
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.,Department of Sports and Health, Shandong Sport University, Jinan 250102, China
| | - Pingping Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China.,France-China Bio-Mineralization and Nano-Structures Laboratory, Beijing 100190, China
| | - Chuanfang Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China.,France-China Bio-Mineralization and Nano-Structures Laboratory, Beijing 100190, China
| | - Changyou Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China.,France-China Bio-Mineralization and Nano-Structures Laboratory, Beijing 100190, China
| | - Lulu Li
- Department of Sports and Health, Shandong Sport University, Jinan 250102, China
| | - Tao Song
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.,France-China Bio-Mineralization and Nano-Structures Laboratory, Beijing 100190, China
| |
Collapse
|
13
|
OxyR2 Modulates OxyR1 Activity and Vibrio cholerae Oxidative Stress Response. Infect Immun 2017; 85:IAI.00929-16. [PMID: 28138024 DOI: 10.1128/iai.00929-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/25/2017] [Indexed: 12/29/2022] Open
Abstract
Bacteria have developed capacities to deal with different stresses and adapt to different environmental niches. The human pathogen Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, utilizes the transcriptional regulator OxyR to activate genes related to oxidative stress resistance, including peroxiredoxin PrxA, in response to hydrogen peroxide. In this study, we identified another OxyR homolog in V. cholerae, which we named OxyR2, and we renamed the previous OxyR OxyR1. We found that OxyR2 is required to activate its divergently transcribed gene ahpC, encoding an alkylhydroperoxide reductase, independently of H2O2 A conserved cysteine residue in OxyR2 is critical for this function. Mutation of either oxyR2 or ahpC rendered V. cholerae more resistant to H2O2 RNA sequencing analyses indicated that OxyR1-activated oxidative stress-resistant genes were highly expressed in oxyR2 mutants even in the absence of H2O2 Further genetic analyses suggest that OxyR2-activated AhpC modulates OxyR1 activity by maintaining low intracellular concentrations of H2O2 Furthermore, we showed that ΔoxyR2 and ΔahpC mutants were less fit when anaerobically grown bacteria were exposed to low levels of H2O2 or incubated in seawater. These results suggest that OxyR2 and AhpC play important roles in the V. cholerae oxidative stress response.
Collapse
|
14
|
Jo I, Kim D, Bang YJ, Ahn J, Choi SH, Ha NC. The hydrogen peroxide hypersensitivity of OxyR2 in Vibrio vulnificus depends on conformational constraints. J Biol Chem 2017; 292:7223-7232. [PMID: 28264933 DOI: 10.1074/jbc.m116.743765] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 02/18/2017] [Indexed: 12/11/2022] Open
Abstract
Most Gram-negative bacteria respond to excessive levels of H2O2 using the peroxide-sensing transcriptional regulator OxyR, which can induce the expression of antioxidant genes to restore normality. Vibrio vulnificus has two distinct OxyRs (OxyR1 and OxyR2), which are sensitive to different levels of H2O2 and induce expression of two different peroxidases, Prx1 and Prx2. Although OxyR1 has both high sequence similarity and H2O2 sensitivity comparable with that of other OxyR proteins, OxyR2 exhibits limited sequence similarity and is more sensitive to H2O2 To investigate the basis for this difference, we determined crystal structures and carried out biochemical analyses of OxyR2. The determined structure of OxyR2 revealed a flipped conformation of the peptide bond before Glu-204, a position occupied by glycine in other OxyR proteins. Activity assays showed that the sensitivity to H2O2 was reduced to the level of other OxyR proteins by the E204G mutation. We solved the structure of the OxyR2-E204G mutant with the same packing environment. The structure of the mutant revealed a dual conformation of the peptide bond before Gly-204, indicating the structural flexibility of the region. This structural duality extended to the backbone atoms of Gly-204 and the imidazole ring of His-205, which interact with H2O2 and invariant water molecules near the peroxidatic cysteine, respectively. Structural comparison suggests that Glu-204 in OxyR2 provides rigidity to the region that is important in H2O2 sensing, compared with the E204G structure or other OxyR proteins. Our findings provide a structural basis for the higher sensitivity of OxyR2 to H2O2 and also suggest a molecular mechanism for bacterial regulation of expression of antioxidant genes at divergent concentrations of cellular H2O2.
Collapse
Affiliation(s)
- Inseong Jo
- From the Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute for Agriculture and Life Sciences, and
| | - Dukyun Kim
- From the Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute for Agriculture and Life Sciences, and.,the National Research Laboratory of Molecular Microbiology and Toxicology, Seoul National University, Seoul 08826, Korea
| | - Ye-Ji Bang
- From the Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute for Agriculture and Life Sciences, and.,the National Research Laboratory of Molecular Microbiology and Toxicology, Seoul National University, Seoul 08826, Korea
| | - Jinsook Ahn
- From the Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute for Agriculture and Life Sciences, and
| | - Sang Ho Choi
- From the Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute for Agriculture and Life Sciences, and .,the National Research Laboratory of Molecular Microbiology and Toxicology, Seoul National University, Seoul 08826, Korea
| | - Nam-Chul Ha
- From the Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Research Institute for Agriculture and Life Sciences, and
| |
Collapse
|
15
|
Legionella pneumophila OxyR Is a Redundant Transcriptional Regulator That Contributes to Expression Control of the Two-Component CpxRA System. J Bacteriol 2017; 199:JB.00690-16. [PMID: 27994017 DOI: 10.1128/jb.00690-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/13/2016] [Indexed: 12/27/2022] Open
Abstract
Nominally an environmental organism, Legionella pneumophila is an intracellular parasite of protozoa but is also the causative agent of the pneumonia termed Legionnaires' disease, which results from inhalation of aerosolized bacteria by susceptible humans. Coordination of gene expression by a number of identified regulatory factors, including OxyR, assists L. pneumophila in adapting to the stresses of changing environments. L. pneumophila OxyR (OxyRLp) is an ortholog of Escherichia coli OxyR; however, OxyRLp was shown elsewhere to be functionally divergent, such that it acts as a transcription regulator independently of the oxidative stress response. In this study, the use of improved gene deletion methods has enabled us to generate an unmarked in-frame deletion of oxyR in L. pneumophila Lack of OxyRLp did not affect in vitro growth or intracellular growth in Acanthamoeba castellanii protozoa and U937-derived macrophages. The expression of OxyRLp does not appear to be regulated by CpxR, even though purified recombinant CpxR bound a DNA sequence similar to that reported for CpxR elsewhere. Surprisingly, a lack of OxyRLp resulted in elevated activity of the promoters located upstream of icmR and the lpg1441-cpxA operon, and OxyRLp directly bound to these promoter regions, suggesting that OxyRLp is a direct repressor. Interestingly, a strain overexpressing OxyRLp demonstrated reduced intracellular growth in A. castellanii but not in U937-derived macrophages, suggesting that balanced expression control of the two-component CpxRA system is necessary for survival in protozoa. Taken together, this study suggests that OxyRLp is a functionally redundant transcriptional regulator in L. pneumophila under the conditions evaluated herein.IMPORTANCELegionella pneumophila is an environmental pathogen, with its transmission to the human host dependent upon its ability to replicate in protozoa and survive within its aquatic niche. Understanding the genetic factors that contribute to L. pneumophila survival within each of these unique environments will be key to limiting future point-source outbreaks of Legionnaires' disease. The transcriptional regulator L. pneumophila OxyR (OxyRLp) has been previously identified as a potential regulator of virulence traits warranting further investigation. This study demonstrated that oxyR is nonessential for L. pneumophila survival in vitro and in vivo via mutational analysis. While the mechanisms of how OxyRLp expression is regulated remain elusive, this study shows that OxyRLp negatively regulates the expression of the cpxRA two-component system necessary for intracellular survival in protozoa.
Collapse
|
16
|
Singh S, Dwivedi SK, Singh VS, Tripathi AK. Expression of alkyl hydroperoxide reductase is regulated negatively by OxyR1 and positively by RpoE2 sigma factor in Azospirillum brasilense Sp7. MICROBIOLOGY-SGM 2016; 162:1870-1883. [PMID: 27557935 DOI: 10.1099/mic.0.000363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OxyR proteins are LysR-type transcriptional regulators, which play an important role in responding to oxidative stress in bacteria. Azospirillum brasilense Sp7 harbours two copies of OxyR. The inactivation of the oxyR1, the gene organized divergently to ahpC in A. brasilense Sp7, led to an increased tolerance to alkyl hydroperoxides, which was corroborated by an increase in alkyl hydroperoxide reductase (AhpC) activity, enhanced expression of ahpC :lacZ fusion and increased synthesis of AhpC protein in the oxyR1::km mutant. The upstream region of ahpC promoter harboured a putative OxyR binding site, T-N11-A. Mutation of T, A or both in the T-N11-Amotif caused derepression of ahpC in A. brasilense suggesting that T-N11-A might be the binding site for a negative regulator. Retardation of the electrophoretic mobility of the T-N11-A motif harbouring oxyR1-ahpC intergenic DNA by recombinant OxyR1, under reducing as well as oxidizing conditions, indicated that OxyR1 acts as a negative regulator of ahpC in A. brasilense. Sequence of the promoter of ahpC, predicted on the basis of transcriptional start site, and an enhanced expression of ahpC:lacZ fusion in chrR2::km mutant background suggested that ahpC promoter was RpoE2 dependent. Thus, this study shows that in A. brasilense Sp7, ahpC expression is regulated negatively by OxyR1 but is regulated positively by RpoE2, an oxidative-stress-responsive sigma factor. It also shows that OxyR1 regulates the expression RpoE1, which is known to play an important role during photooxidative stress in A. brasilense.
Collapse
Affiliation(s)
- Sudhir Singh
- Laboratory of Bacterial Genetics, Faculty of Science, School of Biotechnology, Banaras Hindu University, Varanasi 221005, India
| | - Susheel Kumar Dwivedi
- Laboratory of Bacterial Genetics, Faculty of Science, School of Biotechnology, Banaras Hindu University, Varanasi 221005, India
| | - Vijay Shankar Singh
- Laboratory of Bacterial Genetics, Faculty of Science, School of Biotechnology, Banaras Hindu University, Varanasi 221005, India
| | - Anil Kumar Tripathi
- Laboratory of Bacterial Genetics, Faculty of Science, School of Biotechnology, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
17
|
Bang YJ, Lee ZW, Kim D, Jo I, Ha NC, Choi SH. OxyR2 Functions as a Three-state Redox Switch to Tightly Regulate Production of Prx2, a Peroxiredoxin of Vibrio vulnificus. J Biol Chem 2016; 291:16038-47. [PMID: 27268058 DOI: 10.1074/jbc.m115.710343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Indexed: 11/06/2022] Open
Abstract
The bacterial transcriptional regulator OxyR is known to function as a two-state redox switch. OxyR senses cellular levels of H2O2 via a "sensing cysteine" that switches from the reduced to a disulfide state upon H2O2 exposure, inducing the expression of antioxidant genes. The reduced and disulfide states of OxyR, respectively, bind to extended and compact regions of DNA, where the reduced state blocks and the oxidized state allows transcription and further induces target gene expression by interacting with RNA polymerase. Vibrio vulnificus OxyR2 senses H2O2 with high sensitivity and induces the gene encoding the antioxidant Prx2. In this study, we used mass spectrometry to identify a third redox state of OxyR2, in which the sensing cysteine was overoxidized to S-sulfonated cysteine (Cys-SO3H) by high H2O2 in vitro and in vivo, where the modification deterred the transcription of prx2 The DNA binding preferences of OxyR25CA-C206D, which mimics overoxidized OxyR2, suggested that overoxidized OxyR2 binds to the extended DNA site, masking the -35 region of the prx2 promoter. These combined results demonstrate that OxyR2 functions as a three-state redox switch to tightly regulate the expression of prx2, preventing futile production of Prx2 in cells exposed to high levels of H2O2 sufficient to inactivate Prx2. We further provide evidence that another OxyR homolog, OxyR1, displays similar three-state behavior, inviting further exploration of this phenomenon as a potentially general regulatory mechanism.
Collapse
Affiliation(s)
- Ye-Ji Bang
- From the National Research Laboratory of Molecular Microbiology and Toxicology and the Department of Agricultural Biotechnology, and Center for Food Safety and Toxicology, Seoul National University, Seoul 08826, Korea
| | - Zee-Won Lee
- From the National Research Laboratory of Molecular Microbiology and Toxicology and the Department of Agricultural Biotechnology, and Center for Food Safety and Toxicology, Seoul National University, Seoul 08826, Korea
| | - Dukyun Kim
- From the National Research Laboratory of Molecular Microbiology and Toxicology and the Department of Agricultural Biotechnology, and Center for Food Safety and Toxicology, Seoul National University, Seoul 08826, Korea
| | - Inseong Jo
- the Department of Agricultural Biotechnology, and Center for Food Safety and Toxicology, Seoul National University, Seoul 08826, Korea
| | - Nam-Chul Ha
- the Department of Agricultural Biotechnology, and Center for Food Safety and Toxicology, Seoul National University, Seoul 08826, Korea
| | - Sang Ho Choi
- From the National Research Laboratory of Molecular Microbiology and Toxicology and the Department of Agricultural Biotechnology, and Center for Food Safety and Toxicology, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
18
|
Chung HY, Na EJ, Lee KH, Ryu S, Yoon H, Lee JH, Kim HB, Kim H, Choi SH, Kim BS. Complete genome sequence of Vibrio parahaemolyticus FORC_023 isolated from raw fish storage water. Pathog Dis 2016; 74:ftw032. [PMID: 27073252 DOI: 10.1093/femspd/ftw032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2016] [Indexed: 11/13/2022] Open
Abstract
Vibrio parahaemolyticusis a Gram-negative halophilic bacterium that causes food-borne gastroenteritis in humans who consumeV. parahaemolyticus-contaminated seafood.The FORC_023 strain was isolated from raw fish storage water, containing live fish at a sashimi restaurant. Here, we aimed to sequence and characterize the genome of the FORC_023 strain. The genome of the FORC_023 strain showed two circular chromosomes, which contained 4227 open reading frames (ORFs), 131 tRNA genes and 37 rRNA genes. Although the genome of FORC_023 did not include major virulence genes, such as genes encoding thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH), it contained genes encoding other hemolysins, secretion systems, iron uptake-related proteins and severalV. parahaemolyticusislands. The highest average nucleotide identity value was obtained between the FORC_023 strain and UCM-V493 (CP007004-6). Comparative genomic analysis of FORC_023 with UCM-V493 revealed that FORC_023 carried an additional genomic region encoding virulence factors, such as repeats-in-toxin and type II secretion factors. Furthermore,in vitrocytotoxicity testing showed that FORC_023 exhibited a high level of cytotoxicity toward INT-407 human epithelial cells. These results suggested that the FORC_023 strain may be a food-borne pathogen.
Collapse
Affiliation(s)
- Han Young Chung
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Jung Na
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyu-Ho Lee
- Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 121-742, Republic of Korea
| | - Sangryeol Ryu
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunjin Yoon
- Department of Applied Chemistry & Biological Engineering, Ajou University, Yeongtong-gu, Suwon 443-749, Republic of Korea
| | - Ju-Hoon Lee
- Department of Food Science and Biotechnology, Kyung Hee University, 1732 Deokyoungdae-ro, Yongin 17104, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan 330-714, Republic of Korea
| | - Heebal Kim
- Department of Animal Science & Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Ho Choi
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong-Soo Kim
- Department of Life Science, Hallym University, 1 Hallymdaehak-gil, Chuncheon 200-702, Republic of Korea
| |
Collapse
|
19
|
Jang KK, Gil SY, Lim JG, Choi SH. Regulatory Characteristics of Vibrio vulnificus gbpA Gene Encoding a Mucin-binding Protein Essential for Pathogenesis. J Biol Chem 2016; 291:5774-5787. [PMID: 26755724 DOI: 10.1074/jbc.m115.685321] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Indexed: 12/21/2022] Open
Abstract
Binding to mucin is the initial step for enteropathogens to establish pathogenesis. An open reading frame, gbpA, of Vibrio vulnificus was identified and characterized in this study. Compared with wild type, the gbpA mutant was impaired in binding to mucin-agar and the mucin-secreting HT29-methotrexate cells, and the impaired mucin binding was restored by the purified GbpA provided exogenously. The gbpA mutant had attenuated virulence and ability of intestinal colonization in a mouse model, indicating that GbpA is a mucin-binding protein and essential for pathogenesis of V. vulnificus. The gbpA transcription was growth phase-dependent, reaching a maximum during the exponential phase. The Fe-S cluster regulator (IscR) and the cyclic AMP receptor protein (CRP) coactivated, whereas SmcR, a LuxR homologue, repressed gbpA. The cellular levels of IscR, CRP, and SmcR were not significantly affected by one another, indicating that the regulator proteins function cooperatively to regulate gbpA rather than sequentially in a regulatory cascade. The regulatory proteins directly bind upstream of the gbpA promoter PgbpA. DNase I protection assays, together with the deletion analyses of PgbpA, demonstrated that IscR binds to two specific sequences centered at -164.5 and -106, and CRP and SmcR bind specifically to the sequences centered at -68 and -45, respectively. Furthermore, gbpA was induced by exposure to H2O2, and the induction appeared to be mediated by elevated intracellular levels of IscR. Consequently, the combined results indicated that IscR, CRP, and SmcR cooperate for precise regulation of gbpA during the V. vulnificus pathogenesis.
Collapse
Affiliation(s)
- Kyung Ku Jang
- From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921, South Korea
| | - So Yeon Gil
- From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921, South Korea
| | - Jong Gyu Lim
- From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921, South Korea
| | - Sang Ho Choi
- From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921, South Korea.
| |
Collapse
|
20
|
Ji CJ, Kim JH, Won YB, Lee YE, Choi TW, Ju SY, Youn H, Helmann JD, Lee JW. Staphylococcus aureus PerR Is a Hypersensitive Hydrogen Peroxide Sensor using Iron-mediated Histidine Oxidation. J Biol Chem 2015; 290:20374-86. [PMID: 26134568 DOI: 10.1074/jbc.m115.664961] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Indexed: 12/23/2022] Open
Abstract
In many Gram-positive bacteria PerR is a major peroxide sensor whose repressor activity is dependent on a bound metal cofactor. The prototype for PerR sensors, the Bacillus subtilis PerRBS protein, represses target genes when bound to either Mn(2+) or Fe(2+) as corepressor, but only the Fe(2+)-bound form responds to H2O2. The orthologous protein in the human pathogen Staphylococcus aureus, PerRSA, plays important roles in H2O2 resistance and virulence. However, PerRSA is reported to only respond to Mn(2+) as corepressor, which suggests that it might rely on a distinct, iron-independent mechanism for H2O2 sensing. Here we demonstrate that PerRSA uses either Fe(2+) or Mn(2+) as corepressor, and that, like PerRBS, the Fe(2+)-bound form of PerRSA senses physiological levels of H2O2 by iron-mediated histidine oxidation. Moreover, we show that PerRSA is poised to sense very low levels of endogenous H2O2, which normally cannot be sensed by B. subtilis PerRBS. This hypersensitivity of PerRSA accounts for the apparent lack of Fe(2+)-dependent repressor activity and consequent Mn(2+)-specific repressor activity under aerobic conditions. We also provide evidence that the activity of PerRSA is directly correlated with virulence, whereas it is inversely correlated with H2O2 resistance, suggesting that PerRSA may be an attractive target for the control of S. aureus pathogenesis.
Collapse
Affiliation(s)
- Chang-Jun Ji
- From the Department of Life Science and Research Center for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Jung-Hoon Kim
- From the Department of Life Science and Research Center for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Young-Bin Won
- From the Department of Life Science and Research Center for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Yeh-Eun Lee
- From the Department of Life Science and Research Center for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Tae-Woo Choi
- From the Department of Life Science and Research Center for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Shin-Yeong Ju
- From the Department of Life Science and Research Center for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Hwan Youn
- the Department of Biology, California State University Fresno, Fresno, California 93740-8034, and
| | - John D Helmann
- the Department of Microbiology, Cornell University, Ithaca, New York 14853-8101
| | - Jin-Won Lee
- From the Department of Life Science and Research Center for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea,
| |
Collapse
|
21
|
Abstract
Bacteria live in a toxic world in which their competitors excrete hydrogen peroxide or superoxide-generating redox-cycling compounds. They protect themselves by activating regulons controlled by the OxyR, PerR, and SoxR transcription factors. OxyR and PerR sense peroxide when it oxidizes key thiolate or iron moieties, respectively; they then induce overlapping sets of proteins that defend their vulnerable metalloenzymes. An additional role for OxyR in detecting electrophilic compounds is possible. In some nonenteric bacteria, SoxR appears to control the synthesis and export of redox-cycling compounds, whereas in the enteric bacteria it defends the cell against the same agents. When these compounds oxidize its iron-sulfur cluster, SoxR induces proteins that exclude, excrete, or modify them. It also induces enzymes that defend the cell against the superoxide that such compounds make. Recent work has brought new insight into the biochemistry and physiology of these responses, and comparative studies have clarified their evolutionary histories.
Collapse
Affiliation(s)
- James A Imlay
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801;
| |
Collapse
|
22
|
Lim JG, Bang YJ, Choi SH. Characterization of the Vibrio vulnificus 1-Cys peroxiredoxin Prx3 and regulation of its expression by the Fe-S cluster regulator IscR in response to oxidative stress and iron starvation. J Biol Chem 2014; 289:36263-74. [PMID: 25398878 DOI: 10.1074/jbc.m114.611020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Peroxiredoxins (Prxs) are ubiquitous antioxidant enzymes that reduce toxic peroxides. A new Vibrio vulnificus Prx, named Prx3, was identified and characterized in this study. Biochemical and mutational analyses revealed that Prx3 reduces H2O2, utilizing glutaredoxin 3 (Grx3) and glutathione (GSH) as reductants, and requires only N-terminal peroxidatic cysteine for its catalysis. These results, combined with the monomeric size of Prx3 observed under non-reducing conditions, suggested that Prx3 is a Grx3/GSH-dependent 1-Cys Prx and oxidized without forming intermolecular disulfide bonds. The prx3 mutation impaired growth in the medium containing peroxides and reduced virulence in mice, indicating that Prx3 is essential for survival under oxidative stress and pathogenesis of V. vulnificus. The Fe-S cluster regulator IscR activates prx3 by direct binding to a specific binding sequence centered at -44 from the transcription start site. The binding sequence was homologous to the Type 2 IscR-binding sequence, most likely recognized by the Fe-S clusterless apo-IscR in Escherichia coli. The iscR3CA mutant, chromosomally encoding the apo-locked IscR, exhibited 3-fold higher levels of activation of prx3 than the wild type and accumulated more IscR3CA protein in cells. The IscR-dependent activation of prx3 by aerobic growth and iron starvation was also associated with the increase in cellular levels of IscR protein. Taken together, the results suggested that IscR senses iron starvation as well as reactive oxygen species and shifts to the apo-form, which leads to the increase of cellular IscR and in turn prx3 expression, contributing to the survival and virulence of V. vulnificus during pathogenesis.
Collapse
Affiliation(s)
- Jong Gyu Lim
- From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921, South Korea
| | - Ye-Ji Bang
- From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921, South Korea
| | - Sang Ho Choi
- From the National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University, Seoul 151-921, South Korea
| |
Collapse
|