1
|
Sahoo PK, Sheenu, Jain D. REC domain stabilizes the active heptamer of σ 54-dependent transcription factor, FleR from Pseudomonas aeruginosa. iScience 2023; 26:108397. [PMID: 38058307 PMCID: PMC10696123 DOI: 10.1016/j.isci.2023.108397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023] Open
Abstract
Motility in Pseudomonas aeruginosa is mediated through a single, polar flagellum, which is essential for virulence, colonization, and biofilm formation. FleSR, a two-component system (TCS), serves as a critical checkpoint in flagellar assembly. FleR is a σ54-dependent response regulator that undergoes phosphorylation via cognate sensor kinase FleS for the assembly of the functionally active form. The active form remodels the σ54-RNAP complex to initiate transcription. Small-angle X-ray scattering, crystallography, and negative staining electron microscopy reconstructions of FleR revealed that it exists predominantly as a dimer in the inactive form with low ATPase activity and assembles into heptamers upon phosphorylation with amplified ATPase activity. We establish that receiver (REC) domain stabilizes the heptamers and is indispensable for assembly of the functional phosphorylated form of FleR. The structural, biochemical, and in vivo complementation assays provide details of the phosphorylation-mediated assembly of FleR to regulate the expression of flagellar genes.
Collapse
Affiliation(s)
- Pankaj Kumar Sahoo
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| | - Sheenu
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| |
Collapse
|
2
|
Schwan M, Khaledi A, Willger S, Papenfort K, Glatter T, Häußler S, Thormann KM. FlrA-independent production of flagellar proteins is required for proper flagellation in Shewanella putrefaciens. Mol Microbiol 2022; 118:670-682. [PMID: 36285560 DOI: 10.1111/mmi.14993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 01/18/2023]
Abstract
Flagella are multiprotein complexes whose assembly and positioning require complex spatiotemporal control. Flagellar assembly is thought to be controlled by several transcriptional tiers, which are mediated through various master regulators. Here, we revisited the regulation of flagellar genes in polarly flagellated gammaproteobacteria by the regulators FlrA, RpoN (σ54 ) and FliA (σ28 ) in Shewanella putrefaciens CN-32 at the transcript and protein level. We found that a number of regulatory and structural proteins were present in the absence of the main regulators, suggesting that initiation of flagella assembly and motor activation relies on the abundance control of only a few structural key components that are required for the formation of the MS- and C-ring and the flagellar type III secretion system. We identified FlrA-independent promoters driving expression of the regulators of flagellar number and positioning, FlhF and FlhG. Reduction of the gene expression levels from these promoters resulted in the emergence of hyperflagellation. This finding indicates that basal expression is required to adjust the flagellar counter in Shewanella. This is adding a deeper layer to the regulation of flagellar synthesis and assembly.
Collapse
Affiliation(s)
- Meike Schwan
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität, Giessen, Germany
| | - Ariane Khaledi
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sven Willger
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kai Papenfort
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - Timo Glatter
- Max Planck Institute for Terrestrial Microbiology, Mass Spectrometry and Proteomics, Marburg, Germany
| | - Susanne Häußler
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kai M Thormann
- Institute of Microbiology and Molecular Biology, Justus-Liebig-Universität, Giessen, Germany
| |
Collapse
|
3
|
Guo S, Zhang T, Chen Y, Yang S, Fei Q. Transcriptomic profiling of nitrogen fixation and the role of NifA in Methylomicrobium buryatense 5GB1. Appl Microbiol Biotechnol 2022; 106:3191-3199. [PMID: 35384448 DOI: 10.1007/s00253-022-11910-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
Methanotrophs capable of converting C1-based substrates play an important role in the global carbon cycle. As one of the essential macronutrient components in the medium, the uptake of nitrogen sources severely regulates the cell's metabolism. Although the feasibility of utilizing nitrogen gas (N2) by methanotrophs has been predicted, the mechanism remains unclear. Herein, the regulation of nitrogen fixation by an essential nitrogen-fixing regulator (NifA) was explored based on transcriptomic analyses of Methylomicrobium buryatense 5GB1. A deletion mutant of the nitrogen global regulator NifA was constructed, and the growth of M. buryatense 5GB1ΔnifA exhibited significant growth inhibition compared with wild-type strain after the depletion of nitrate source in the medium. Our transcriptome analyses elucidated that 22.0% of the genome was affected in expression by NifA in M. buryatense 5GB1. Besides genes associated with nitrogen assimilation such as nitrogenase structural genes, genes related to cofactor biosynthesis, electron transport, and post-transcriptional modification were significantly upregulated in the presence of NifA to enhance N2 fixation; other genes related to carbon metabolism, energy metabolism, membrane transport, and cell motility were strongly modulated by NifA to facilitate cell metabolisms. This study not only lays a comprehensive understanding of the physiological characteristics and nitrogen metabolism of methanotrophs, but also provides a potentially efficient strategy to achieve carbon and nitrogen co-utilization.Key points• N2 fixation ability of M. buryatense 5GB1 was demonstrated for the first time in experiments by regulating the supply of N2.• NifA positively regulates nif-related genes to facilitate the uptake of N2 in M. buryatense 5GB1.• NifA regulates a broad range of cellular functions beyond nif genes in M. buryatense 5GB1.
Collapse
Affiliation(s)
- Shuqi Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Tianqing Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yunhao Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China. .,Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
4
|
Functional Irreplaceability of Escherichia coli and Shewanella oneidensis OxyRs Is Critically Determined by Intrinsic Differences in Oligomerization. mBio 2022; 13:e0349721. [PMID: 35073744 PMCID: PMC8787470 DOI: 10.1128/mbio.03497-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
LysR-type transcriptional regulators (LTTRs), which function in diverse biological processes in prokaryotes, are composed of a conserved structure with an N-terminal DNA-binding domain (DBD) and a C-terminal signal-sensing regulatory domain (RD). LTTRs that sense and respond to the same signal are often functionally exchangeable in bacterial species across wide phyla, but this phenomenon has not been demonstrated for the H2O2-sensing and -responding OxyRs. Here, we systematically examined the biochemical and structural determinants differentiating activator-only OxyRs from dual-activity ones by comparing OxyRs from two Gammaproteobacteria, Escherichia coli and Shewanella oneidensis. Our data show that EcOxyR could function as neither an activator nor a repressor in S. oneidensis. Using SoOxyR-based OxyR chimeras and mutants, we demonstrated that residues 283 to 289, which form the first half of the last C-terminal α-helix (α10), are critical for the proper function of SoOxyR and cannot be replaced with the EcOxyR counterpart. Crystal structural analysis reveals that α10 is important for the oligomerization of SoOxyR, which, unlike EcOxyR, forms several high-order oligomers upon DNA binding. As the mechanisms of OxyR oligomerization vary substantially among bacterial species, our findings underscore the importance of subtle structural features in determining regulatory activities of structurally similar proteins descending from a common ancestor. IMPORTANCE Evolution may drive homologous proteins to be functionally nonexchangeable in different organisms. However, much is unknown about the mechanisms underlying this phenomenon beyond amino acid substitutions. Here, we systematically examined the biochemical and structural determinants differentiating functionally nonexchangeable OxyRs, H2O2-responding transcriptional regulators from two Gammaproteobacteria, Escherichia coli and Shewanella oneidensis. Using SoOxyR-based OxyR chimeras and mutants, we demonstrated that residues 283 to 289, which form the first half of the last C-terminal α-helix (α10), are critical for the proper function of SoOxyR and cannot be replaced with the EcOxyR counterpart. Crystal structural analysis reveals that this last helix is critical for formation of high-order oligomers upon DNA binding, a phenomenon not observed with EcOxyR. Our findings provide a new dimension to differences in sequence and structural features among bacterial species in determining regulatory activities of homologous regulators.
Collapse
|
5
|
Sun L, Wang D, Yin Z, Zhang C, Bible A, Xie Z. The FtcR-Like Protein ActR in Azorhizobium caulinodans ORS571 Is Involved in Bacterial Motility and Symbiosis With the Host Plant. Front Microbiol 2021; 12:744268. [PMID: 34867860 PMCID: PMC8639532 DOI: 10.3389/fmicb.2021.744268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022] Open
Abstract
Bacterial signal transduction pathways are important for a variety of adaptive responses to environment, such as two-component systems (TCSs). In this paper, we reported the characterization of a transcriptional regulator in Azorhizobium caulinodans ORS571, ActR, with an N-terminal receiver domain and one C-terminal OmpR/PhoB-type DNA binding domain. Sequence analysis showed that ActR shared a high similarity with FtcR regulator of Brucella melitensis 16M known to be involved in flagellar regulation. The structural gene of this regulator was largely distributed in Alphaproteobacteria, in particular in Rhizobiales and Rhodobacterales, and was located within clusters of genes related to motility functions. Furthermore, we studied the biological function of ActR in A. caulinodans grown at the free-living state or in association with Sesbania rostrata by constructing actR gene deletion mutant. In the free-living state, the bacterial flagellum and motility ability were entirely deleted, the expression of flagellar genes was downregulated; and the exopolysaccharide production, biofilm formation, and cell flocculation decreased significantly compared with those of the wild-type strain. In the symbiotic state, ΔactR mutant strain showed weakly competitive colonization and nodulation on the host plant. These results illustrated that FtcR-like regulator in A. caulinodans is involved in flagellar biosynthesis and provide bacteria with an effective competitive nodulation for symbiosis. These findings improved our knowledge of FtcR-like transcriptional regulator in A. caulinodans.
Collapse
Affiliation(s)
- Li Sun
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China
| | - Dandan Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China
| | - Zhiqiu Yin
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Amber Bible
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
| | - Zhihong Xie
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China.,Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| |
Collapse
|
6
|
Leal-Morales A, Pulido-Sánchez M, López-Sánchez A, Govantes F. Transcriptional organization and regulation of the Pseudomonas putida flagellar system. Environ Microbiol 2021; 24:137-157. [PMID: 34859548 DOI: 10.1111/1462-2920.15857] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 01/22/2023]
Abstract
A single region of the Pseudomonas putida genome, designated the flagellar cluster, includes 59 genes potentially involved in the biogenesis and function of the flagellar system. Here, we combine bioinformatics and in vivo gene expression analyses to clarify the transcriptional organization and regulation of the flagellar genes in the cluster. We have identified 11 flagellar operons and characterized 22 primary and internal promoter regions. Our results indicate that synthesis of the flagellar apparatus and core chemotaxis machinery is regulated by a three-tier cascade in which fleQ is a Class I gene, standing at the top of the transcriptional hierarchy. FleQ- and σ54 -dependent Class II genes encode most components of the flagellar structure, part of the chemotaxis machinery and multiple regulatory elements, including the flagellar σ factor FliA. FliA activation of Class III genes enables synthesis of the filament, one stator complex and completion of the chemotaxis apparatus. Accessory regulatory proteins and an intricate operon architecture add complexity to the regulation by providing feedback and feed-forward loops to the main circuit. Because of the high conservation of the gene arrangement and promoter motifs, we believe that the regulatory circuit presented here may also apply to other environmental pseudomonads.
Collapse
Affiliation(s)
- Antonio Leal-Morales
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Marta Pulido-Sánchez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Aroa López-Sánchez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Fernando Govantes
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| |
Collapse
|
7
|
Identification of a Diguanylate Cyclase That Facilitates Biofilm Formation on Electrodes by Shewanella oneidensis MR-1. Appl Environ Microbiol 2021; 87:AEM.00201-21. [PMID: 33637573 DOI: 10.1128/aem.00201-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/19/2021] [Indexed: 12/29/2022] Open
Abstract
In many bacteria, cyclic diguanosine monophosphate (c-di-GMP), synthesized by diguanylate cyclase (DGC), serves as a second messenger involved in the regulation of biofilm formation. Although studies have suggested that c-di-GMP also regulates the formation of electrochemically active biofilms (EABFs) by Shewanella oneidensis MR-1, DGCs involved in this process remained to be identified. Here, we report that the SO_1646 gene, hereafter named dgcS, is upregulated under medium flow conditions in electrochemical flow cells (EFCs), and its product (DgcS) functions as a major DGC in MR-1. In vitro assays demonstrated that purified DgcS catalyzed the synthesis of c-di-GMP from GTP. Comparisons of intracellular c-di-GMP levels in the wild-type strain and a dgcS deletion mutant (ΔdgcS mutant) showed that production of c-di-GMP was markedly reduced in the ΔdgcS mutant when cells were grown in batch cultures and on electrodes in EFCs. Cultivation of the ΔdgcS mutant in EFCs also revealed that the loss of DgcS resulted in impaired biofilm formation and decreased current generation. These findings demonstrate that MR-1 uses DgcS to synthesize c-di-GMP under medium flow conditions, thereby activating biofilm formation on electrodes.IMPORTANCE Bioelectrochemical systems (BESs) have attracted wide attention owing to their utility in sustainable biotechnology processes, such as microbial fuel cells and electrofermentation systems. In BESs, electrochemically active bacteria (EAB) form biofilms on electrode surfaces, thereby serving as effective catalysts for the interconversion between chemical and electric energy. It is therefore important to understand mechanisms for the formation of biofilm by EAB grown on electrodes. Here, we show that a model EAB, S. oneidensis MR-1, expresses DgcS as a major DGC, thereby activating the formation of biofilms on electrodes via c-di-GMP-dependent signal transduction cascades. The findings presented herein provide the molecular basis for improving electrochemical interactions between EAB and electrodes in BESs. The results also offer molecular insights into how Shewanella regulates biofilm formation on solid surfaces in the natural environment.
Collapse
|
8
|
An ATP-dependent partner switch links flagellar C-ring assembly with gene expression. Proc Natl Acad Sci U S A 2020; 117:20826-20835. [PMID: 32788349 DOI: 10.1073/pnas.2006470117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bacterial flagella differ in their number and spatial arrangement. In many species, the MinD-type ATPase FlhG (also YlxH/FleN) is central to the numerical control of bacterial flagella, and its deletion in polarly flagellated bacteria typically leads to hyperflagellation. The molecular mechanism underlying this numerical control, however, remains enigmatic. Using the model species Shewanella putrefaciens, we show that FlhG links assembly of the flagellar C ring with the action of the master transcriptional regulator FlrA (named FleQ in other species). While FlrA and the flagellar C-ring protein FliM have an overlapping binding site on FlhG, their binding depends on the ATP-dependent dimerization state of FlhG. FliM interacts with FlhG independent of nucleotide binding, while FlrA exclusively interacts with the ATP-dependent FlhG dimer and stimulates FlhG ATPase activity. Our in vivo analysis of FlhG partner switching between FliM and FlrA reveals its mechanism in the numerical restriction of flagella, in which the transcriptional activity of FlrA is down-regulated through a negative feedback loop. Our study demonstrates another level of regulatory complexity underlying the spationumerical regulation of flagellar biogenesis and implies that flagellar assembly transcriptionally regulates the production of more initial building blocks.
Collapse
|
9
|
Yang RS, Chen YT. Flagellation of Shewanella oneidensis Impacts Bacterial Fitness in Different Environments. Curr Microbiol 2020; 77:1790-1799. [PMID: 32328750 DOI: 10.1007/s00284-020-01999-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
Flagella occur on many prokaryotes, which primarily propel cells to move from detrimental to favorable environments. A variety of species-specific flagellation patterns have been identified. Although it is presumed that for each of these flagellated microorganisms, an evolutionarily fixed flagellation pattern is favored under the normal living conditions, direct evidence is lacking. Here, we use Shewanella oneidensis, a rod-shaped Gram-negative bacterium with a monotrichous polar flagellum (MR-1, the wild-type), as a research model. The investigation has been enabled by multiple mutants with diverse flagellation patterns that had been generated by removing FlhF and FlhG proteins that control flagellar location and number, respectively. Growth assays, as a measure of fitness, revealed that the wild-type strain predominated in spreading on swim plates and in pellicles which form at the air-liquid interface. However, under the pellicles where oxygen is limited, both aflagellated and monotrichous lateral strains showed similar increase in fitness, whereas strains with multiple flagella were less competitive. Moreover, under shaking culturing conditions, the aflagellated strain outcompeted all other strains, including the wild-type, suggesting that cells devoid of flagella would be more likely enriched upon agitation. Overall, these data support the presumption that the monotrichous polar flagellum, as evolutionarily fixed in the wild-type strain, is optimal for the growth fitness of S. oneidensis over any other mutants under most test conditions. However, upon specific changes of environmental conditions, another form could come to predominate. These findings provide insight into the impacts of flagellation patterns and function on bacterial adaptation to differing environments.
Collapse
Affiliation(s)
- Ri-Sheng Yang
- Microbiology and Immunology Laboratory, College of Life Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang, China
| | - Yi-Tao Chen
- Microbiology and Immunology Laboratory, College of Life Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
10
|
Liang H, Mao Y, Sun Y, Gao H. Transcriptional regulator ArcA mediates expression of oligopeptide transport systems both directly and indirectly in Shewanella oneidensis. Sci Rep 2019; 9:13839. [PMID: 31554843 PMCID: PMC6761289 DOI: 10.1038/s41598-019-50201-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/09/2019] [Indexed: 11/09/2022] Open
Abstract
In γ-proteobacterial species, such as Escherichia coli, the Arc (anoxic redox control) two-component system plays a major role in mediating the metabolic transition from aerobiosis to anaerobiosis, and thus is crucial for anaerobic growth but dispensable for aerobic growth. In Shewanella oneidensis, a bacterium renowned for respiratory versatility, Arc (SoArc) primarily affects aerobic growth. To date, how this occurs has remained largely unknown although the growth defect resulting from the loss of DNA-binding response regulator SoArcA is tryptone-dependent. In this study, we demonstrated that the growth defect is in part linked to utilization of oligopeptides and di-tripeptides, and peptide uptake but not peptide degradation is significantly affected by the SoArcA loss. A systematic characterization of major small peptide uptake systems manifests that ABC peptide transporter Sap and four proton-dependent oligopeptide transporters (POTs) are responsible for transport of oligopeptides and di-tripeptides respectively. Among them, Sap and DtpA (one of POTs) are responsive to the SoarcA mutation but only dtpA is under the direct control of SoArcA. We further showed that both Sap and DtpA, when overproduced, improve growth of the SoarcA mutant. While the data firmly establish a link between transport of oligopeptides and di-tripeptides and the SoarcA mutation, other yet-unidentified factors are implicated in the growth defect resulting from the SoArcA loss.
Collapse
Affiliation(s)
- Huihui Liang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yinting Mao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yijuan Sun
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.,Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China. .,Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
11
|
Kühn MJ, Schmidt FK, Farthing NE, Rossmann FM, Helm B, Wilson LG, Eckhardt B, Thormann KM. Spatial arrangement of several flagellins within bacterial flagella improves motility in different environments. Nat Commun 2018; 9:5369. [PMID: 30560868 PMCID: PMC6299084 DOI: 10.1038/s41467-018-07802-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 11/22/2018] [Indexed: 11/26/2022] Open
Abstract
Bacterial flagella are helical proteinaceous fibers, composed of the protein flagellin, that confer motility to many bacterial species. The genomes of about half of all flagellated species include more than one flagellin gene, for reasons mostly unknown. Here we show that two flagellins (FlaA and FlaB) are spatially arranged in the polar flagellum of Shewanella putrefaciens, with FlaA being more abundant close to the motor and FlaB in the remainder of the flagellar filament. Observations of swimming trajectories and numerical simulations demonstrate that this segmentation improves motility in a range of environmental conditions, compared to mutants with single-flagellin filaments. In particular, it facilitates screw-like motility, which enhances cellular spreading through obstructed environments. Similar mechanisms may apply to other bacterial species and may explain the maintenance of multiple flagellins to form the flagellar filament.
Collapse
Affiliation(s)
- Marco J Kühn
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, 35392, Gießen, Germany
| | - Felix K Schmidt
- Fachbereich Physik und LOEWE Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, 35032, Marburg, Germany
| | - Nicola E Farthing
- Department of Physics, University of York, Heslington, York, YO10 5DD, UK
- Department of Mathematics, University of York, Heslington, York, YO10 5DD, UK
| | - Florian M Rossmann
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, 35392, Gießen, Germany
| | - Bina Helm
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, 35392, Gießen, Germany
| | - Laurence G Wilson
- Department of Physics, University of York, Heslington, York, YO10 5DD, UK.
| | - Bruno Eckhardt
- Fachbereich Physik und LOEWE Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, 35032, Marburg, Germany.
| | - Kai M Thormann
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Gießen, 35392, Gießen, Germany.
| |
Collapse
|
12
|
Cytochromes c Constitute a Layer of Protection against Nitric Oxide but Not Nitrite. Appl Environ Microbiol 2018; 84:AEM.01255-18. [PMID: 29934335 DOI: 10.1128/aem.01255-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/20/2018] [Indexed: 11/20/2022] Open
Abstract
Nitric oxide (NO) is a radical gas that reacts with various biological molecules in complex ways to inhibit growth as a bacteriostatic agent. NO is nearly ubiquitous because it can be generated both biotically and abiotically. To protect the cell from NO damage, bacteria have evolved many strategies, with the production of detoxifying enzymatic systems being the most efficient. Here, we report that c-type cytochromes (cytochromes c) constitute a primary NO protection system in Shewanella oneidensis, a Gram-negative environmental bacterium renowned for respiratory versatility due to its high cytochrome c content. By using mutants producing cytochromes c at varying levels, we found that the content of these proteins is inversely correlated with the growth inhibition imposed by NO, whereas the effect of each individual cytochrome c is negligible. This NO-protecting system has no effect on nitrite inhibition. In the absence of cytochromes c, other NO targets and protective proteins, such as NnrS, emerge to show physiological influences during the NO stress. We further demonstrate that cytochromes c also play a similar role in Escherichia coli, albeit only modestly. Our data thus identify the in vivo function of an important group of proteins in alleviating NO stress.IMPORTANCE It is widely accepted that the antibacterial effects of nitrite are attributable to nitric oxide (NO) formation, suggesting a correlation of bacterial susceptibilities to these two chemicals. However, compared to E. coli, S. oneidensis is highly sensitive to nitrite but resistant to NO, implying the presence of robust NO-protective systems. Here, we show that c-type cytochromes (cytochromes c) play a main role in protecting S. oneidensis against damages from NO but not from nitrite. In their absence, impacts of proteins that promote NO tolerance and that are targets of NO inhibition become evident. Our data thus reveal the specific activity of cytochromes c in alleviating the stress caused by NO but not nitrite.
Collapse
|
13
|
Distinct Nitrite and Nitric Oxide Physiologies in Escherichia coli and Shewanella oneidensis. Appl Environ Microbiol 2018; 84:AEM.00559-18. [PMID: 29654177 DOI: 10.1128/aem.00559-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/06/2018] [Indexed: 11/20/2022] Open
Abstract
Nitrite has been used as a bacteriostatic agent for centuries in food preservation. It is widely accepted that this biologically inert molecule functions indirectly, serving as a stable reservoir of bioactive nitric oxide (NO) and other reactive nitrogen species to impact physiology. As a result, to date, we know surprisingly little about in vivo targets of nitrite. Here, we carry out comparative analyses of nitrite and NO physiology in Escherichia coli and in Shewanella oneidensis, a Gram-negative environmental bacterium renowned for respiratory versatility. These two bacteria differ from each other in many aspects of nitrite and NO physiology, including NO generation, NO degradation, and unexpectedly, their contrary susceptibility to nitrite and NO. In cell extracts of both bacteria, most of the NO targets are also susceptible to nitrite, and vice versa. However, with respect to growth inhibition caused by NO, the targets are impacted distinctly; NO targets are responsible for the inhibition of growth of E. coli but not of S. oneidensis More surprisingly, all proteins identified to be implicated in NO tolerance in other bacteria appear to play a dispensable role in protecting S. oneidensis against NO. These data suggest that S. oneidensis is equipped with a robust but yet unknown NO protecting system. In the case of nitrite, it is clear that the target of physiological significance in both bacteria is cytochrome heme-copper oxidase.IMPORTANCE Nitrite is toxic to living organisms at high levels, but such antibacterial effects of nitrite are attributable to the formation of nitric oxide (NO), a highly reactive radical gas molecule. Here, we report that Shewanella oneidensis is highly resistant to NO but sensitive to nitrite compared to Escherichia coli by approximately 4-fold. In both bacteria, nitrite inhibits bacterial growth by targeting cytochrome heme-copper oxidase. In contrast, the targets of NO are diverse. Although these targets are similar in E. coli and S. oneidensis, they are responsible for growth inhibition caused by NO in the former but not in the latter. Overall, the presented data, along with the previous data, solidify a proposal that the in vivo targets of NO and nitrite in bacteria are largely different.
Collapse
|
14
|
Dissociation between Iron and Heme Biosyntheses Is Largely Accountable for Respiration Defects of Shewanella oneidensis fur Mutants. Appl Environ Microbiol 2018; 84:AEM.00039-18. [PMID: 29427425 DOI: 10.1128/aem.00039-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/30/2018] [Indexed: 11/20/2022] Open
Abstract
Iron, a major protein cofactor, is essential for most organisms but can simultaneously be toxic. Iron homeostasis thus has to be effectively maintained under a range of iron regimes. This may be particularly true with Shewanella oneidensis, a representative of dissimilatory metal-reducing bacteria (DMRB), which are capable of respiring a variety of chemicals as electron acceptors (EAs), including iron ores. Although iron respiration and its regulation have been extensively studied in this bacterium, how iron homeostasis is maintained remains largely unknown. Here, we report that the loss of the iron homeostasis master regulator Fur negatively affects the respiration of all EAs tested. This defect appears mainly to be a result of reduced cytochrome c (cyt c) production, despite a decrease in the expression of reductases that are under the direct control of Fur. We also show that S. oneidensis Fur interacts with canonical Fur box motifs in F-F-x-R configuration rather than the palindromic motif proposed before. The fur mutant has lowered total iron and increased free iron contents. Under iron-rich conditions, overproduction of the major iron storage protein Bfr elevates the total iron levels of the fur mutant over those of the wild-type but does not affect free iron levels. Intriguingly, such an operation only marginally improves cyt c production by affecting heme b biosynthesis. It is established that iron dictates heme b/cyt c biosynthesis in S. oneidensis fur + strains, but the fur mutation annuls the dependence of heme b/cyt c biosynthesis on iron. Overall, our results suggest that Fur has a profound impact on the iron homeostasis of S. oneidensis, through which many physiological processes, especially respiration, are transformed.IMPORTANCE Iron reduction is a signature of S. oneidensis, and this process relies on a large number of type c cytochromes, which per se are iron-containing proteins. Thus, iron plays an essential and special role in iron respiration, but to date, the nature of iron metabolism and regulation of the bacterium remains largely unknown. In this study, we investigated impacts of Fur, the master regulator of iron homeostasis, on respiration. The loss of Fur causes a general defect in respiration, a result of impaired cyt c production rather than specific regulation. Additionally, the fur mutant is unresponsive to iron, resulting in imbalanced iron homeostasis and dissociation between iron and cyt c production. These findings provide important insights into the iron biology of DMRB.
Collapse
|
15
|
Partially Reciprocal Replacement of FlrA and FlrC in Regulation of Shewanella oneidensis Flagellar Biosynthesis. J Bacteriol 2018; 200:JB.00796-17. [PMID: 29358496 DOI: 10.1128/jb.00796-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 01/17/2018] [Indexed: 12/23/2022] Open
Abstract
In some bacteria with a polar flagellum, an established regulatory hierarchy controlling stepwise assembly of the organelle consists of four regulators: FlrA, σ54, FlrBC, and σ28 Because all of these regulators mediate the expression of multiple targets, they are essential to the assembly of a functional flagellum and therefore to motility. However, this is not the case for the gammaproteobacterium Shewanella oneidensis: cells lacking FlrB, FlrC, or both remain flagellated and motile. In this study, we unravel the underlying mechanism, showing that FlrA and FlrC are partially substitutable for each other in regulating flagellar assembly. While both regulators are bacterial enhancer binding proteins (bEBPs) for σ54, FlrA differs from FlrC in its independence of σ54 for its own transcription and its inability to activate the flagellin gene flaA These differences largely account for the distinct phenotypes resulting from the loss or overproduction of FlrA and FlrC.IMPORTANCE The assembly of a polar flagellum in bacteria has been characterized as relying on four regulators, FlrA, σ54, FlrBC, and σ28, in a hierarchical manner. They all are essential to the process and therefore to motility, except in S. oneidensis, in which FlrB, FlrC, or both together are not essential. Here we show that FlrA and FlrC, as bEBPs, are partially reciprocal in functionality in this species. As a consequence, the presence of one allows flagellar assembly and motility in the other's absence. Despite this, there are significant differences in the physiological roles played by these two regulators: FlrA is the master regulator of flagellar assembly, whereas FlrC fine-tunes motility. These intriguing observations open up a new avenue to further exploration of the regulation of flagellar assembly.
Collapse
|
16
|
Wan F, Kong L, Gao H. Defining the binding determinants of Shewanella oneidensis OxyR: Implications for the link between the contracted OxyR regulon and adaptation. J Biol Chem 2018; 293:4085-4096. [PMID: 29367341 DOI: 10.1074/jbc.ra117.001530] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/16/2018] [Indexed: 01/06/2023] Open
Abstract
It is well-established that OxyR functions as a transcriptional activator of the peroxide stress response in bacteria, primarily based on studies on Escherichia coli Recent investigations have revealed that OxyRs of some other bacteria can regulate gene expression through both repression and activation or repression only; however, the underlying mechanisms remain largely unknown. Here, we demonstrated in γ-proteobacteriumShewanella oneidensis regulation of OxyR on expression of major catalase gene katB in a dual-control manner through interaction with a single site in the promoter region. Under non-stress conditions, katB expression was repressed by reduced OxyR (OxyRred), whereas when oxidized, OxyR (OxyRoxi) outcompeted OxyRred for the site because of substantially enhanced affinity, resulting in a graded response to oxidative stress, from repression to derepression to activation. The OxyR-binding motif is characterized as a combination of the E. coli motif (tetranucleotides spaced by heptanucleotide) and palindromic structure. We provided evidence to suggest that the S. oneidensis OxyR regulon is significantly contracted compared with those reported, probably containing only five members that are exclusively involved in oxygen reactive species scavenging and iron sequestering. These characteristics probably reflect the adapting strategy of the bacteria that S. oneidensis represents to thrive in redox-stratified microaerobic and anaerobic environments.
Collapse
Affiliation(s)
- Fen Wan
- From the Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Linggen Kong
- From the Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Haichun Gao
- From the Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
17
|
Dong Z, Guo S, Fu H, Gao H. Investigation of a spontaneous mutant reveals novel features of iron uptake in Shewanella oneidensis. Sci Rep 2017; 7:11788. [PMID: 28924168 PMCID: PMC5603553 DOI: 10.1038/s41598-017-11987-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/30/2017] [Indexed: 12/03/2022] Open
Abstract
Shewanella oneidensis is among the first and the best studied bacteria capable of respiring minerals as terminal electron acceptors (EAs), including a variety of iron ores. This respiration process relies on a large number of c-type cytochromes, which per se are iron-containing proteins. Thus, iron plays an essential and special role in iron respiration of S. oneidensis, prompting extensive investigations into iron physiology. Despite this, we still know surprisingly little about the components and characteristics of iron transport in this bacterium. Here, we report that TonB-dependent receptor PutA (SO_3033) is specific to the siderophore-mediated iron uptake. Although homologs of PutA are abundant, none of them can function as a replacement. In the absence of PutA, S. oneidensis suffers from an iron shortage, which leads to a severe defect in production of cytochrome c. However, proteins requiring other types of cytochromes, such as b and d, do not appear to be significantly impacted. Intriguingly, lactate, but not other carbon sources that are routinely used to support growth, is able to promote iron uptake when PutA is missing. We further show that the lactate-mediated iron import is independent of lactate permeases. Overall, our results suggest that in S. oneidensis the siderophore-dependent pathway plays a key role in iron uptake when iron is limited, but many alternative routes exist.
Collapse
Affiliation(s)
- Ziyang Dong
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shupan Guo
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Huihui Fu
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
18
|
Abstract
Because of ubiquity of thioesters, thioesterases play a critical role in metabolism, membrane biosynthesis, signal transduction, and gene regulation. In many bacteria, YbgC is such an enzyme, whose coding gene mostly resides in the tol-pal cluster. Although all other proteins encoded in the tol-pal cluster are clearly involved in maintaining cell envelope integrity and cell division, little is known about the physiological role of YbgC. In this study, we identify in Shewanella oneidensis, a γ-proteobacterium used as a research model for environmental microbes, YbgC as a motility regulator. The loss of YbgC results in enhanced motility, which is likely due to the increased rotation rate of the flagellum. The regulatory function of YbgC requires its thioesterase activity but could not be replaced by YbgC homologues of other bacteria. We further show that the regulation of YbgC is mediated by the second message c-di-GMP.
Collapse
|
19
|
NapB in excess inhibits growth of Shewanella oneidensis by dissipating electrons of the quinol pool. Sci Rep 2016; 6:37456. [PMID: 27857202 PMCID: PMC5114592 DOI: 10.1038/srep37456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/25/2016] [Indexed: 01/22/2023] Open
Abstract
Shewanella, a group of ubiquitous bacteria renowned for respiratory versatility, thrive in environments where various electron acceptors (EAs) of different chemical and physiological characteristics coexist. Despite being extensively studied, we still know surprisingly little about strategies by which multiple EAs and their interaction define ecophysiology of these bacteria. Previously, we showed that nitrite inhibits growth of the genus representative Shewanella oneidensis on fumarate and presumably some other CymA (quinol dehydrogenase)-dependent EAs by reducing cAMP production, which in turn leads to lowered expression of nitrite and fumarate reductases. In this study, we demonstrated that inhibition of fumarate growth by nitrite is also attributable to overproduction of NapB, the cytochrome c subunit of nitrate reductase. Further investigations revealed that excessive NapB per se inhibits growth on all EAs tested, including oxygen. When overproduced, NapB acts as an electron shuttle to dissipate electrons of the quinol pool, likely to extracellullar EAs, because the Mtr system, the major electron transport pathway for extracellular electron transport, is implicated. The study not only sheds light on mechanisms by which certain EAs, especially toxic ones, impact the bacterial ecophysiology, but also provides new insights into how electron shuttle c-type cytochromes regulate multi-branched respiratory networks.
Collapse
|
20
|
Suppression of fabB Mutation by fabF1 Is Mediated by Transcription Read-through in Shewanella oneidensis. J Bacteriol 2016; 198:3060-3069. [PMID: 27573012 DOI: 10.1128/jb.00463-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/20/2016] [Indexed: 12/19/2022] Open
Abstract
As type II fatty acid synthesis is essential for the growth of Escherichia coli, its many components are regarded as potential targets for novel antibacterial drugs. Among them, β-ketoacyl-acyl carrier protein (ACP) synthase (KAS) FabB is the exclusive factor for elongation of the cis-3-decenoyl-ACP (cis-3-C10-ACP). In our previous study, we presented evidence to suggest that this may not be the case in Shewanella oneidensis, an emerging model gammaproteobacterium renowned for its respiratory versatility. Here, we identified FabF1, another KAS, as a functional replacement for FabB in S. oneidensis In fabB+ or desA+ (encoding a desaturase) cells, which are capable of making unsaturated fatty acids (UFA), FabF1 is barely produced. However, UFA auxotroph mutants devoid of both fabB and desA genes can be spontaneously converted to suppressor strains, which no longer require exogenous UFAs for growth. Suppression is caused by a TGTTTT deletion in the region upstream of the fabF1 gene, resulting in enhanced FabF1 production. We further demonstrated that the deletion leads to transcription read-through of the terminator for acpP, an acyl carrier protein gene immediately upstream of fabF1 There are multiple tandem repeats in the region covering the terminator, and the TGTTTT deletion, as well as others, compromises the terminator efficacy. In addition, FabF2 also shows an ability to complement the FabB loss, albeit substantially less effectively than FabF1. IMPORTANCE It has been firmly established that FabB for UFA synthesis via type II fatty acid synthesis in FabA-containing bacteria such as E. coli is essential. However, S. oneidensis appears to be an exception. In this bacterium, FabF1, when sufficiently expressed, is able to fully complement the FabB loss. Importantly, such a capability can be obtained by spontaneous mutations, which lead to transcription read-through. Therefore, our data, by identifying the functional overlap between FabB and FabFs, provide new insights into the current understanding of KAS and help reveal novel ways to block UFA synthesis for therapeutic purposes.
Collapse
|
21
|
Luo G, Huang L, Su Y, Qin Y, Xu X, Zhao L, Yan Q. flrA, flrB and flrC regulate adhesion by controlling the expression of critical virulence genes in Vibrio alginolyticus. Emerg Microbes Infect 2016; 5:e85. [PMID: 27485498 PMCID: PMC5034100 DOI: 10.1038/emi.2016.82] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/24/2022]
Abstract
Adhesion is an important virulence trait of Vibrio alginolyticus. Bacterial adhesion is influenced by environmental conditions; however, the molecular mechanism underlying this effect remains unknown. The expression levels of flrA, flrB and flrC were significantly downregulated in adhesion-deficient V. alginolyticus strains cultured under Cu2+, Pb2+, Hg2+ and low-pH stresses. Silencing these genes led to deficiencies in adhesion, motility, flagellar assembly, biofilm formation and exopolysaccharide (EPS) production. The expression levels of fliA, flgH, fliS, fliD, cheR, cheV and V12G01_22158 (Gene ID) were significantly downregulated in all of the RNAi groups, whereas the expression levels of toxT, ctxB, acfA, hlyA and tlh were upregulated in flrA- and flrC-silenced groups. These genes play a key role in the virulence mechanisms of most pathogenic Vibrio species. Furthermore, the expression of flrA, flrB and flrC was significantly influenced by temperature, salinity, starvation and pH. These results indicate that (1) flrA, flrB and flrC are important for V. alginolyticus adhesion; (2) flrA, flrB and flrC significantly influence bacterial adhesion, motility, biofilm formation and EPS production by controlling expression of key genes involved in those phenotypes; and (3) flrA, flrB and flrC regulate adhesion in the natural environment with different temperatures, pH levels, salinities and starvation time.
Collapse
Affiliation(s)
- Gang Luo
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Yongquan Su
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian 352000, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Xiaojin Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian 352000, China
| |
Collapse
|
22
|
Jin M, Fu H, Yin J, Yuan J, Gao H. Molecular Underpinnings of Nitrite Effect on CymA-Dependent Respiration in Shewanella oneidensis. Front Microbiol 2016; 7:1154. [PMID: 27493647 PMCID: PMC4954811 DOI: 10.3389/fmicb.2016.01154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/11/2016] [Indexed: 12/31/2022] Open
Abstract
Shewanella exhibit a remarkable versatility of respiration, with a diverse array of electron acceptors (EAs). In environments where these bacteria thrive, multiple EAs are usually present. However, we know little about strategies by which these EAs and their interaction affect ecophysiology of Shewanella. In this study, we demonstrate in the model strain, Shewanella oneidensis MR-1, that nitrite, not through nitric oxide to which it may convert, inhibits respiration of fumarate, and probably many other EAs whose reduction depends on quinol dehydrogenase CymA. This is achieved via the repression of cyclic adenosine monophosphate (cAMP) production, a second messenger required for activation of cAMP-receptor protein (Crp) which plays a primary role in regulation of respiration. If nitrite is not promptly removed, intracellular cAMP levels drop, and this impairs Crp activity. As a result, the production of nitrite reductase NrfA, CymA, and fumarate reductase FccA is substantially reduced. In contrast, nitrite can be simultaneously respired with trimethylamine N-oxide, resulting in enhanced biomass.
Collapse
Affiliation(s)
- Miao Jin
- Institute of Microbiology and College of Life Sciences, Zhejiang University Hangzhou, China
| | - Huihui Fu
- Institute of Microbiology and College of Life Sciences, Zhejiang University Hangzhou, China
| | - Jianhua Yin
- Institute of Microbiology and College of Life Sciences, Zhejiang University Hangzhou, China
| | - Jie Yuan
- Institute of Microbiology and College of Life Sciences, Zhejiang University Hangzhou, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University Hangzhou, China
| |
Collapse
|
23
|
Reduced expression of cytochrome oxidases largely explains cAMP inhibition of aerobic growth in Shewanella oneidensis. Sci Rep 2016; 6:24449. [PMID: 27076065 PMCID: PMC4830989 DOI: 10.1038/srep24449] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/29/2016] [Indexed: 12/20/2022] Open
Abstract
Inhibition of bacterial growth under aerobic conditions by elevated levels of cyclic adenosine 3′,5′-monophosphate (cAMP), first revealed more than 50 years ago, was attributed to accumulation of toxic methylglyoxal (MG). Here, we report a Crp-dependent mechanism rather than MG accumulation that accounts for the phenotype in Shewanella oneidensis, an emerging research model for the bacterial physiology. We show that a similar phenotype can be obtained by removing CpdA, a cAMP phosphodiesterase that appears more effective than its Escherichia coli counterpart. Although production of heme c and cytochromes c is correlated well with cAMP levels, neither is sufficient for the retarded growth. Quantities of overall cytochromes c increased substantially in the presence of elevated cAMP, a phenomenon resembling cells respiring on non-oxygen electron acceptors. In contrast, transcription of Crp-dependent genes encoding both cytochromes bd and cbb3 oxidases is substantially repressed under the same condition. Overall, our results suggest that cAMP of elevated levels drives cells into a low-energetic status, under which aerobic respiration is inhibited.
Collapse
|
24
|
Luo Q, Li M, Fu H, Meng Q, Gao H. Shewanella oneidensis FabB: A β-ketoacyl-ACP Synthase That Works with C16:1-ACP. Front Microbiol 2016; 7:327. [PMID: 27014246 PMCID: PMC4793157 DOI: 10.3389/fmicb.2016.00327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/01/2016] [Indexed: 12/12/2022] Open
Abstract
It is established that Escherichia coli β-ketoacyl-ACP synthase (KAS) I (encoded by EcfabB) is the primary, if not exclusive, factor for elongation of the cis-3-decenoyl-ACP (C10:1-ACP) but not effective with C16:1- or longer-chain-ACPs. To test the extent to which these features apply to KAS I proteins in other species, in this study, we examined the physiological role of FabB in Shewanella oneidensis, an excellent model for researching type II fatty acid synthetic (FAS) system and its regulation. We showed that the loss of either FabA (the enzyme that introduces double bond) or FabB, in the absence of DesA which desaturizes C16 and C18 to generate respective C16:1 and C18:1, leads to a UFA auxotroph. However, fatty acid profiles of membrane phospholipid of the fabA and fabB mutants are significantly different, suggesting that FabB participates in steps beyond elongation of C10:1-ACP. Further analyses demonstrated that S. oneidensis FabB differs from EcFabB in that (i) it is not the only enzyme capable of catalyzing elongation of the cis-3-decenoyl-ACP produced by FabA, (ii) it plays a critical role in elongation of C16:1- and longer-chain-ACPs, and (iii) its overproduction is detrimental.
Collapse
Affiliation(s)
- Qixia Luo
- Institute of Microbiology and College of Life Sciences, Zhejiang UniversityHangzhou, China; State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang UniversityHangzhou, China
| | - Meng Li
- Institute of Microbiology and College of Life Sciences, Zhejiang University Hangzhou, China
| | - Huihui Fu
- Institute of Microbiology and College of Life Sciences, Zhejiang University Hangzhou, China
| | - Qiu Meng
- Institute of Microbiology and College of Life Sciences, Zhejiang University Hangzhou, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University Hangzhou, China
| |
Collapse
|
25
|
Zhou G, Yuan J, Gao H. Regulation of biofilm formation by BpfA, BpfD, and BpfG in Shewanella oneidensis. Front Microbiol 2015; 6:790. [PMID: 26300859 PMCID: PMC4523816 DOI: 10.3389/fmicb.2015.00790] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/21/2015] [Indexed: 12/25/2022] Open
Abstract
Bacteria switch between two distinct life styles – planktonic (free living) and biofilm forming – in keeping with their ever-changing environment. Such switch involves sophisticated signaling and tight regulation, which provides a fascinating portal for studying gene function and orchestrated protein interactions. In this work, we investigated the molecular mechanism underlying biofilm formation in Shewanella oneidensis MR-1, an environmentally important model bacterium renowned for respiratory diversities, and uncovered a gene cluster coding for seven proteins involved in this process. The three key proteins, BpfA, BpfG, and BpfD, were studied in detail for the first time. BpfA directly participates in biofilm formation as extracellular “glue” BpfG is not only indispensable for BpfA export during biofilm forming but also functions to turn BpfA into active form for biofilm dispersing. BpfD regulates biofilm development by interacting with both BpfA and BpfG, likely in response to signal molecule c-di-GMP. In addition, we found that 1:1 stoichiometry between BpfD and BpfG is critical for biofilm formation. Furthermore, we demonstrated that a biofilm over-producing phenotype can be induced by C116S mutation but not loss of BpfG.
Collapse
Affiliation(s)
- Guangqi Zhou
- Institute of Microbiology, College of Life Sciences, Zijingang Campus, Zhejiang University Hangzhou, China
| | - Jie Yuan
- Institute of Microbiology, College of Life Sciences, Zijingang Campus, Zhejiang University Hangzhou, China
| | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zijingang Campus, Zhejiang University Hangzhou, China
| |
Collapse
|
26
|
Wan F, Mao Y, Dong Y, Ju L, Wu G, Gao H. Impaired cell envelope resulting from arcA mutation largely accounts for enhanced sensitivity to hydrogen peroxide in Shewanella oneidensis. Sci Rep 2015; 5:10228. [PMID: 25975178 PMCID: PMC4432559 DOI: 10.1038/srep10228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/07/2015] [Indexed: 01/06/2023] Open
Abstract
Oxidative stress is one of the major challenges that Shewanella encounter routinely because they thrive in redox-stratified environments prone to reactive oxygen species (ROS) formation, letting alone that ROS can be generated endogenously. As respiration is the predominant process for endogenous ROS, regulators mediating respiration have been demonstrated and/or implicated to play a role in oxidative stress response. In our efforts to unveil the involvement of global regulators for respiration in the oxidative stress response, we found that loss of the Arc system increases S. oneidensis sensitivity to H2O2 whereas neither Fnr nor Crp has a significant role. A comparison of transcriptomic profiles of the wild-type and its isogenic arcA mutant revealed that the OxyR regulon is independent of the Arc system. We then provided evidence that the enhanced H2O2 sensitivity of the arcA mutant is due to an increased H2O2 uptake rate, a result of a cell envelope defect. Although one of three proteases of the ArcA regulon when in excess is partially accountable for the envelope defect, the major contributors remain elusive. Overall, our data indicate that the Arc system influences the bacterial cell envelope biosynthesis, a physiological aspect that has not been associated with the regulator before.
Collapse
Affiliation(s)
- Fen Wan
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yinting Mao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yangyang Dong
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lili Ju
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Genfu Wu
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|