1
|
Chang H, Ji R, Zhu Z, Wang Y, Yan S, He D, Jia Q, Huang P, Cheng T, Wang R, Zhou Y. Target identification, and optimization of dioxygenated amide derivatives as potent antibacterial agents with FabH inhibitory activity. Eur J Med Chem 2024; 265:116064. [PMID: 38159483 DOI: 10.1016/j.ejmech.2023.116064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
The enzyme FabH plays a critical role in the initial step of fatty acid biosynthesis, which is vital for the survival of bacteria. As a result, FabH has emerged as an appealing target for the development of novel antibacterial agents. In this study, employing the chemical proteomics method, we validated the previously identified skeleton amide derivatives bearing dioxygenated rings, potentially formed through metabolic processes. Building upon the proteomics findings, we then synthesized and evaluated 32 compounds containing N-heterocyclic amides for their antimicrobial activity for future optimizing the deoxygenated amides. Several compounds demonstrated potent antimicrobial properties with low toxicity, particularly compound 25, which exhibited remarkable potential as an agent with an MIC range of 1.25-3.13 μg/mL against the tested bacterial strains and an IC50 of 2.0 μM against E. coli-derived FabH. Furthermore, we evaluated nine analogues with relatively low MIC values through cytotoxicity and hemolytic activity assessments, Lipinski's rule-of-five criteria, and in silico ADMET predictions to ascertain their druggability potential. Notably, a detailed docking simulation was performed to investigate the binding interactions of compound 25 within the binding pocket of E. coli FabH, which encouragingly revealed strong binding interactions. Based on our findings, compound 25 emerges as the optimal candidate for in vivo therapy aimed at treating infected skin defects. Remarkably, the application of compound 25 demonstrated a significant reduction in the duration of wound infection and notably accelerated the healing process of infected wounds, achieving an impressive 94 % healing rate by day 10.
Collapse
Affiliation(s)
- Haoyun Chang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Ruiying Ji
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Zhiyu Zhu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Yapin Wang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Shaopeng Yan
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Dan He
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Qike Jia
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China
| | - Peng Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Tao Cheng
- Pharmaron (Ningbo) Technology Development Co. Ltd., Ningbo, 315336, China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China.
| | - Yang Zhou
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China.
| |
Collapse
|
2
|
Zhou Y, Liang YQ, Wang XY, Chang HY, Hu SP, Sun J. Design, Synthesis and Antibacterial Activities of Novel Amide Derivatives Bearing Dioxygenated Rings as Potential β-Ketoacyl-acyl Carrier Protein Synthase III (FabH) Inhibitors. Chem Pharm Bull (Tokyo) 2022; 70:544-549. [DOI: 10.1248/cpb.c22-00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yang Zhou
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology
| | - Yin-Qiu Liang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
| | - Xin-Yu Wang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
| | - Hao-Yun Chang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences
| | - Su-Pei Hu
- Department of Medical Research, Hwa Mei Hospital, University of Chinese Academy of Sciences
| | - Juan Sun
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology
| |
Collapse
|
3
|
Lee WC, Choi S, Jang A, Son K, Kim Y. Structural comparison of Acinetobacter baumannii β-ketoacyl-acyl carrier protein reductases in fatty acid and aryl polyene biosynthesis. Sci Rep 2021; 11:7945. [PMID: 33846444 PMCID: PMC8041823 DOI: 10.1038/s41598-021-86997-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Some Gram-negative bacteria harbor lipids with aryl polyene (APE) moieties. Biosynthesis gene clusters (BGCs) for APE biosynthesis exhibit striking similarities with fatty acid synthase (FAS) genes. Despite their broad distribution among pathogenic and symbiotic bacteria, the detailed roles of the metabolic products of APE gene clusters are unclear. Here, we determined the crystal structures of the β-ketoacyl-acyl carrier protein (ACP) reductase ApeQ produced by an APE gene cluster from clinically isolated virulent Acinetobacter baumannii in two states (bound and unbound to NADPH). An in vitro visible absorption spectrum assay of the APE polyene moiety revealed that the β-ketoacyl-ACP reductase FabG from the A. baumannii FAS gene cluster cannot be substituted for ApeQ in APE biosynthesis. Comparison with the FabG structure exhibited distinct surface electrostatic potential profiles for ApeQ, suggesting a positively charged arginine patch as the cognate ACP-binding site. Binding modeling for the aryl group predicted that Leu185 (Phe183 in FabG) in ApeQ is responsible for 4-benzoyl moiety recognition. Isothermal titration and arginine patch mutagenesis experiments corroborated these results. These structure-function insights of a unique reductase in the APE BGC in comparison with FAS provide new directions for elucidating host-pathogen interaction mechanisms and novel antibiotics discovery.
Collapse
Affiliation(s)
- Woo Cheol Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sungjae Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ahjin Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Kkabi Son
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
4
|
Deciphering the Binding Interactions between Acinetobacter baumannii ACP and β-ketoacyl ACP Synthase III to Improve Antibiotic Targeting Using NMR Spectroscopy. Int J Mol Sci 2021; 22:ijms22073317. [PMID: 33805050 PMCID: PMC8036411 DOI: 10.3390/ijms22073317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 11/17/2022] Open
Abstract
Fatty acid synthesis is essential for bacterial viability. Thus, fatty acid synthases (FASs) represent effective targets for antibiotics. Nevertheless, multidrug-resistant bacteria, including the human opportunistic bacteria, Acinetobacter baumannii, are emerging threats. Meanwhile, the FAS pathway of A. baumannii is relatively unexplored. Considering that acyl carrier protein (ACP) has an important role in the delivery of fatty acyl intermediates to other FAS enzymes, we elucidated the solution structure of A. baumannii ACP (AbACP) and, using NMR spectroscopy, investigated its interactions with β-ketoacyl ACP synthase III (AbKAS III), which initiates fatty acid elongation. The results show that AbACP comprises four helices, while Ca2+ reduces the electrostatic repulsion between acid residues, and the unconserved F47 plays a key role in thermal stability. Moreover, AbACP exhibits flexibility near the hydrophobic cavity entrance from D59 to T65, as well as in the α1α2 loop region. Further, F29 and A69 participate in slow exchanges, which may be related to shuttling of the growing acyl chain. Additionally, electrostatic interactions occur between the α2 and α3-helix of ACP and AbKAS III, while the hydrophobic interactions through the ACP α2-helix are seemingly important. Our study provides insights for development of potent antibiotics capable of inhibiting A. baumannii FAS protein–protein interactions.
Collapse
|
5
|
Ha Y, Jang M, Lee S, Lee JY, Lee WC, Bae S, Kang J, Han M, Kim Y. Identification of inhibitor binding hotspots in Acinetobacter baumannii β-ketoacyl acyl carrier protein synthase III using molecular dynamics simulation. J Mol Graph Model 2020; 100:107669. [PMID: 32659632 DOI: 10.1016/j.jmgm.2020.107669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/01/2020] [Accepted: 06/13/2020] [Indexed: 10/23/2022]
Abstract
Acinetobacter baumannii is a gram-negative bacterium that is rapidly developing drug resistance due to the abuse of antibiotics. The emergence of multidrug-resistant A. baumannii has greatly contributed to the urgency of developing new antibiotics. Previously, we had discovered two potent inhibitors of A. baumannii β-ketoacyl acyl carrier protein synthase III (abKAS III), YKab-4 and YKab-6, which showed potent activity against A. baumannii. In addition, we have reported the crystal structure of abKAS III. In the present study, we investigated the binding between abKAS III and its inhibitors by docking simulation. Molecular dynamics (MD) simulations were performed using docked inhibitor models to identify the hotspot residues related to inhibitor binding. The binding free energies estimated using the MD simulations suggest that residues I198 and F260 of abKAS III serve as the inhibitor binding hotspots. I198, found to be responsible for mediating hydrophobic interactions with inhibitors, had the strongest residual binding energy among all abKAS III residues. We modeled glutamine substitutions of residues I198 and F260 and estimated the relative binding energies of the I198Q and F260Q variants. The results confirmed that I198 and F260 are the key inhibitor binding residues. The roles of the key residues in inhibitor binding, i.e. F260 in the α9 helix and the I198 in the β6β7 loop region, were investigated using principal component analysis (PCA). PCA revealed the structural changes resulting from the abKAS III I198Q and F260Q mutations and described the essential dynamics of the α9 helix. In addition, the results suggest that the β6β7 loop region may act as a gate keeper for ligand binding. Hydrophobic interactions involving I198 and F260 in abKAS III appear to be essential for the binding of the inhibitors YKab-4 and YKab-6. In conclusion, this study provides valuable information for the rational design of antibiotics via the inhibition of abKAS III.
Collapse
Affiliation(s)
- Yuna Ha
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea
| | - Mihee Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea
| | - Sehan Lee
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, South Korea
| | - Jee-Young Lee
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, South Korea
| | - Woo Cheol Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea
| | - Seri Bae
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, South Korea
| | - Jihee Kang
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, South Korea
| | - Minwoo Han
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, 41061, South Korea.
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
6
|
Cheon D, Lee WC, Lee Y, Lee JY, Kim Y. Structural basis of branched-chain fatty acid synthesis by Propionibacterium acnes β-ketoacyl acyl Carrier protein synthase. Biochem Biophys Res Commun 2018; 509:322-328. [PMID: 30587339 DOI: 10.1016/j.bbrc.2018.12.134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 11/29/2022]
Abstract
Propionibacterium acnes is an anaerobic gram-positive bacterium found in the niche of the sebaceous glands in the human skin, and is a causal pathogen of inflammatory skin diseases as well as periprosthetic joint infection. To gain effective control of P. acnes, a deeper understanding of the cellular metabolism mechanism involved in its ability to reside in this unique environment is needed. P. acnes exhibits typical cell membrane features of gram-positive bacteria, such as control of membrane fluidity by branched-chain fatty acids (BCFAs). Branching at the iso- or anteiso-position is achieved by incorporation of isobutyryl- or 2-methyl-butyryl-CoA via β-ketoacyl acyl carrier protein synthase (KAS III) from fatty acid synthesis. Here, we determined the crystal structure of P. acnes KAS III (PaKAS III) at the resolution of 1.9 Å for the first time. Conformation-sensitive urea polyacrylamide gel electrophoresis and tryptophan fluorescence quenching experiments confirmed that PaKAS III prefers isobutyryl-CoA as the acetyl-CoA, and the unique shape of the active site cavity complies with incorporation of branched-short chain CoAs. The determined structure clearly illustrates how BCFA synthesis is achieved in P. acnes. Moreover, the unique shape of the cavity required for the branched-chain primer can be invaluable in designing novel inhibitors of PaKAS III and developing new specifically targeted antibiotics.
Collapse
Affiliation(s)
- Dasom Cheon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Woo Cheol Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yeongjoon Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jee-Young Lee
- Molecular Design Team, New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|