1
|
Dai XX, Wu YK, Pi SB, Hu FJ, Wu YW, Qi H, Jiang ZY, Zhao LW, Fan HY. PABPN1 Couples the Polyadenylation and Translation of Maternal Transcripts to Mouse Oocyte Meiotic Maturation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500048. [PMID: 40265969 DOI: 10.1002/advs.202500048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/09/2025] [Indexed: 04/24/2025]
Abstract
During oocyte meiosis, maternal transcript polyadenylation is crucial for regulating mRNA stability and translation, which are essential for oocyte maturation. Polyadenylate-binding protein nuclear 1 (PABPN1) plays a key role in regulating mRNA splicing and polyadenylation in somatic cells and growing oocytes. However, its potential function in regulating the meiotic maturation of fully grown oocytes remains unknown. This study reports that selective Pabpn1 knockout in growing mouse oocytes using Zp3-Cre do not affect folliculogenesis but prevented germinal vesicle breakdown in fully grown oocytes, impaired CDK1 activation, and resulted in abnormal spindle formation and chromosome misalignment. The results of poly(A)-inclusive full-length RNA isoform sequencing (PAIso-seq) and transcriptome sequencing revealed that PABPN1 coordinates meiotic maturation-coupled polyadenylation and degradation of maternal mRNAs, which are key factors of maturation-promoting factor (MPF) and deadenylation mediators, such as B-cell translocation gene-4 (BTG4), ensuring proper meiotic progression. The results of rescue experiments indicate these functions of PABPN1 are mediated by its key domains, which interact with poly(A) polymerase and recruit target mRNAs. This study highlighted the physiological importance of cytoplasmic PABPN1 in mammalian oocyte maturation by integrating maternal transcript polyadenylation, translation, and degradation.
Collapse
Affiliation(s)
- Xing-Xing Dai
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yu-Ke Wu
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Shuai-Bo Pi
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Feng-Jie Hu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yun-Wen Wu
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Hang Qi
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Zhi-Yan Jiang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Long-Wen Zhao
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Center for Biomedical Research, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| |
Collapse
|
2
|
Zhang J, Qiu R, Bieger BD, Oakley CE, Oakley BR, Egan MJ, Xiang X. Aspergillus SUMOylation mutants exhibit chromosome segregation defects including chromatin bridges. Genetics 2023; 225:iyad169. [PMID: 37724751 PMCID: PMC10697819 DOI: 10.1093/genetics/iyad169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023] Open
Abstract
Functions of protein SUMOylation remain incompletely understood in different cell types. Via forward genetics, here we identified ubaBQ247*, a loss-of-function mutation in a SUMO activation enzyme UbaB in the filamentous fungus Aspergillus nidulans. The ubaBQ247*, ΔubaB, and ΔsumO mutants all produce abnormal chromatin bridges, indicating the importance of SUMOylation in the completion of chromosome segregation. The bridges are enclosed by nuclear membrane containing peripheral nuclear pore complex proteins that normally get dispersed during mitosis, and the bridges are also surrounded by cytoplasmic microtubules typical of interphase cells. Time-lapse sequences further indicate that most bridges persist through interphase prior to the next mitosis, and anaphase chromosome segregation can produce new bridges that persist into the next interphase. When the first mitosis happens at a higher temperature of 42°C, SUMOylation deficiency produces not only chromatin bridges but also many abnormally shaped single nuclei that fail to divide. UbaB-GFP localizes to interphase nuclei just like the previously studied SumO-GFP, but the nuclear signals disappear during mitosis when the nuclear pores are partially open, and the signals reappear after mitosis. The nuclear localization is consistent with many SUMO targets being nuclear proteins. Finally, although the budding yeast SUMOylation machinery interacts with LIS1, a protein critical for dynein activation, loss of SUMOylation does not cause any obvious defect in dynein-mediated transport of nuclei and early endosomes, indicating that SUMOylation is unnecessary for dynein activation in A. nidulans.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Baronger D Bieger
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA
| | - C Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Martin J Egan
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| |
Collapse
|
3
|
Zhang J, Qiu R, Bieger BD, Oakley CE, Oakley BR, Egan MJ, Xiang X. Aspergillus SUMOylation mutants have normal dynein function but exhibit chromatin bridges. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.16.537086. [PMID: 37131833 PMCID: PMC10153134 DOI: 10.1101/2023.04.16.537086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Functions of protein SUMOylation remain incompletely understood in different cell types. The budding yeast SUMOylation machinery interacts with LIS1, a protein critical for dynein activation, but dynein-pathway components were not identified as SUMO-targets in the filamentous fungus Aspergillus nidulans. Via A. nidulans forward genetics, here we identified ubaBQ247*, a loss-of-function mutation in a SUMO-activation enzyme UbaB. Colonies of the ubaBQ247*, ΔubaB and ΔsumO mutants looked similar and less healthy than the wild-type colony. In these mutants, about 10% of nuclei are connected by abnormal chromatin bridges, indicating the importance of SUMOylation in the completion of chromosome segregation. Nuclei connected by chromatin bridges are mostly in interphase, suggesting that these bridges do not prevent cell-cycle progression. UbaB-GFP localizes to interphase nuclei just like the previously studied SumO-GFP, but the nuclear signals disappear during mitosis when the nuclear pores are partially open, and the signals reappear after mitosis. The nuclear localization is consistent with many SUMO-targets being nuclear proteins, for example, topoisomerase II whose SUMOylation defect gives rise to chromatin bridges in mammalian cells. Unlike in mammalian cells, however, loss of SUMOylation in A. nidulans does not apparently affect the metaphase-to-anaphase transition, further highlighting differences in the requirements of SUMOylation in different cell types. Finally, loss of UbaB or SumO does not affect dynein- and LIS1-mediated early-endosome transport, indicating that SUMOylation is unnecessary for dynein or LIS1 function in A. nidulans.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| | - Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| | - Baronger D. Bieger
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR, USA
| | - C. Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Berl R. Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Martin J. Egan
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA
| |
Collapse
|
4
|
The TOG protein Stu2 is regulated by acetylation. PLoS Genet 2022; 18:e1010358. [PMID: 36084134 PMCID: PMC9491610 DOI: 10.1371/journal.pgen.1010358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/21/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022] Open
Abstract
Stu2 in S. cerevisiae is a member of the XMAP215/Dis1/CKAP5/ch-TOG family of MAPs and has multiple functions in controlling microtubules, including microtubule polymerization, microtubule depolymerization, linking chromosomes to the kinetochore, and assembly of γ-TuSCs at the SPB. Whereas phosphorylation has been shown to be critical for Stu2 localization at the kinetochore, other regulatory mechanisms that control Stu2 function are still poorly understood. Here, we show that a novel form of Stu2 regulation occurs through the acetylation of three lysine residues at K252, K469, and K870, which are located in three distinct domains of Stu2. Alteration of acetylation through acetyl-mimetic and acetyl-blocking mutations did not impact the essential function of Stu2. Instead, these mutations lead to a decrease in chromosome stability, as well as changes in resistance to the microtubule depolymerization drug, benomyl. In agreement with our in silico modeling, several acetylation-mimetic mutants displayed increased interactions with γ-tubulin. Taken together, these data suggest that Stu2 acetylation can govern multiple Stu2 functions, including chromosome stability and interactions at the SPB. Microtubules are proteinaceous polymers that play several important roles in cell division and segregation of the genetic material to each daughter cell. The functions of microtubules are critically dependent upon their dynamic properties in which tubulin subunits are added or removed from the microtubule end, allowing microtubules to grow or shorten in length. These dynamic properties are controlled by several types of microtubule associated proteins. In this study using bakers yeast, we describe our discovery of a previously unappreciated way to regulate the microtubule associated protein Stu2 by a modification called acetylation. When we created mutations in the Stu2 protein that can’t be properly acetylated, the cell lost some of its chromosomes. Some of these mutations actually caused the microtubules to be resistant to drugs that normally disassemble the microtubule polymer. As similar versions of the Stu2 protein are found in diverse organisms that range from yeast and fungus, to plants, insects, mammals and humans, our work could provide unique insights into how microtubules malfunction in some human diseases. With further studies, this may provide a new understanding of chromosome loss in birth defects and/or cancer.
Collapse
|
5
|
Assembly of a heptameric STRIPAK complex is required for coordination of light-dependent multicellular fungal development with secondary metabolism in Aspergillus nidulans. PLoS Genet 2019; 15:e1008053. [PMID: 30883543 PMCID: PMC6438568 DOI: 10.1371/journal.pgen.1008053] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/28/2019] [Accepted: 02/28/2019] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic striatin forms striatin-interacting phosphatase and kinase (STRIPAK) complexes that control many cellular processes including development, cellular transport, signal transduction, stem cell differentiation and cardiac functions. However, detailed knowledge of complex assembly and its roles in stress responses are currently poorly understood. Here, we discovered six striatin (StrA) interacting proteins (Sips), which form a heptameric complex in the filamentous fungus Aspergillus nidulans. The complex consists of the striatin scaffold StrA, the Mob3-type kinase coactivator SipA, the SIKE-like protein SipB, the STRIP1/2 homolog SipC, the SLMAP-related protein SipD and the catalytic and regulatory phosphatase 2A subunits SipE (PpgA), and SipF, respectively. Single and double deletions of the complex components result in loss of multicellular light-dependent fungal development, secondary metabolite production (e.g. mycotoxin Sterigmatocystin) and reduced stress responses. sipA (Mob3) deletion is epistatic to strA deletion by supressing all the defects caused by the lack of striatin. The STRIPAK complex, which is established during vegetative growth and maintained during the early hours of light and dark development, is mainly formed on the nuclear envelope in the presence of the scaffold StrA. The loss of the scaffold revealed three STRIPAK subcomplexes: (I) SipA only interacts with StrA, (II) SipB-SipD is found as a heterodimer, (III) SipC, SipE and SipF exist as a heterotrimeric complex. The STRIPAK complex is required for proper expression of the heterotrimeric VeA-VelB-LaeA complex which coordinates fungal development and secondary metabolism. Furthermore, the STRIPAK complex modulates two important MAPK pathways by promoting phosphorylation of MpkB and restricting nuclear shuttling of MpkC in the absence of stress conditions. SipB in A. nidulans is similar to human suppressor of IKK-ε(SIKE) protein which supresses antiviral responses in mammals, while velvet family proteins show strong similarity to mammalian proinflammatory NF-KB proteins. The presence of these proteins in A. nidulans further strengthens the hypothesis that mammals and fungi use similar proteins for their immune response and secondary metabolite production, respectively. The multisubunit STRIPAK complex has been studied from yeast to human and plays a range of roles from cell-cycle arrest, fruit body formation to neuronal functions. Molecular assembly of the STRIPAK complex and its roles in stress responses are not well-documented. Fungi, with an estimated 1.5 million members are friends and foes of mankind, acting as pathogens, natural product and enzyme producers. In filamentous fungus Aspergillus nidulans, we found a heptameric STRIPAK core complex made from three subcomplexes, which sits on the nuclear envelope and coordinates signal influx for light-dependent fungal development, secondary metabolism and stress responses. STRIPAK complex controls activities of two major Mitogen Activated Protein Kinase (MAPK) signaling pathways through either promoting their phosphorylation or limiting their nuclear localization under resting conditions. These findings establish a basis for how fungi govern signal influx by using multimeric scaffold protein complexes on the nuclear envelope to control different downstream pathways.
Collapse
|
6
|
Abstract
All cells must accurately replicate DNA and partition it to daughter cells. The basic cell cycle machinery is highly conserved among eukaryotes. Most of the mechanisms that control the cell cycle were worked out in fungal cells, taking advantage of their powerful genetics and rapid duplication times. Here we describe the cell cycles of the unicellular budding yeast Saccharomyces cerevisiae and the multicellular filamentous fungus Aspergillus nidulans. We compare and contrast morphological landmarks of G1, S, G2, and M phases, molecular mechanisms that drive cell cycle progression, and checkpoints in these model unicellular and multicellular fungal systems.
Collapse
|
7
|
Oakley BR, Paolillo V, Zheng Y. γ-Tubulin complexes in microtubule nucleation and beyond. Mol Biol Cell 2015; 26:2957-62. [PMID: 26316498 PMCID: PMC4551311 DOI: 10.1091/mbc.e14-11-1514] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/02/2015] [Accepted: 07/02/2015] [Indexed: 01/07/2023] Open
Abstract
Tremendous progress has been made in understanding the functions of γ-tubulin and, in particular, its role in microtubule nucleation since the publication of its discovery in 1989. The structure of γ-tubulin has been determined, and the components of γ-tubulin complexes have been identified. Significant progress in understanding the structure of the γ-tubulin ring complex and its components has led to a persuasive model for how these complexes nucleate microtubule assembly. At the same time, data have accumulated that γ-tubulin has important but less well understood functions that are not simply a consequence of its function in microtubule nucleation. These include roles in the regulation of plus-end microtubule dynamics, gene regulation, and mitotic and cell cycle regulation. Finally, evidence is emerging that γ-tubulin mutations or alterations of γ-tubulin expression play an important role in certain types of cancer and in other diseases.
Collapse
Affiliation(s)
- Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Vitoria Paolillo
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Yixian Zheng
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| |
Collapse
|