1
|
Zhang FQ, Liu J, Chen XJ. Comparative analysis of bacterial diversity in two hot springs in Hefei, China. Sci Rep 2023; 13:5832. [PMID: 37037855 PMCID: PMC10086057 DOI: 10.1038/s41598-023-32853-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 04/03/2023] [Indexed: 04/12/2023] Open
Abstract
Hot springs are extreme ecological environments of microbes. The study is the first comparative analysis of bacterial diversity of Tangchi and Bantang hot spring water samples collected in Hefei, China, which is conducive to the further development and utilization of microbial resources in hot springs. Illumina MiSeq system was utilized to sequence and analyze the bacterial 16S rRNA gene from hot spring water samples by bioinformatics, to probe into the bacterial abundance and diversity of two hot springs in Hefei. Results revealed that prevalent bacterial phyla in Tangchi hot spring were Bacillota and Aquificota, and the prevalent bacterial genus was Hydrogenobacter; prevalent phyla in Bantang hot spring were Pseudomonadota followed by Actinobacteriota, and prevalent genera were CL500-29_marine_group and Polynucleobacter. More species and higher evenness in Bantang hot spring than those in Tangchi hot spring. In MetaCyc pathway analysis, the major pathways of metabolism existed in the bacteria from the two hot springs were 'pyruvate fermentation to isobutanol (engineered)', 'acetylene degradation', 'carbon fixation pathways in prokaryotes', 'nitrate reduction I (denitrification)', 'methanogenesis from acetate', 'superpathway of glucose and xylose degradation', etc.
Collapse
Affiliation(s)
- Feng-Qin Zhang
- College of Chemistry and Material Engineering, Chaohu University, Chaohu, 238024, Anhui, China
| | - Jun Liu
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Xiao-Ju Chen
- College of Chemistry and Material Engineering, Chaohu University, Chaohu, 238024, Anhui, China.
| |
Collapse
|
2
|
Merino N, Kawai M, Boyd ES, Colman DR, McGlynn SE, Nealson KH, Kurokawa K, Hongoh Y. Single-Cell Genomics of Novel Actinobacteria With the Wood-Ljungdahl Pathway Discovered in a Serpentinizing System. Front Microbiol 2020; 11:1031. [PMID: 32655506 PMCID: PMC7325909 DOI: 10.3389/fmicb.2020.01031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/27/2020] [Indexed: 01/04/2023] Open
Abstract
Serpentinite-hosted systems represent modern-day analogs of early Earth environments. In these systems, water-rock interactions generate highly alkaline and reducing fluids that can contain hydrogen, methane, and low-molecular-weight hydrocarbons-potent reductants capable of fueling microbial metabolism. In this study, we investigated the microbiota of Hakuba Happo hot springs (∼50°C; pH∼10.5-11), located in Nagano (Japan), which are impacted by the serpentinization process. Analysis of the 16S rRNA gene amplicon sequences revealed that the bacterial community comprises Nitrospirae (47%), "Parcubacteria" (19%), Deinococcus-Thermus (16%), and Actinobacteria (9%), among others. Notably, only 57 amplicon sequence variants (ASV) were detected, and fifteen of these accounted for 90% of the amplicons. Among the abundant ASVs, an early-branching, uncultivated actinobacterial clade identified as RBG-16-55-12 in the SILVA database was detected. Ten single-cell genomes (average pairwise nucleotide identity: 0.98-1.00; estimated completeness: 33-93%; estimated genome size: ∼2.3 Mb) that affiliated with this clade were obtained. Taxonomic classification using single copy genes indicates that the genomes belong to the actinobacterial class-level clade UBA1414 in the Genome Taxonomy Database. Based on metabolic pathway predictions, these actinobacteria are anaerobes, capable of glycolysis, dissimilatory nitrate reduction and CO2 fixation via the Wood-Ljungdahl (WL) pathway. Several other genomes within UBA1414 and two related class-level clades also encode the WL pathway, which has not yet been reported for the Actinobacteria phylum. For the Hakuba actinobacterium, the energy metabolism related to the WL pathway is likely supported by a combination of the Rnf complex, group 3b and 3d [NiFe]-hydrogenases, [FeFe]-hydrogenases, and V-type (H+/Na+ pump) ATPase. The genomes also harbor a form IV ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) complex, also known as a RubisCO-like protein, and contain signatures of interactions with viruses, including clustered regularly interspaced short palindromic repeat (CRISPR) regions and several phage integrases. This is the first report and detailed genome analysis of a bacterium within the Actinobacteria phylum capable of utilizing the WL pathway. The Hakuba actinobacterium is a member of the clade UBA1414/RBG-16-55-12, formerly within the group "OPB41." We propose to name this bacterium 'Candidatus Hakubanella thermoalkaliphilus.'
Collapse
Affiliation(s)
- Nancy Merino
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States.,Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Mikihiko Kawai
- School of Life Sciences and Technology, Tokyo Institute of Technology, Tokyo, Japan.,Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Daniel R Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Shawn E McGlynn
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science, Saitama, Japan.,Blue Marble Space Institute of Science, Seattle, WA, United States
| | - Kenneth H Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Ken Kurokawa
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Department of Informatics, National Institute of Genetics, Shizuoka, Japan
| | - Yuichi Hongoh
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,School of Life Sciences and Technology, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
3
|
Kitzinger K, Koch H, Lücker S, Sedlacek CJ, Herbold C, Schwarz J, Daebeler A, Mueller AJ, Lukumbuzya M, Romano S, Leisch N, Karst SM, Kirkegaard R, Albertsen M, Nielsen PH, Wagner M, Daims H. Characterization of the First " Candidatus Nitrotoga" Isolate Reveals Metabolic Versatility and Separate Evolution of Widespread Nitrite-Oxidizing Bacteria. mBio 2018; 9:e01186-18. [PMID: 29991589 PMCID: PMC6050957 DOI: 10.1128/mbio.01186-18] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/14/2018] [Indexed: 11/30/2022] Open
Abstract
Nitrification is a key process of the biogeochemical nitrogen cycle and of biological wastewater treatment. The second step, nitrite oxidation to nitrate, is catalyzed by phylogenetically diverse, chemolithoautotrophic nitrite-oxidizing bacteria (NOB). Uncultured NOB from the genus "Candidatus Nitrotoga" are widespread in natural and engineered ecosystems. Knowledge about their biology is sparse, because no genomic information and no pure "Ca Nitrotoga" culture was available. Here we obtained the first "Ca Nitrotoga" isolate from activated sludge. This organism, "Candidatus Nitrotoga fabula," prefers higher temperatures (>20°C; optimum, 24 to 28°C) than previous "Ca Nitrotoga" enrichments, which were described as cold-adapted NOB. "Ca Nitrotoga fabula" also showed an unusually high tolerance to nitrite (activity at 30 mM NO2-) and nitrate (up to 25 mM NO3-). Nitrite oxidation followed Michaelis-Menten kinetics, with an apparent Km (Km(app)) of ~89 µM nitrite and a Vmax of ~28 µmol of nitrite per mg of protein per h. Key metabolic pathways of "Ca Nitrotoga fabula" were reconstructed from the closed genome. "Ca Nitrotoga fabula" possesses a new type of periplasmic nitrite oxidoreductase belonging to a lineage of mostly uncharacterized proteins. This novel enzyme indicates (i) separate evolution of nitrite oxidation in "Ca Nitrotoga" and other NOB, (ii) the possible existence of phylogenetically diverse, unrecognized NOB, and (iii) together with new metagenomic data, the potential existence of nitrite-oxidizing archaea. For carbon fixation, "Ca Nitrotoga fabula" uses the Calvin-Benson-Bassham cycle. It also carries genes encoding complete pathways for hydrogen and sulfite oxidation, suggesting that alternative energy metabolisms enable "Ca Nitrotoga fabula" to survive nitrite depletion and colonize new niches.IMPORTANCE Nitrite-oxidizing bacteria (NOB) are major players in the biogeochemical nitrogen cycle and critical for wastewater treatment. However, most NOB remain uncultured, and their biology is poorly understood. Here, we obtained the first isolate from the environmentally widespread NOB genus "Candidatus Nitrotoga" and performed a detailed physiological and genomic characterization of this organism ("Candidatus Nitrotoga fabula"). Differences between key phenotypic properties of "Ca Nitrotoga fabula" and those of previously enriched "Ca Nitrotoga" members reveal an unexpectedly broad range of physiological adaptations in this genus. Moreover, genes encoding components of energy metabolisms outside nitrification suggest that "Ca Nitrotoga" are ecologically more flexible than previously anticipated. The identification of a novel nitrite-oxidizing enzyme in "Ca Nitrotoga fabula" expands our picture of the evolutionary history of nitrification and might lead to discoveries of novel nitrite oxidizers. Altogether, this study provides urgently needed insights into the biology of understudied but environmentally and biotechnologically important microorganisms.
Collapse
Affiliation(s)
- Katharina Kitzinger
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
- Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | - Hanna Koch
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Sebastian Lücker
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Christopher J Sedlacek
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Craig Herbold
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Jasmin Schwarz
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Anne Daebeler
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Anna J Mueller
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Michael Lukumbuzya
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Stefano Romano
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Nikolaus Leisch
- Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | - Søren Michael Karst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Rasmus Kirkegaard
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Michael Wagner
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Holger Daims
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| |
Collapse
|