1
|
George NL, Bennett EC, Orlando BJ. Guarding the walls: the multifaceted roles of Bce modules in cell envelope stress sensing and antimicrobial resistance. J Bacteriol 2024; 206:e0012324. [PMID: 38869304 PMCID: PMC11270860 DOI: 10.1128/jb.00123-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Bacteria have developed diverse strategies for defending their cell envelopes from external threats. In Firmicutes, one widespread strategy is to use Bce modules-membrane protein complexes that unite a peptide-detoxifying ABC transporter with a stress response coordinating two-component system. These modules provide specific, front-line defense for a wide variety of antimicrobial peptides and small molecule antibiotics as well as coordinate responses for heat, acid, and oxidative stress. Because of these abilities, Bce modules play important roles in virulence and the development of antibiotic resistance in a variety of pathogens, including Staphylococcus, Streptococcus, and Enterococcus species. Despite their importance, Bce modules are still poorly understood, with scattered functional data in only a small number of species. In this review, we will discuss Bce module structure in light of recent cryo-electron microscopy structures of the B. subtilis BceABRS module and explore the common threads and variations-on-a-theme in Bce module mechanisms across species. We also highlight the many remaining questions about Bce module function. Understanding these multifunctional membrane complexes will enhance our understanding of bacterial stress sensing and may point toward new therapeutic targets for highly resistant pathogens.
Collapse
Affiliation(s)
- Natasha L. George
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Ellen C. Bennett
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Benjamin J. Orlando
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Orlando BJ. Perception and protection: The role of Bce-modules in antimicrobial peptide resistance. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184309. [PMID: 38460782 PMCID: PMC11009047 DOI: 10.1016/j.bbamem.2024.184309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/18/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Continual synthesis and remodeling of the peptidoglycan layer surrounding Gram-positive cells is essential for their survival. Diverse antimicrobial peptides target the lipid intermediates involved in this process. To sense and counteract assault from antimicrobial peptides, low G + C content gram-positive bacteria (Firmicutes) have evolved membrane protein complexes known as Bce-modules. These complexes consist minimally of an ABC transporter and a two-component system that work in tandem to perceive and confer resistance against antimicrobial peptides. In this mini-review I highlight recent breakthroughs in comprehending the structure and function of these unusual membrane protein complexes, with a particular focus on the BceAB-RS system present in Bacillus subtilis.
Collapse
Affiliation(s)
- Benjamin J Orlando
- Dept. of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
3
|
Zhu J, Wang S, Wang C, Wang Z, Luo G, Li J, Zhan Y, Cai D, Chen S. Microbial synthesis of bacitracin: Recent progress, challenges, and prospects. Synth Syst Biotechnol 2023; 8:314-322. [PMID: 37122958 PMCID: PMC10130698 DOI: 10.1016/j.synbio.2023.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Microorganisms are important sources of various natural products that have been commercialized for human medicine and animal healthcare. Bacitracin is an important antibacterial natural product predominantly produced by Bacillus licheniformis and Bacillus subtilis, and it is characterized by a broad antimicrobial spectrum, strong activity and low resistance, thus bacitracin is extensively applied in animal feed and veterinary medicine industries. In recent years, various strategies have been proposed to improve bacitracin production. Herein, we systematically describe the regulation of bacitracin biosynthesis in genus Bacillus and its associated mechanism, to provide a theoretical basis for bacitracin overproduction. The metabolic engineering strategies applied for bacitracin production are explored, including improving substrate utilization, using an enlarged precursor amino acid pool, increasing ATP supply and NADPH generation, and engineering transcription regulators. We also present several approaches of fermentation process optimization to facilitate the industrial large-scale production of bacitracin. Finally, the challenges and prospects associated with microbial bacitracin synthesis are discussed to facilitate the establishment of high-yield and low-cost biological factories.
Collapse
Affiliation(s)
- Jiang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Shiyi Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Cheng Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Zhi Wang
- Hubei Provincial Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, PR China
| | - Gan Luo
- Lifecome Biochemistry Co. Ltd, Nanping, 353400, PR China
| | - Junhui Li
- Lifecome Biochemistry Co. Ltd, Nanping, 353400, PR China
| | - Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
- Corresponding author.
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
- Corresponding author. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, PR China.
| |
Collapse
|
4
|
Systematic engineering of branch chain amino acid supply modules for the enhanced production of bacitracin from Bacillus licheniformis. Metab Eng Commun 2020; 11:e00136. [PMID: 32637317 PMCID: PMC7326738 DOI: 10.1016/j.mec.2020.e00136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Bacitracin is a broad-spectrum cyclic peptide antibiotic mainly produced by Bacillus, precursor amino acid supply served as the critical role during its synthesis. In this study, we systematically engineered branch-chain amino acid (BCAA) supply modules for bacitracin production. Firstly, we demonstrated that Ile and Leu acted as limiting precursors for bacitracin synthesis, and that BCAA synthetic pathways were strengthened via simultaneous overexpression of, feedback-resistance acetolactate synthase IlvBNfbr, 2-isopropylmalate synthetase LeuAfbr and BCAA aminotransferase YbgE. Using this approach, bacitracin yield from strain DW-BCAA2 was 892.54 U/mL, an increase of 18.32% compared with that DW2 (754.32 U/mL). Secondly, the BCAA permeases, YvbW and BraB, which have higher affinities for Leu and Ile transportation, respectively, were both identified as BCAA importers, with their overexpression improving intracellular BCAA accumulations and bacitracin yields. Finally, the leucine-responsive family regulator, lrpC was deleted to generate the final strain DW-BCAA6, with intracellular concentrations of Ile, Leu and Val increased by 2.26-, 1.90- and 0.72-fold, respectively. The bacitracin yield from DW-BCAA6 was 1029.83 U/mL, an increase of 36.52%, and is the highest bacitracin yield reported. Equally, concentrations of other byproducts including acetic acid, acetoin and 2,3-butanediol were all reduced. Taken together, we devised an efficient strategy for the enhanced production of bacitracin, and a promising B. licheniformis DW-BCAA6 strain was constructed for industrial production of bacitracin. Enhancing intracellular BCAA accumulations benefited bacitracin synthesis. YvbW and BraB were both identified as BCAA importers in B. licheniformis. Deleting lrp increased brnQ transcription and intracellular BCAA concentrations. Bacitracin yield produced by DW-BCAA6 was the highest currently reported.
Collapse
|
5
|
Cai D, Zhang B, Zhu J, Xu H, Liu P, Wang Z, Li J, Yang Z, Ma X, Chen S. Enhanced Bacitracin Production by Systematically Engineering S-Adenosylmethionine Supply Modules in Bacillus licheniformis. Front Bioeng Biotechnol 2020; 8:305. [PMID: 32318565 PMCID: PMC7155746 DOI: 10.3389/fbioe.2020.00305] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Bacitracin is a broad-spectrum veterinary antibiotic that widely used in the fields of veterinary drug and feed additive. S-Adenosylmethionine (SAM) is a critical factor involved in many biochemical reactions, especially antibiotic production. However, whether SAM affects bacitracin synthesis is still unknown. Here, we want to analyze the relationship between SAM supply and bacitracin synthesis, and then metabolic engineering of SAM synthetic pathway for bacitracin production in Bacillus licheniformis. Firstly, our results implied that SAM exogenous addition benefited bacitracin production, which yield was increased by 12.13% under the condition of 40 mg/L SAM addition. Then, SAM synthetases and Methionine (Met) synthetases from B. licheniformis, Corynebacterium glutamicum, and Saccharomyces cerevisiae were screened and overexpressed to improve SAM accumulation, and the combination of SAM synthetase from S. cerevisiae and Met synthetase from B. licheniformis showed the best performance, and 70.12% increase of intracellular SAM concentration (31.54 mg/L) and 13.08% increase of bacitraicn yield (839.54 U/mL) were achieved in resultant strain DW2-KE. Furthermore, Met transporters MetN and MetP were, respectively, identified as Met exporter and importer, and bacitracin yield was further increased by 5.94% to 889.42 U/mL via deleting metN and overexpressing metP in DW2-KE, attaining strain DW2-KENP. Finally, SAM nucleosidase gene mtnN and SAM decarboxylase gene speD were deleted to block SAM degradation pathways, and bacitracin yield of resultant strain DW2-KENPND reached 957.53 U/mL, increased by 28.97% compared to DW2. Collectively, this study demonstrated that SAM supply served as the critical role in bacitracin synthesis, and a promising strain B. licheniformis DW2-KENPND was attained for industrial production of bacitracin.
Collapse
Affiliation(s)
- Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Bowen Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Jiang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Haixia Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Pei Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Zhi Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, China
| | - Junhui Li
- Lifecome Biochemistry Co., Ltd., Nanping, China
| | - Zhifan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
6
|
Cai D, Zhu J, Zhu S, Lu Y, Zhang B, Lu K, Li J, Ma X, Chen S. Metabolic Engineering of Main Transcription Factors in Carbon, Nitrogen, and Phosphorus Metabolisms for Enhanced Production of Bacitracin in Bacillus licheniformis. ACS Synth Biol 2019; 8:866-875. [PMID: 30865822 DOI: 10.1021/acssynbio.9b00005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Primary metabolism plays a key role in the synthesis of secondary metabolite. In this study, the main transcription factors in carbon, nitrogen, and phosphorus metabolisms (CcpA, CcpC, CcpN, CodY, TnrA, GlnR, and PhoP) were engineered to improve bacitracin yield in Bacillus licheniformis DW2, an industrial strain for bacitracin production. First, our results demonstrated that deletions of ccpC and ccpN improved ATP and NADPH supplies, and the bacitracin yields were respectively increased by 14.02% and 16.06% compared with that of DW2, while it was decreased significantly in ccpA deficient strain DW2ΔccpA. Second, excessive branched chain amino acids (BCAAs) were accumulated in codY, tnrA, and glnR deletion strains DW2ΔcodY, DW2ΔtnrA, and DW2ΔglnR, which resulted in the nitrogen catabolite repressions and reductions of bacitracin yields. Moreover, overexpression of these regulators improved intracellular BCAA supplies, and further enhanced bacitracin yields by 14.17%, 12.98%, and 16.20%, respectively. Furthermore, our results confirmed that phosphate addition reduced bacitracin synthesis capability, and bacitracin yield was improved by 15.71% in gene phop deletion strain. On the contrary, overexpression of PhoP led to a 19.40% decrease of bacitracin yield. Finally, a combinatorial engineering of these above metabolic manipulations was applied, and bacitracin yield produced by the final strain DW2-CNCTGP (Simultaneously deleting ccpC, ccpN, phop and overexpressing glnR, codY, and tnrA in DW2) reached 1014.38 U/mL, increased by 35.72% compared to DW2, and this yield was the highest bacitracin yield currently reported. Taken together, this study implied that metabolic engineering of carbon, nitrogen, and phosphorus metabolism regulators is an efficient strategy to enhance bacitracin production, and provided a promising B. licheniformis strain for industrial production of bacitracin.
Collapse
Affiliation(s)
- Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Jiang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Shan Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yu Lu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Bowen Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Kai Lu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Junhui Li
- Lifecome Biochemistry Co., Ltd., Nanping 353400, PR China
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| |
Collapse
|
7
|
Linearmycins Activate a Two-Component Signaling System Involved in Bacterial Competition and Biofilm Morphology. J Bacteriol 2017; 199:JB.00186-17. [PMID: 28461449 DOI: 10.1128/jb.00186-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/24/2017] [Indexed: 11/20/2022] Open
Abstract
Bacteria use two-component signaling systems to adapt and respond to their competitors and changing environments. For instance, competitor bacteria may produce antibiotics and other bioactive metabolites and sequester nutrients. To survive, some species of bacteria escape competition through antibiotic production, biofilm formation, or motility. Specialized metabolite production and biofilm formation are relatively well understood for bacterial species in isolation. How bacteria control these functions when competitors are present is not well studied. To address fundamental questions relating to the competitive mechanisms of different species, we have developed a model system using two species of soil bacteria, Bacillus subtilis and Streptomyces sp. strain Mg1. Using this model, we previously found that linearmycins produced by Streptomyces sp. strain Mg1 cause lysis of B. subtilis cells and degradation of colony matrix. We identified strains of B. subtilis with mutations in the two-component signaling system yfiJK operon that confer dual phenotypes of specific linearmycin resistance and biofilm morphology. We determined that expression of the ATP-binding cassette (ABC) transporter yfiLMN operon, particularly yfiM and yfiN, is necessary for biofilm morphology. Using transposon mutagenesis, we identified genes that are required for YfiLMN-mediated biofilm morphology, including several chaperones. Using transcriptional fusions, we found that YfiJ signaling is activated by linearmycins and other polyene metabolites. Finally, using a truncated YfiJ, we show that YfiJ requires its transmembrane domain to activate downstream signaling. Taken together, these results suggest coordinated dual antibiotic resistance and biofilm morphology by a single multifunctional ABC transporter promotes competitive fitness of B. subtilisIMPORTANCE DNA sequencing approaches have revealed hitherto unexplored diversity of bacterial species in a wide variety of environments that includes the gastrointestinal tract of animals and the rhizosphere of plants. Interactions between different species in bacterial communities have impacts on our health and industry. However, many approaches currently used to study whole bacterial communities do not resolve mechanistic details of interspecies interactions, including how bacteria sense and respond to their competitors. Using a competition model, we have uncovered dual functions for a previously uncharacterized two-component signaling system involved in specific antibiotic resistance and biofilm morphology. Insights gleaned from signaling within interspecies interaction models build a more complete understanding of gene functions important for bacterial communities and will enhance community-level analytical approaches.
Collapse
|