1
|
Xiong Z, Sheng Q, Wen Z, Chen L, He L, Sheng X. Deletion of pyoverdine-producing pvdA increases cadmium stabilization by Pseudomonas umsongensis CR14 in cadmium-polluted solutions. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135623. [PMID: 39191008 DOI: 10.1016/j.jhazmat.2024.135623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
In this study, the effects of the Cd-resistant and pyoverdine-producing strain Pseudomonas umsongensis CR14 on Cd stabilization and the mechanisms were investigated. Compared with the control, CR14 markedly reduced the Cd concentration in a Cd-containing solution. The genes pvdA, 4498, 4499, and pchF, which are associated with pyoverdine production, were identified in CR14. Subsequently, CR14 and the CR14ΔpvdA, CR14Δ4498, CR14Δ4499, and CR14ΔpchF mutants were characterized for their effects on Cd stabilization in solution. After 72 h of incubation, the CR14ΔpchF and CR14ΔpvdA mutants significantly decreased Cd concentrations compared with CR14. Notably, the CR14ΔpvdA mutant showed a greater impact on Cd stabilization than the other mutants. Compared with CR14, this mutant brought a lower Cd concentration in the solution, with higher levels of cell surface-adsorbed and intracellular accumulated Cd, content of lipopolysaccharide (LPS), expression of the LPS-producing genes lptD and lpxL, and cell surface particles. Additionally, compared with CR14, the CR14ΔpvdA mutant demonstrated increased interactions between the hydroxyl, carboxyl, amino, or ether groups and Cd. These results suggest that the CR14ΔpvdA mutant immobilized Cd by increasing LPS production and cell surface particle numbers, upregulating the expression of LPS-producing genes, and increasing cell surface adsorption and intracellular accumulation in Cd-polluted solutions.
Collapse
Affiliation(s)
- Zhihui Xiong
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Qi Sheng
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Zhenyu Wen
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Lei Chen
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Linyan He
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China.
| | - Xiafang Sheng
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China.
| |
Collapse
|
2
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Gunardi WD, Timotius KH, Natasha A, Evriarti PR. Biofilm Targeting Strategy in the Eradication of Burkholderia Infections: A Mini-Review. Open Microbiol J 2021. [DOI: 10.2174/1874285802115010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Burkholderia are intracellular pathogenic bacteria which can produce biofilm. This biofilm protects the intracellular pathogenic bacteria from antibiotic treatment and the immunological system of the host. Therefore, this review aims to describe the capacity of Burkholderia to form a biofilm, the regulation of its biofilm formation, the efficacy of antibiotics to eradicate biofilm, and the novel therapy which targets its biofilm. Burkholderia's biofilm is characterized by its lipopolysaccharides, exopolysaccharides (EPSs), biofilm-associated proteins, and eDNA. Its regulation is made by quorum sensing, c-di-AMP, sRNA, and two component systems. Many antibiotics have been used as sole or mixture agents; however, they are not always effective in eradicating the biofilm-forming Burkholderia. Inhibitors of quorum sensing and other non-conventional antibiotic approaches are promising to discover effective treatment of Burkholderia infections.
Collapse
|
4
|
Kawahara K. Variation, Modification and Engineering of Lipid A in Endotoxin of Gram-Negative Bacteria. Int J Mol Sci 2021; 22:2281. [PMID: 33668925 PMCID: PMC7956469 DOI: 10.3390/ijms22052281] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Lipid A of Gram-negative bacteria is known to represent a central role for the immunological activity of endotoxin. Chemical structure and biosynthetic pathways as well as specific receptors on phagocytic cells had been clarified by the beginning of the 21st century. Although the lipid A of enterobacteria including Escherichia coli share a common structure, other Gram-negative bacteria belonging to various classes of the phylum Proteobacteria and other taxonomical groups show wide variety of lipid A structure with relatively decreased endotoxic activity compared to that of E. coli. The structural diversity is produced from the difference of chain length of 3-hydroxy fatty acids and non-hydroxy fatty acids linked to their hydroxyl groups. In some bacteria, glucosamine in the backbone is substituted by another amino sugar, or phosphate groups bound to the backbone are modified. The variation of structure is also introduced by the enzymes that can modify electrostatic charges or acylation profiles of lipid A during or after its synthesis. Furthermore, lipid A structure can be artificially modified or engineered by the disruption and introduction of biosynthetic genes especially those of acyltransferases. These technologies may produce novel vaccine adjuvants or antagonistic drugs derived from endotoxin in the future.
Collapse
Affiliation(s)
- Kazuyoshi Kawahara
- Department of Biosciences, College of Science and Engineering, Kanto Gakuin University, Yokohama, Kanagawa 236-8501, Japan
| |
Collapse
|
5
|
Maigoro AY, Lee S. Gut Microbiome-Based Analysis of Lipid A Biosynthesis in Individuals with Autism Spectrum Disorder: An In Silico Evaluation. Nutrients 2021; 13:nu13020688. [PMID: 33669978 PMCID: PMC7924848 DOI: 10.3390/nu13020688] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
The link between autism spectrum disorder (ASD) and the gut microbiome has received much attention, with special focus on gut–brain-axis immunological imbalances. Gastrointestinal problems are one of the major symptoms of ASD and are thought to be related to immune dysregulation. Therefore, in silico analysis was performed on mined data from 36 individuals with ASD and 21 control subjects, with an emphasis on lipid A endotoxin-producing bacteria and their lipopolysaccharide (LPS) metabolic pathways. Analysis of enzyme distribution among the 15 most abundant genera in both groups revealed that almost all these genera utilized five early-stage enzymes responsible for catalyzing the nine conserved lipid A synthesis steps. However, Haemophilus and Escherichia, which were significantly more abundant in individuals with ASD than in the control subjects, possess a complete set of essential lipid A synthesis enzymes. Furthermore, the 10 genera with the greatest increase in individuals with ASD showed high potential for producing late-stage lipid A products. Collectively, these results suggested that the synthesis rate of immunogenic LPS end products is likely to increase in individuals with ASD, which may be related to their gastrointestinal symptoms and elevated inflammatory conditions.
Collapse
|
6
|
Lipopolysaccharide-acylating capacity of the gut microbiota and its potential impact on the immunopathogenesis of HIV infection. AIDS 2019; 33:753-755. [PMID: 30829746 DOI: 10.1097/qad.0000000000002088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Hazam PK, Goyal R, Ramakrishnan V. Peptide based antimicrobials: Design strategies and therapeutic potential. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 142:10-22. [PMID: 30125585 DOI: 10.1016/j.pbiomolbio.2018.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/24/2022]
Abstract
Therapeutic activity of antibiotics is noteworthy, as they are used in the treatment of microbial infections. Regardless of their utility, there has been a steep decrease in the number of drug candidates due to antibiotic resistance, an inevitable consequence of noncompliance with the full therapeutic regimen. A variety of resistant species like MDR (Multi-Drug Resistant), XDR (Extensively Drug-Resistant) and PDR (Pan Drug-Resistant) species have evolved, but discovery pipeline has already shown signs of getting dried up. Therefore, the need for newer antibiotics is of utmost priority to combat the microbial infections of future times. Peptides have some interesting features like minimal side effect, high tolerability and selectivity towards specific targets, which would help them successfully comply with the stringent safety standards set for clinical trials. In this review, we attempt to present the state of the art in the discovery of peptide-based antimicrobials from a design perspective.
Collapse
Affiliation(s)
- Prakash Kishore Hazam
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, 781039, India
| | - Ruchika Goyal
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, 781039, India
| | - Vibin Ramakrishnan
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, 781039, India.
| |
Collapse
|
8
|
Hassan AA, Maldonado RF, Dos Santos SC, Di Lorenzo F, Silipo A, Coutinho CP, Cooper VS, Molinaro A, Valvano MA, Sá-Correia I. Structure of O-Antigen and Hybrid Biosynthetic Locus in Burkholderia cenocepacia Clonal Variants Recovered from a Cystic Fibrosis Patient. Front Microbiol 2017. [PMID: 28642745 PMCID: PMC5462993 DOI: 10.3389/fmicb.2017.01027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Burkholderia cenocepacia is an opportunistic pathogen associated with chronic lung infections and increased risk of death in patients with cystic fibrosis (CF). In this work, we investigated the lipopolysaccharide (LPS) of clinical variants of B. cenocepacia that were collected from a CF patient over a period of 3.5 years, from the onset of infection until death by necrotizing pneumonia (cepacia syndrome). We report the chemical structure of the LPS molecule of various sequential isolates and the identification of a novel hybrid O-antigen (OAg) biosynthetic cluster. The OAg repeating unit of the LPS from IST439, the initial isolate, is a [→2)-β-D-Ribf-(1→4)-α-D-GalpNAc-(1→] disaccharide, which was not previously described in B. cenocepacia. The IST439 OAg biosynthetic gene cluster contains 7 of 23 genes that are closely homologous to genes found in B. multivorans, another member of the Burkholderia cepacia complex. None of the subsequent isolates expressed OAg. Genomic sequencing of these isolates enabled the identification of mutations within the OAg cluster, but none of these mutations could be associated with the loss of OAg. This study provides support to the notion that OAg LPS modifications are an important factor in the adaptation of B. cenocepacia to chronic infection and that the heterogeneity of OAgs relates to variation within the OAg gene cluster, indicating that the gene cluster might have been assembled through multiple horizontal transmission events.
Collapse
Affiliation(s)
- A A Hassan
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisboa, Portugal
| | - Rita F Maldonado
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisboa, Portugal
| | - Sandra C Dos Santos
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisboa, Portugal
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Napoli Federico II Complesso Universitário Monte SantangeloNapoli, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Napoli Federico II Complesso Universitário Monte SantangeloNapoli, Italy
| | - Carla P Coutinho
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisboa, Portugal
| | - Vaughn S Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, PittsburghPA, United States
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II Complesso Universitário Monte SantangeloNapoli, Italy
| | - Miguel A Valvano
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University BelfastBelfast, United Kingdom
| | - Isabel Sá-Correia
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisboa, Portugal
| |
Collapse
|