1
|
Hernández Y, Sierra-Sarabia CA, Díaz-Camino C, Reyes JL. Non-conserved microRNAs and their roles in plants: the case for legumes. PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 40311108 DOI: 10.1111/plb.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/09/2025] [Indexed: 05/03/2025]
Abstract
Several classes of small RNAs function to regulate stress and development pathways in all kingdoms of life. In animals and plants, microRNAs have been widely studied as important regulators of gene expression. However, non-conserved microRNAs have proven more difficult to study, raising questions as to their functionality. Using the legume family of plants as reference, we discuss this concept and provide examples where miRNAs functions have been described, highlighting their potential role in regulating important processes in these plants, such as stress responses and communication with other organisms, including bacteria and fungi. These examples suggest that non-conserved miRNAs are likely to contribute to more gene regulation circuits than currently appreciated, and in a wider range of plant species.
Collapse
Affiliation(s)
- Y Hernández
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, UNAM, Cuernavaca, Mexico
| | - C A Sierra-Sarabia
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, UNAM, Cuernavaca, Mexico
| | - C Díaz-Camino
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, UNAM, Cuernavaca, Mexico
| | - J L Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, UNAM, Cuernavaca, Mexico
| |
Collapse
|
2
|
Tufail MA, Jordan B, Hadjeras L, Gelhausen R, Cassidy L, Habenicht T, Gutt M, Hellwig L, Backofen R, Tholey A, Sharma CM, Schmitz RA. Uncovering the small proteome of Methanosarcina mazei using Ribo-seq and peptidomics under different nitrogen conditions. Nat Commun 2024; 15:8659. [PMID: 39370430 PMCID: PMC11456600 DOI: 10.1038/s41467-024-53008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
The mesophilic methanogenic archaeal model organism Methanosarcina mazei strain Gö1 is crucial for climate and environmental research due to its ability to produce methane. Here, we establish a Ribo-seq protocol for M. mazei strain Gö1 under two growth conditions (nitrogen sufficiency and limitation). The translation of 93 previously annotated and 314 unannotated small ORFs, coding for proteins ≤ 70 amino acids, is predicted with high confidence based on Ribo-seq data. LC-MS analysis validates the translation for 62 annotated small ORFs and 26 unannotated small ORFs. Epitope tagging followed by immunoblotting analysis confirms the translation of 13 out of 16 selected unannotated small ORFs. A comprehensive differential transcription and translation analysis reveals that 29 of 314 unannotated small ORFs are differentially regulated in response to nitrogen availability at the transcriptional and 49 at the translational level. A high number of reported small RNAs are emerging as dual-function RNAs, including sRNA154, the central regulatory small RNA of nitrogen metabolism. Several unannotated small ORFs are conserved in Methanosarcina species and overproducing several (small ORF encoded) small proteins suggests key physiological functions. Overall, the comprehensive analysis opens an avenue to elucidate the function(s) of multitudinous small proteins and dual-function RNAs in M. mazei.
Collapse
Affiliation(s)
| | - Britta Jordan
- Institute for General Microbiology, Kiel University, 24118, Kiel, Germany
| | - Lydia Hadjeras
- Institute of Molecular Infection Biology, University of Würzburg, 97080, Würzburg, Germany
| | - Rick Gelhausen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110, Freiburg, Germany
| | - Liam Cassidy
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Kiel University, 24105, Kiel, Germany
| | - Tim Habenicht
- Institute for General Microbiology, Kiel University, 24118, Kiel, Germany
| | - Miriam Gutt
- Institute for General Microbiology, Kiel University, 24118, Kiel, Germany
| | - Lisa Hellwig
- Institute for General Microbiology, Kiel University, 24118, Kiel, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110, Freiburg, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Kiel University, 24105, Kiel, Germany
| | - Cynthia M Sharma
- Institute of Molecular Infection Biology, University of Würzburg, 97080, Würzburg, Germany
| | - Ruth A Schmitz
- Institute for General Microbiology, Kiel University, 24118, Kiel, Germany.
| |
Collapse
|
3
|
Tjaden B. TargetRNA3: predicting prokaryotic RNA regulatory targets with machine learning. Genome Biol 2023; 24:276. [PMID: 38041165 PMCID: PMC10691042 DOI: 10.1186/s13059-023-03117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023] Open
Abstract
Small regulatory RNAs pervade prokaryotes, with the best-studied family of these non-coding genes corresponding to trans-acting regulators that bind via base pairing to their message targets. Given the increasing frequency with which these genes are being identified, it is important that methods for illuminating their regulatory targets keep pace. Using a machine learning approach, we investigate thousands of interactions between small RNAs and their targets, and we interrogate more than a hundred features indicative of these interactions. We present a new method, TargetRNA3, for predicting targets of small RNA regulators and show that it outperforms existing approaches. TargetRNA3 is available at https://cs.wellesley.edu/~btjaden/TargetRNA3 .
Collapse
Affiliation(s)
- Brian Tjaden
- Department of Computer Science, Wellesley College, Wellesley, MA, USA.
| |
Collapse
|
4
|
Chanderban M, Hill CA, Dhamad AE, Lessner DJ. Expression of V-nitrogenase and Fe-nitrogenase in Methanosarcina acetivorans is controlled by molybdenum, fixed nitrogen, and the expression of Mo-nitrogenase. Appl Environ Microbiol 2023; 89:e0103323. [PMID: 37695043 PMCID: PMC10537573 DOI: 10.1128/aem.01033-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 09/12/2023] Open
Abstract
All nitrogen-fixing bacteria and archaea (diazotrophs) use molybdenum (Mo) nitrogenase to reduce dinitrogen (N2) to ammonia, with some also containing vanadium (V) and iron-only (Fe) nitrogenases that lack Mo. Among diazotrophs, the regulation and usage of the alternative V-nitrogenase and Fe-nitrogenase in methanogens are largely unknown. Methanosarcina acetivorans contains nif, vnf, and anf gene clusters encoding putative Mo-nitrogenase, V-nitrogenase, and Fe-nitrogenase, respectively. This study investigated nitrogenase expression and growth by M. acetivorans in response to fixed nitrogen, Mo/V availability, and CRISPRi repression of the nif, vnf, and/or anf gene clusters. The availability of Mo and V significantly affected growth of M. acetivorans with N2 but not with NH4Cl. M. acetivorans exhibited the fastest growth rate and highest cell yield during growth with N2 in medium containing Mo, and the slowest growth in medium lacking Mo and V. qPCR analysis revealed the transcription of the nif operon is only moderately affected by depletion of fixed nitrogen and Mo, whereas vnf and anf transcription increased significantly when fixed nitrogen and Mo were depleted, with removal of Mo being key. Immunoblot analysis revealed Mo-nitrogenase is detected when fixed nitrogen is depleted regardless of Mo availability, while V-nitrogenase and Fe-nitrogenase are detected only in the absence of fixed nitrogen and Mo. CRISPRi repression studies revealed that V-nitrogenase and/or Fe-nitrogenase are required for Mo-independent diazotrophy, and unexpectedly that the expression of Mo-nitrogenase is also required. These results reveal that alternative nitrogenase production in M. acetivorans is tightly controlled and dependent on Mo-nitrogenase expression. IMPORTANCE Methanogens and closely related methanotrophs are the only archaea known or predicted to possess nitrogenase. Methanogens play critical roles in both the global biological nitrogen and carbon cycles. Moreover, methanogens are an ancient microbial lineage and nitrogenase likely originated in methanogens. An understanding of the usage and properties of nitrogenases in methanogens can provide new insight into the evolution of nitrogen fixation and aid in the development nitrogenase-based biotechnology. This study provides the first evidence that a methanogen can produce all three forms of nitrogenases, including simultaneously. The results reveal components of Mo-nitrogenase regulate or are needed to produce V-nitrogenase and Fe-nitrogenase in methanogens, a result not seen in bacteria. Overall, this study provides a foundation to understand the assembly, regulation, and activity of the alternative nitrogenases in methanogens.
Collapse
Affiliation(s)
- Melissa Chanderban
- Department of Biological Sciences, University of Arkansas-Fayetteville, Fayetteville, Arkansas, USA
| | - Christopher A. Hill
- Department of Biological Sciences, University of Arkansas-Fayetteville, Fayetteville, Arkansas, USA
| | - Ahmed E. Dhamad
- Department of Biological Sciences, University of Arkansas-Fayetteville, Fayetteville, Arkansas, USA
- Department of Biological Sciences, Wasit University, Wasit, Iraq
| | - Daniel J. Lessner
- Department of Biological Sciences, University of Arkansas-Fayetteville, Fayetteville, Arkansas, USA
| |
Collapse
|
5
|
Li X, Li Z. What determines symbiotic nitrogen fixation efficiency in rhizobium: recent insights into Rhizobium leguminosarum. Arch Microbiol 2023; 205:300. [PMID: 37542687 DOI: 10.1007/s00203-023-03640-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
Symbiotic nitrogen fixation (SNF) by rhizobium, a Gram-negative soil bacterium, is an essential component in the nitrogen cycle and is a sustainable green way to maintain soil fertility without chemical energy consumption. SNF, which results from the processes of nodulation, rhizobial infection, bacteroid differentiation and nitrogen-fixing reaction, requires the expression of various genes from both symbionts with adaptation to the changing environment. To achieve successful nitrogen fixation, rhizobia and their hosts cooperate closely for precise regulation of symbiotic genes, metabolic processes and internal environment homeostasis. Many researches have progressed to reveal the ample information about regulatory aspects of SNF during recent decades, but the major bottlenecks regarding improvement of nitrogen-fixing efficiency has proven to be complex. In this mini-review, we summarize recent advances that have contributed to understanding the rhizobial regulatory aspects that determine SNF efficiency, focusing on the coordinated regulatory mechanism of symbiotic genes, oxygen, carbon metabolism, amino acid metabolism, combined nitrogen, non-coding RNAs and internal environment homeostasis. Unraveling regulatory determinants of SNF in the nitrogen-fixing protagonist rhizobium is expected to promote an improvement of nitrogen-fixing efficiency in crop production.
Collapse
Affiliation(s)
- Xiaofang Li
- Institute of Biopharmaceuticals, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China.
- School of Pharmaceutical Sciences, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China.
| | - Zhangqun Li
- School of Pharmaceutical Sciences, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China
| |
Collapse
|
6
|
Han Y, Li C, Yan Y, Lin M, Ke X, Zhang Y, Zhan Y. Post-transcriptional control of bacterial nitrogen metabolism by regulatory noncoding RNAs. World J Microbiol Biotechnol 2022; 38:126. [PMID: 35666348 PMCID: PMC9170634 DOI: 10.1007/s11274-022-03287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/12/2022] [Indexed: 12/04/2022]
Abstract
Nitrogen metabolism is the most basic process of material and energy metabolism in living organisms, and processes involving the uptake and use of different nitrogen sources are usually tightly regulated at the transcriptional and post-transcriptional levels. Bacterial regulatory noncoding RNAs are novel post-transcriptional regulators that repress or activate the expression of target genes through complementarily pairing with target mRNAs; therefore, these noncoding RNAs play an important regulatory role in many physiological processes, such as bacterial substance metabolism and stress response. In recent years, a study found that noncoding RNAs play a vital role in the post-transcriptional regulation of nitrogen metabolism, which is currently a hot topic in the study of bacterial nitrogen metabolism regulation. In this review, we present an overview of recent advances that increase our understanding on the regulatory roles of bacterial noncoding RNAs and describe in detail how noncoding RNAs regulate biological nitrogen fixation and nitrogen metabolic engineering. Furthermore, our goal is to lay a theoretical foundation for better understanding the molecular mechanisms in bacteria that are involved in environmental adaptations and metabolically-engineered genetic modifications.
Collapse
Affiliation(s)
- Yueyue Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongliang Yan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiubin Ke
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunhua Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China. .,School of Resources and Environment, Anhui Agricultural University, Hefei, China.
| | - Yuhua Zhan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
7
|
A Novel Small RNA, DsrO, in Deinococcus radiodurans Promotes Methionine Sulfoxide Reductase ( msrA) Expression for Oxidative Stress Adaptation. Appl Environ Microbiol 2022; 88:e0003822. [PMID: 35575549 PMCID: PMC9195949 DOI: 10.1128/aem.00038-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reactive oxygen species (ROS) can cause destructive damage to biological macromolecules and protein dysfunction in bacteria. Methionine sulfoxide reductase (Msr) with redox-active Cys and/or seleno-cysteine (Sec) residues can restore physiological functions of the proteome, which is essential for oxidative stress tolerance of the extremophile Deinococcus radiodurans. However, the underlying mechanism regulating MsrA enzyme activity in D. radiodurans under oxidative stress has remained elusive. Here, we identified the function of MsrA in response to oxidative stress. msrA expression in D. radiodurans was significantly upregulated under oxidative stress. The msrA mutant showed a deficiency in antioxidative capacity and an increased level of dabsyl-Met-S-SO, indicating increased sensitivity to oxidative stress. Moreover, msrA mRNA was posttranscriptionally regulated by a small RNA, DsrO. Analysis of the molecular interaction between DsrO and msrA mRNA demonstrated that DsrO increased the half-life of msrA mRNA and then upregulated MsrA enzyme activity under oxidative stress compared to the wild type. msrA expression was also transcriptionally regulated by the DNA-repairing regulator DrRRA, providing a connection for further analysis of protein restoration during DNA repair. Overall, our results provide direct evidence that DsrO and DrRRA regulate msrA expression at two levels to stabilize msrA mRNA and increase MsrA protein levels, revealing the protective roles of DsrO signaling in D. radiodurans against oxidative stress. IMPORTANCE The repair of oxidized proteins is an indispensable function allowing the extremophile D. radiodurans to grow in adverse environments. Msr proteins and various oxidoreductases can reduce oxidized Cys and Met amino acid residues of damaged proteins to recover protein function. Consequently, it is important to investigate the molecular mechanism maintaining the high reducing activity of MsrA protein in D. radiodurans during stresses. Here, we showed the protective roles of an sRNA, DsrO, in D. radiodurans against oxidative stress. DsrO interacts with msrA mRNA to improve msrA mRNA stability, and this increases the amount of MsrA protein. In addition, we also showed that DrRRA transcriptionally regulated msrA gene expression. Due to the importance of DrRRA in regulating DNA repair, this study provides a clue for further analysis of MsrA activity during DNA repair. This study indicates that protecting proteins from oxidation is an effective strategy for extremophiles to adapt to stress conditions.
Collapse
|
8
|
Gelsinger DR, DiRuggiero J. Small RNA-Sequencing Library Preparation for the Halophilic Archaeon Haloferax volcanii. Methods Mol Biol 2022; 2522:243-254. [PMID: 36125754 DOI: 10.1007/978-1-0716-2445-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Posttranscriptional regulation actuated by small RNAs (sRNAs) plays essential roles in a wide variety of cellular processes, especially in stress responses and environmental signaling. Hundreds of sRNAs have recently been discovered in archaea using genome-wide approaches but the molecular mechanisms of only a few have been characterized experimentally. Here, we describe how to build sRNA sequencing libraries using size-selected total RNA in the model archaeon, Haloferax volcanii , to provide a tool to further characterize sRNAs in archaea.
Collapse
Affiliation(s)
- Diego Rivera Gelsinger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Jocelyne DiRuggiero
- Department of Biology and Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
9
|
Jordan B, Nickel L, Schmitz RA. Microscale Thermophoresis to Study RNA-RNA Binding Affinity. Methods Mol Biol 2022; 2516:291-303. [PMID: 35922632 DOI: 10.1007/978-1-0716-2413-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Evaluation of RNA-RNA binding is crucial for in vitro studying of molecular mechanisms, for example, the interaction of noncoding RNAs (ncRNAs) with their respective targets. In recent years, the method of microscale thermophoresis (MST) has been developed, which is based on the physical phenomenon of thermophoresis (Ludwig-Soret Effect), defined as the migration of a molecule in a solution in response to a macroscopic temperature gradient. The method enables the fast detection and characterization of biophysical interaction between molecules, with the fundamental advantage that only small amounts of target and ligand are required. Here, we describe the characterization of RNA-RNA binding affinity using the example of the sRNA41 from Methanosarcina mazei and its native target, the 5' UTR of mRNA-MM2089, the first gene of the operon encoding the acetyl-CoA decarboxylase/synthase complex.
Collapse
Affiliation(s)
- Britta Jordan
- Institute for General Microbiology, Christian-Albrechts-University, Kiel, Germany
| | - Lisa Nickel
- Institute for General Microbiology, Christian-Albrechts-University, Kiel, Germany
| | - Ruth A Schmitz
- Institute for General Microbiology, Christian-Albrechts-University, Kiel, Germany.
| |
Collapse
|
10
|
Gelsinger DR, Reddy R, Whittington K, Debic S, DiRuggiero J. Post-transcriptional regulation of redox homeostasis by the small RNA SHOxi in haloarchaea. RNA Biol 2021; 18:1867-1881. [PMID: 33522404 PMCID: PMC8583180 DOI: 10.1080/15476286.2021.1874717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
While haloarchaea are highly resistant to oxidative stress, a comprehensive understanding of the processes regulating this remarkable response is lacking. Oxidative stress-responsive small non-coding RNAs (sRNAs) have been reported in the model archaeon, Haloferax volc anii, but targets and mechanisms have not been elucidated. Using a combination of high throughput and reverse molecular genetic approaches, we elucidated the functional role of the most up-regulated intergenic sRNA during oxidative stress in H. volcanii, named Small RNA in Haloferax Oxidative Stress (SHOxi). SHOxi was predicted to form a stable secondary structure with a conserved stem-loop region as the potential binding site for trans-targets. NAD-dependent malic enzyme mRNA, identified as a putative target of SHOxi, interacted directly with a putative 'seed' region within the predicted stem loop of SHOxi. Malic enzyme catalyzes the oxidative decarboxylation of malate into pyruvate using NAD+ as a cofactor. The destabilization of malic enzyme mRNA, and the decrease in the NAD+/NADH ratio, resulting from the direct RNA-RNA interaction between SHOxi and its trans-target was essential for the survival of H. volcanii to oxidative stress. These findings indicate that SHOxi likely regulates redox homoeostasis during oxidative stress by the post-transcriptional destabilization of malic enzyme mRNA. SHOxi-mediated regulation provides evidence that the fine-tuning of metabolic cofactors could be a core strategy to mitigate damage from oxidative stress and confer resistance. This study is the first to establish the regulatory effects of sRNAs on mRNAs during the oxidative stress response in Archaea.
Collapse
Affiliation(s)
| | - Rahul Reddy
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Sara Debic
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Jocelyne DiRuggiero
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Märkle P, Maier LK, Maaß S, Hirschfeld C, Bartel J, Becher D, Voß B, Marchfelder A. A Small RNA Is Linking CRISPR-Cas and Zinc Transport. Front Mol Biosci 2021; 8:640440. [PMID: 34055875 PMCID: PMC8155600 DOI: 10.3389/fmolb.2021.640440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
The function and mode of action of small regulatory RNAs is currently still understudied in archaea. In the halophilic archaeon Haloferax volcanii, a plethora of sRNAs have been identified; however, in-depth functional analysis is missing for most of them. We selected a small RNA (s479) from Haloferax volcanii for detailed characterization. The sRNA gene is encoded between a CRISPR RNA locus and the Cas protein gene cluster, and the s479 deletion strain is viable and was characterized in detail. Transcriptome studies of wild-type Haloferax cells and the deletion mutant revealed upregulation of six genes in the deletion strain, showing that this sRNA has a clearly defined function. Three of the six upregulated genes encode potential zinc transporter proteins (ZnuA1, ZnuB1, and ZnuC1) suggesting the involvement of s479 in the regulation of zinc transport. Upregulation of these genes in the deletion strain was confirmed by northern blot and proteome analyses. Furthermore, electrophoretic mobility shift assays demonstrate a direct interaction of s479 with the target znuC1 mRNA. Proteome comparison of wild-type and deletion strains further expanded the regulon of s479 deeply rooting this sRNA within the metabolism of H. volcanii especially the regulation of transporter abundance. Interestingly, s479 is not only encoded next to CRISPR-cas genes, but the mature s479 contains a crRNA-like 5' handle, and experiments with Cas protein deletion strains indicate maturation by Cas6 and interaction with Cas proteins. Together, this might suggest that the CRISPR-Cas system is involved in s479 function.
Collapse
Affiliation(s)
- Pascal Märkle
- Department of Biology II, Ulm University, Ulm, Germany
| | | | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Claudia Hirschfeld
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Jürgen Bartel
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Björn Voß
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
12
|
Weixlbaumer A, Grünberger F, Werner F, Grohmann D. Coupling of Transcription and Translation in Archaea: Cues From the Bacterial World. Front Microbiol 2021; 12:661827. [PMID: 33995325 PMCID: PMC8116511 DOI: 10.3389/fmicb.2021.661827] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/30/2021] [Indexed: 01/07/2023] Open
Abstract
The lack of a nucleus is the defining cellular feature of bacteria and archaea. Consequently, transcription and translation are occurring in the same compartment, proceed simultaneously and likely in a coupled fashion. Recent cryo-electron microscopy (cryo-EM) and tomography data, also combined with crosslinking-mass spectrometry experiments, have uncovered detailed structural features of the coupling between a transcribing bacterial RNA polymerase (RNAP) and the trailing translating ribosome in Escherichia coli and Mycoplasma pneumoniae. Formation of this supercomplex, called expressome, is mediated by physical interactions between the RNAP-bound transcription elongation factors NusG and/or NusA and the ribosomal proteins including uS10. Based on the structural conservation of the RNAP core enzyme, the ribosome, and the universally conserved elongation factors Spt5 (NusG) and NusA, we discuss requirements and functional implications of transcription-translation coupling in archaea. We furthermore consider additional RNA-mediated and co-transcriptional processes that potentially influence expressome formation in archaea.
Collapse
Affiliation(s)
- Albert Weixlbaumer
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Université de Strasbourg, Strasbourg, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
| | - Felix Grünberger
- Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany
| | - Finn Werner
- RNAP Lab, Division of Biosciences, Institute for Structural and Molecular Biology, London, United Kingdom
| | - Dina Grohmann
- Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| |
Collapse
|
13
|
Gutt M, Jordan B, Weidenbach K, Gudzuhn M, Kiessling C, Cassidy L, Helbig A, Tholey A, Pyper DJ, Kubatova N, Schwalbe H, Schmitz RA. High complexity of Glutamine synthetase regulation in
Methanosarcina mazei
: Small protein 26 interacts and enhances glutamine synthetase activity. FEBS J 2021; 288:5350-5373. [DOI: 10.1111/febs.15799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/05/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Miriam Gutt
- Institute for General Microbiology Christian‐Albrechts‐University Kiel Germany
| | - Britta Jordan
- Institute for General Microbiology Christian‐Albrechts‐University Kiel Germany
| | - Katrin Weidenbach
- Institute for General Microbiology Christian‐Albrechts‐University Kiel Germany
| | - Mirja Gudzuhn
- Institute for General Microbiology Christian‐Albrechts‐University Kiel Germany
| | - Claudia Kiessling
- Institute for General Microbiology Christian‐Albrechts‐University Kiel Germany
| | - Liam Cassidy
- AG Proteomics & Bioanalytics Institute for Experimental Medicine Christian‐Albrechts‐University Kiel Germany
| | - Andreas Helbig
- AG Proteomics & Bioanalytics Institute for Experimental Medicine Christian‐Albrechts‐University Kiel Germany
| | - Andreas Tholey
- AG Proteomics & Bioanalytics Institute for Experimental Medicine Christian‐Albrechts‐University Kiel Germany
| | - Dennis Joshua Pyper
- Institute of Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance (BMRZ) Johann Wolfgang Goethe University Frankfurt am Main Germany
| | - Nina Kubatova
- Institute of Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance (BMRZ) Johann Wolfgang Goethe University Frankfurt am Main Germany
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical Biology Center for Biomolecular Magnetic Resonance (BMRZ) Johann Wolfgang Goethe University Frankfurt am Main Germany
| | - Ruth Anne Schmitz
- Institute for General Microbiology Christian‐Albrechts‐University Kiel Germany
| |
Collapse
|
14
|
Stevens KM, Swadling JB, Hocher A, Bang C, Gribaldo S, Schmitz RA, Warnecke T. Histone variants in archaea and the evolution of combinatorial chromatin complexity. Proc Natl Acad Sci U S A 2020; 117:33384-33395. [PMID: 33288720 PMCID: PMC7776873 DOI: 10.1073/pnas.2007056117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nucleosomes in eukaryotes act as platforms for the dynamic integration of epigenetic information. Posttranslational modifications are reversibly added or removed and core histones exchanged for paralogous variants, in concert with changing demands on transcription and genome accessibility. Histones are also common in archaea. Their role in genome regulation, however, and the capacity of individual paralogs to assemble into histone-DNA complexes with distinct properties remain poorly understood. Here, we combine structural modeling with phylogenetic analysis to shed light on archaeal histone paralogs, their evolutionary history, and capacity to generate combinatorial chromatin states through hetero-oligomeric assembly. Focusing on the human commensal Methanosphaera stadtmanae as a model archaeal system, we show that the heteromeric complexes that can be assembled from its seven histone paralogs vary substantially in DNA binding affinity and tetramer stability. Using molecular dynamics simulations, we go on to identify unique paralogs in M. stadtmanae and Methanobrevibacter smithii that are characterized by unstable interfaces between dimers. We propose that these paralogs act as capstones that prevent stable tetramer formation and extension into longer oligomers characteristic of model archaeal histones. Importantly, we provide evidence from phylogeny and genome architecture that these capstones, as well as other paralogs in the Methanobacteriales, have been maintained for hundreds of millions of years following ancient duplication events. Taken together, our findings indicate that at least some archaeal histone paralogs have evolved to play distinct and conserved functional roles, reminiscent of eukaryotic histone variants. We conclude that combinatorially complex histone-based chromatin is not restricted to eukaryotes and likely predates their emergence.
Collapse
Affiliation(s)
- Kathryn M Stevens
- Molecular Systems Group, Quantitative Biology Section, Medical Research Council London Institute of Medical Sciences, London W12 0NN, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Jacob B Swadling
- Molecular Systems Group, Quantitative Biology Section, Medical Research Council London Institute of Medical Sciences, London W12 0NN, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Antoine Hocher
- Molecular Systems Group, Quantitative Biology Section, Medical Research Council London Institute of Medical Sciences, London W12 0NN, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Corinna Bang
- Institute for General Microbiology, University of Kiel, 24118 Kiel, Germany
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Simonetta Gribaldo
- Department of Microbiology, Unit "Evolutionary Biology of the Microbial Cell," Institut Pasteur, 75015 Paris, France
| | - Ruth A Schmitz
- Institute for General Microbiology, University of Kiel, 24118 Kiel, Germany
| | - Tobias Warnecke
- Molecular Systems Group, Quantitative Biology Section, Medical Research Council London Institute of Medical Sciences, London W12 0NN, United Kingdom;
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
15
|
A Novel Noncoding RNA dsr11 Involved in Heat Stress Tolerance in Deinococcus radiodurans. Biomolecules 2019; 10:biom10010022. [PMID: 31877996 PMCID: PMC7022480 DOI: 10.3390/biom10010022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 12/30/2022] Open
Abstract
Deinococcus radiodurans is an extremely resistant bacteria that has evolved masterful strategies to enable survival under various environmental stress conditions. Heat stress is a major environmental stress factor that can cause denaturation of proteins, membrane disruption, and oxidative stress. Previous studies have examined the mechanisms of the heat stress response by analyzing changes in protein levels; however, little is known about the role of small noncoding RNAs (ncRNAs), which are known to play important regulatory functions in bacteria during various environmental stress response. The ncRNA dsr11 of D. radiodurans was previously identified by RNA-seq and Northern blot. In this study, we showed that the transcription level of dsr11 was up-regulated 4.2-fold under heat stress by qRT-PCR analysis. Heat tolerance assay showed that deleting dsr11 significantly inhibited the viability under high temperature conditions. To assess the influence of dsr11 on the D. radiodurans transcriptome, 157 genes were found differentially expressed in the knock-out mutant by RNA-seq experiment. Combining RNA-seq and in silico analysis, we found that trmE (tRNA modification GTPase) and dr_0651 (arginase) were likely to be the direct targets of dsr11. Further microscale thermophoresis results demonstrated that dsr11 can directly bind to the mRNA of trmE and dr_0651. Our results indicated that dsr11 can enhance the tolerance to heat stress of D. radiodurans by binding to trmE and dr_0651 mRNA. Overall, these results extend our understanding of ncRNA regulation and provide new insights into the heat stress response in D. radiodurans.
Collapse
|
16
|
sRNA OsiA Stabilizes Catalase mRNA during Oxidative Stress Response of Deincoccus radiodurans R1. Microorganisms 2019; 7:microorganisms7100422. [PMID: 31597319 PMCID: PMC6843392 DOI: 10.3390/microorganisms7100422] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 01/04/2023] Open
Abstract
Deinococcus radiodurans adapts to challenging environments by modulating gene expression in response to oxidative stress. Recently, bacterial small noncoding RNAs (sRNAs) have been presumed to participate in the transcriptional or translational regulation of stress-responsive genes. We found 24 sRNAs that may be involved in the oxidative stress response of D. radiodurans by deep RNA sequencing. Moreover, a typical stress-inducible sRNA, IGR_3053, named OsiA, was predicted to bind to the mRNA of katA, katE, and sodC by the bioinformatics method. An osiA knockout of D. radiodurans displayed increased sensitivity to H2O2 and the decreased catalase activity and total antioxidant activity, suggesting that OsiA probably serves as a regulator in the adaptation to oxidative environments. Further microscale thermophoresis results demonstrated that OsiA can directly bind to the mRNA of katA, sodC, and katE. The stability test result of katA mRNA showed that its half-life was 2 min in the osiA mutant compared with 5 min in the wildtype(wt) strain. Our results indicated that OsiA can enhance the stability of katA mRNA and the activity of KatA and consequently the oxidation resistance of D.radiodurans. We are the first one to explore the super-strong oxidative stress resistance of D.radiodurans at the level of post-transcriptional regulation, and found a new pathway that provides a new explanation for the long-term adaptability of D.radiodurans in extreme environments.
Collapse
|
17
|
NfiR, a New Regulatory Noncoding RNA (ncRNA), Is Required in Concert with the NfiS ncRNA for Optimal Expression of Nitrogenase Genes in Pseudomonas stutzeri A1501. Appl Environ Microbiol 2019; 85:AEM.00762-19. [PMID: 31076427 PMCID: PMC6606865 DOI: 10.1128/aem.00762-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
Biological nitrogen fixation is an energy-expensive process requiring the hydrolysis of 16 ATPs. Consequently, the expression of nif genes is highly regulated at both transcriptional and posttranscriptional levels through complex regulatory networks. Global regulation involves a number of regulatory proteins, such as the nif-specific activator NifA and the global nitrogen regulator NtrC, as well as various regulatory ncRNAs. We show that the two P. stutzeri ncRNAs, namely NfiS and NfiR (for nitrogen fixation condition-inducible ncRNA), optimize nitrogen fixation and environmental stress responses. NfiS and NfiR respond differently to various environmental signals and differ in their secondary structures. In addition, the two ncRNAs target the mRNAs of nifK and nifD, respectively. Such ncRNA-based posttranscriptional regulation of nitrogenase expression might be an evolved survival strategy, particularly in nitrogen-limiting environments. This study not only highlights the significant roles of regulatory ncRNAs in the coordination and fine tuning of various physiological processes but also provides a new paradigm for posttranscriptional regulation in nitrogen-fixing bacteria. Expression of nitrogenase genes (nifHDK) is strictly regulated at both transcriptional and posttranscriptional levels. Efficient nitrogenase activity requires maintaining sufficient levels of nif mRNAs, yet the underlying mechanism is not fully understood due to its complexity. We have previously shown that a novel regulatory noncoding RNA (ncRNA), NfiS, optimizes nitrogen fixation through targeting nifK mRNA in Pseudomonas stutzeri A1501. Here, we report the identification and characterization of a second ncRNA inducible under nitrogen fixation conditions (nitrogen-free and microaerobic conditions), termed NfiR (for nitrogen fixation condition-inducible ncRNA), the expression of which is dependent on two global regulators, NtrC and Hfq. Comparative phenotypic and proteomic analyses of an nfiR mutant identify a role of NfiR in regulating the expression of nitrogenase genes. Further microscale thermophoresis and genetic complementation showed that an 11-nucleotide (nt) sequence in the stem-loop structure of NfiR (nucleotides 12 to 22) pairs with its counterpart in the coding region of nifD mRNA (nucleotides 1194 to 1207) by eight nucleotides. Significantly, deletion of nfiR caused a 60% reduction of nitrogenase activity, and the half-life of nifD mRNA was reduced from 20 min for the wild type to 15 min for the ΔnfiR mutant. With regard to nitrogenase activity and stability of the nifD and nifK transcripts, phenotypes were more severe for the double deletion mutant lacking nfiR and nfiS, suggesting that NfiR, in concert with NfiS, optimizes nitrogenase production at the posttranscriptional level. IMPORTANCE Biological nitrogen fixation is an energy-expensive process requiring the hydrolysis of 16 ATPs. Consequently, the expression of nif genes is highly regulated at both transcriptional and posttranscriptional levels through complex regulatory networks. Global regulation involves a number of regulatory proteins, such as the nif-specific activator NifA and the global nitrogen regulator NtrC, as well as various regulatory ncRNAs. We show that the two P. stutzeri ncRNAs, namely NfiS and NfiR (for nitrogen fixation condition-inducible ncRNA), optimize nitrogen fixation and environmental stress responses. NfiS and NfiR respond differently to various environmental signals and differ in their secondary structures. In addition, the two ncRNAs target the mRNAs of nifK and nifD, respectively. Such ncRNA-based posttranscriptional regulation of nitrogenase expression might be an evolved survival strategy, particularly in nitrogen-limiting environments. This study not only highlights the significant roles of regulatory ncRNAs in the coordination and fine tuning of various physiological processes but also provides a new paradigm for posttranscriptional regulation in nitrogen-fixing bacteria.
Collapse
|
18
|
Kliemt J, Jaschinski K, Soppa J. A Haloarchaeal Small Regulatory RNA (sRNA) Is Essential for Rapid Adaptation to Phosphate Starvation Conditions. Front Microbiol 2019; 10:1219. [PMID: 31231327 PMCID: PMC6560208 DOI: 10.3389/fmicb.2019.01219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/15/2019] [Indexed: 11/26/2022] Open
Abstract
The haloarchaeon Haloferax volcanii contains nearly 2800 small non-coding RNAs (sRNAs). One intergenic sRNA, sRNA132, was chosen for a detailed characterization. A deletion mutant had a growth defect and thus underscored the importance of sRNA132. A microarray analysis identified the transcript of an operon for a phosphate-specific ABC transporter as a putative target of sRNA132. Both the sRNA132 and the operon transcript accumulated under low phosphate concentrations, indicating a positive regulatory role of sRNA132. A kinetic analysis revealed that sRNA132 is essential shortly after the onset of phosphate starvation, while other regulatory processes take over after several hours. Comparison of the transcriptomes of wild-type and the sRNA132 gene deletion mutant 30 min after the onset of phosphate starvation revealed that sRNA132 controls a regulon of about 40 genes. Remarkably, the regulon included a second operon for a phosphate-specific ABC transporter, which also depended on sRNA132 for rapid induction in the absence of phosphate. Competitive growth experiments of the wild-type and ABC transporter operon deletion mutants underscored the importance of both transporters for growth at low phosphate concentrations. Northern blot analyses of four additional members of the sRNA132 regulon verified that all four transcripts depended on sRNA132 for rapid regulation after the onset of phosphate starvation. Importantly, this is the first example for the transient importance of a sRNA for any archaeal and bacterial species. In addition, this study unraveled the first sRNA regulon for haloarchaea.
Collapse
Affiliation(s)
- Jana Kliemt
- Biocentre, Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Katharina Jaschinski
- Biocentre, Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Jörg Soppa
- Biocentre, Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
19
|
Abstract
Advances in genome-wide sequence technologies allow for detailed insights into the complexity of RNA landscapes of organisms from all three domains of life. Recent analyses of archaeal transcriptomes identified interaction and regulation networks of noncoding RNAs in this understudied domain. Here, we review current knowledge of small, noncoding RNAs with important functions for the archaeal lifestyle, which often requires adaptation to extreme environments. One focus is RNA metabolism at elevated temperatures in hyperthermophilic archaea, which reveals elevated amounts of RNA-guided RNA modification and virus defense strategies. Genome rearrangement events result in unique fragmentation patterns of noncoding RNA genes that require elaborate maturation pathways to yield functional transcripts. RNA-binding proteins, e.g., L7Ae and LSm, are important for many posttranscriptional control functions of RNA molecules in archaeal cells. We also discuss recent insights into the regulatory potential of their noncoding RNA partners.
Collapse
Affiliation(s)
- José Vicente Gomes-Filho
- Prokaryotic Small RNA Biology Group, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany;, ,
| | - Michael Daume
- Prokaryotic Small RNA Biology Group, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany;, ,
| | - Lennart Randau
- Prokaryotic Small RNA Biology Group, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany;, ,
- LOEWE Center for Synthetic Microbiology (Synmikro), 35032 Marburg, Germany
| |
Collapse
|
20
|
Prasse D, Schmitz RA. Small RNAs Involved in Regulation of Nitrogen Metabolism. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0018-2018. [PMID: 30027888 PMCID: PMC11633612 DOI: 10.1128/microbiolspec.rwr-0018-2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Indexed: 02/08/2023] Open
Abstract
Global (metabolic) regulatory networks allow microorganisms to survive periods of nitrogen starvation or general nutrient stress. Uptake and utilization of various nitrogen sources are thus commonly tightly regulated in Prokarya (Bacteria and Archaea) in response to available nitrogen sources. Those well-studied regulations occur mainly at the transcriptional and posttranslational level. Surprisingly, and in contrast to their involvement in most other stress responses, small RNAs (sRNAs) involved in the response to environmental nitrogen fluctuations are only rarely reported. In addition to sRNAs indirectly affecting nitrogen metabolism, only recently it was demonstrated that three sRNAs were directly involved in regulation of nitrogen metabolism in response to changes in available nitrogen sources. All three trans-acting sRNAs are under direct transcriptional control of global nitrogen regulators and affect expression of components of nitrogen metabolism (glutamine synthetase, nitrogenase, and PII-like proteins) by either masking the ribosome binding site and thus inhibiting translation initiation or stabilizing the respective target mRNAs. Most likely, there are many more sRNAs and other types of noncoding RNAs, e.g., riboswitches, involved in the regulation of nitrogen metabolism in Prokarya that remain to be uncovered. The present review summarizes the current knowledge on sRNAs involved in nitrogen metabolism and their biological functions and targets.
Collapse
Affiliation(s)
- Daniela Prasse
- Christian-Albrechts-University Kiel, Institute of General Microbiology, D-24118 Kiel, Germany
| | - Ruth A Schmitz
- Christian-Albrechts-University Kiel, Institute of General Microbiology, D-24118 Kiel, Germany
| |
Collapse
|
21
|
Gelsinger DR, DiRuggiero J. The Non-Coding Regulatory RNA Revolution in Archaea. Genes (Basel) 2018; 9:E141. [PMID: 29510582 PMCID: PMC5867862 DOI: 10.3390/genes9030141] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 11/23/2022] Open
Abstract
Small non-coding RNAs (sRNAs) are ubiquitously found in the three domains of life playing large-scale roles in gene regulation, transposable element silencing and defense against foreign elements. While a substantial body of experimental work has been done to uncover function of sRNAs in Bacteria and Eukarya, the functional roles of sRNAs in Archaea are still poorly understood. Recently, high throughput studies using RNA-sequencing revealed that sRNAs are broadly expressed in the Archaea, comprising thousands of transcripts within the transcriptome during non-challenged and stressed conditions. Antisense sRNAs, which overlap a portion of a gene on the opposite strand (cis-acting), are the most abundantly expressed non-coding RNAs and they can be classified based on their binding patterns to mRNAs (3' untranslated region (UTR), 5' UTR, CDS-binding). These antisense sRNAs target many genes and pathways, suggesting extensive roles in gene regulation. Intergenic sRNAs are less abundantly expressed and their targets are difficult to find because of a lack of complete overlap between sRNAs and target mRNAs (trans-acting). While many sRNAs have been validated experimentally, a regulatory role has only been reported for very few of them. Further work is needed to elucidate sRNA-RNA binding mechanisms, the molecular determinants of sRNA-mediated regulation, whether protein components are involved and how sRNAs integrate with complex regulatory networks.
Collapse
Affiliation(s)
| | - Jocelyne DiRuggiero
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
22
|
Noncoding RNAs in Archaea: Genome-Wide Identification and Functional Classification. Methods Enzymol 2018; 612:413-442. [DOI: 10.1016/bs.mie.2018.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|