1
|
Dunstan RA, Bamert RS, Tan KS, Imbulgoda U, Barlow CK, Taiaroa G, Pickard DJ, Schittenhelm RB, Dougan G, Short FL, Lithgow T. Epitopes in the capsular polysaccharide and the porin OmpK36 receptors are required for bacteriophage infection of Klebsiella pneumoniae. Cell Rep 2023; 42:112551. [PMID: 37224021 DOI: 10.1016/j.celrep.2023.112551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/09/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
To kill bacteria, bacteriophages (phages) must first bind to a receptor, triggering the release of the phage DNA into the bacterial cell. Many bacteria secrete polysaccharides that had been thought to shield bacterial cells from phage attack. We use a comprehensive genetic screen to distinguish that the capsule is not a shield but is instead a primary receptor enabling phage predation. Screening of a transposon library to select phage-resistant Klebsiella shows that the first receptor-binding event docks to saccharide epitopes in the capsule. We discover a second step of receptor binding, dictated by specific epitopes in an outer membrane protein. This additional and necessary event precedes phage DNA release to establish a productive infection. That such discrete epitopes dictate two essential binding events for phages has profound implications for understanding the evolution of phage resistance and what dictates host range, two issues critically important to translating knowledge of phage biology into phage therapies.
Collapse
Affiliation(s)
- Rhys A Dunstan
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia.
| | - Rebecca S Bamert
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Kher Shing Tan
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Uvini Imbulgoda
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Christopher K Barlow
- Monash Proteomics & Metabolomics Platform, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - George Taiaroa
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Clayton, VIC, Australia
| | - Derek J Pickard
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Platform, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Gordon Dougan
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Francesca L Short
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia; Department of Medicine, University of Cambridge, Cambridge, UK; Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Trevor Lithgow
- Centre to Impact AMR, Monash University, Clayton, VIC, Australia; Infection Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
2
|
Yang P, Yang L, Cao K, Hu Q, Hu Y, Shi J, Zhao D, Yu X. Novel virulence factor Cba induces antibody-dependent enhancement (ADE) of Streptococcus suis Serotype 9 infection in a mouse model. Front Cell Infect Microbiol 2023; 13:1027419. [PMID: 36896190 PMCID: PMC9989217 DOI: 10.3389/fcimb.2023.1027419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
Streptococcus suis (SS) is a zoonotic pathogen that affects the health of humans and the development of the pig industry. The SS Cba protein is a collagen adhesin, and a few of its homologs are related to the enhancement of bacterial adhesion. We compared the phenotypes of SS9-P10, SS9-P10 cba knockout strains and its complementary strains in vitro and in vivo and found that knocking out the cba gene did not affect the growth characteristics of the strain, but it significantly reduced the ability of SS to form biofilms, adhesion to host cells, phagocytic resistance to macrophages and attenuated virulence in a mouse infection model. These results indicated that Cba was a virulence related factor of SS9. In addition, Mice immunized with the Cba protein had higher mortality and more serious organ lesions after challenge, and the same was observed in passive immunization experiments. This phenomenon is similar to the antibody-dependent enhancement of infection by bacteria such as Acinetobacter baumannii and Streptococcus pneumoniae. To our knowledge, this is the first demonstration of antibody-dependent enhancement of SS, and these observations highlight the complexity of antibody-based therapy for SS infection.
Collapse
|
3
|
Doyle MT, Bernstein HD. Function of the Omp85 Superfamily of Outer Membrane Protein Assembly Factors and Polypeptide Transporters. Annu Rev Microbiol 2022; 76:259-279. [PMID: 35650668 DOI: 10.1146/annurev-micro-033021-023719] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Omp85 protein superfamily is found in the outer membrane (OM) of all gram-negative bacteria and eukaryotic organelles of bacterial origin. Members of the family catalyze both the membrane insertion of β-barrel proteins and the translocation of proteins across the OM. Although the mechanism(s) by which these proteins function is unclear, striking new insights have emerged from recent biochemical and structural studies. In this review we discuss the entire Omp85 superfamily but focus on the function of the best-studied member, BamA, which is an essential and highly conserved component of the bacterial barrel assembly machinery (BAM). Because BamA has multiple functions that overlap with those of other Omp85 proteins, it is likely the prototypical member of the Omp85 superfamily. Furthermore, BamA has become a protein of great interest because of the recent discovery of small-molecule inhibitors that potentially represent an important new class of antibiotics. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Matthew Thomas Doyle
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; ,
| |
Collapse
|
4
|
Stubenrauch CJ, Lithgow T. The TAM: A Translocation and Assembly Module of the β-Barrel Assembly Machinery in Bacterial Outer Membranes. EcoSal Plus 2019; 8. [PMID: 30816086 PMCID: PMC11573294 DOI: 10.1128/ecosalplus.esp-0036-2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Indexed: 04/08/2023]
Abstract
Assembly of proteins into the outer membrane is an essential process in the cell biology of bacteria. The integration of β-barrel proteins into the outer membrane is mediated by a system referred to as the β-barrel assembly machinery (BAM) that includes two related proteins: BamA in the BAM complex and TamA in the TAM (translocation and assembly module). Here we review what is known about the TAM in terms of its function and the structural architecture of its two subunits, TamA and TamB. By linking the energy transduction possibilities in the inner membrane to TamA in the outer membrane, the TAM provides additional capability to the β-barrel assembly machinery. Conservation of the TAM across evolutionary boundaries, and the presence of hybrid BAM/TAM complexes in some bacterial lineages, adds insight to our growing understanding of how bacterial outer membranes are built.
Collapse
Affiliation(s)
- Christopher J Stubenrauch
- Infection & Immunity Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Clayton 3800, Australia
| | - Trevor Lithgow
- Infection & Immunity Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Clayton 3800, Australia
| |
Collapse
|