1
|
Wang L, Tang Y, Deng Z, Chen S. DNA Phosphorothioate Modification Systems and Associated Phage Defense Systems. Annu Rev Microbiol 2024; 78:447-462. [PMID: 39565949 DOI: 10.1146/annurev-micro-041222-014330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
In contrast to the well-known DNA methylation of nucleobases, DNA phosphorothioate (PT) modification occurs in the DNA sugar-phosphate backbone. The non-bridging oxygen is replaced by a sulfur atom, which increases the nuclease tolerance of the DNA. In recent years, we have witnessed advances in understanding of PT modification enzymes, the features of PT modification across prokaryotic genomes, and PT-related physiological functions. Although only a small fraction of modifiable recognition sites across bacterial genomes undergo PT modification, enzymes such as DndFGH and SspE can use this modification as a recognition marker to differentiate between self- and non-self-DNA, thus destroying PT-lacking invasive DNA and preventing autoimmunity. We highlight the molecular mechanisms of PT modification-associated defense systems. We also describe notable applications of PT systems in the engineering of phage-resistant bacterial strains, RNA editing, and nucleic acid detection.
Collapse
Affiliation(s)
- Lianrong Wang
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, China;
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Yaqian Tang
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Zixin Deng
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Shi Chen
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Department of Burn and Plastic Surgery, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Shenzhen University Medical School, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China;
| |
Collapse
|
2
|
Ge F, Wang Y, Liu J, Yu H, Liu G, Deng Z, He X. Harnessing sulfur-binding domains to separate Sp and Rp isomers of phosphorothioate oligonucleotides. Appl Microbiol Biotechnol 2024; 108:448. [PMID: 39190037 DOI: 10.1007/s00253-024-13283-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Chemical synthesis of phosphoromonothioate oligonucleotides (PS-ONs) is not stereo-specific and produces a mixture of Rp and Sp diastereomers, whose disparate reactivity can complicate applications. Although the current methods to separate these diastereomers which rely on chromatography are constantly improving, many Rp and Sp diastereomers are still co-eluted. Here, based on sulfur-binding domains that specifically recognize phosphorothioated DNA and RNA in Rp configuration, we developed a universal separation system for phosphorothioate oligonucleotide isomers using immobilized SBD (SPOIS). With the scalable SPOIS, His-tagged SBD is immobilized onto Ni-nitrilotriacetic acid-coated magnetic beads to form a beads/SBD complex, Rp isomers of the mixture can be completely bound by SBD and separated from Sp isomers unbound in liquid phase, then recovered through suitable elution approach. Using the phosphoromonothioate single-stranded DNA as a model, SPOIS separated PS-ON diastereomers of 4 nt to 50 nt in length at yields of 60-90% of the starting Rp isomers, with PS linkage not locating at 5' or 3' end. Within this length range, PS-ON diastereomers that co-eluted in HPLC could be separated by SPOIS at yields of 84% and 89% for Rp and Sp stereoisomers, respectively. Furthermore, as each Rp phosphorothioate linkage can be bound by SBD, SPOIS allowed the separation of stereoisomers with multiple uniform Sp configurations for multiple phosphorothioate modifications. A second generation of SPOIS was developed using the thermolabile and non-sequence-specific SBDPed, enabling fast and high-yield recovery of PS substrate stereoisomers for the DNAzyme Cd16 and further demonstrating the efficiency of this method. KEY POINTS: • SPOIS allows isomer separations of the Rp and Sp isomers co-eluted on HPLC. • SPOIS can obtain Sp isomers with 5 min and Rp in 20 min from PS-ON diastereomers. • SPOIS was successfully applied to separate isomers of PS substrates of DNAzyme.
Collapse
Affiliation(s)
- Fulin Ge
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Yuli Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Jinling Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Hao Yu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
3
|
Wang Y, Ge F, Liu J, Hu W, Liu G, Deng Z, He X. The binding affinity-dependent inhibition of cell growth and viability by DNA sulfur-binding domains. Mol Microbiol 2024; 121:971-983. [PMID: 38480679 DOI: 10.1111/mmi.15249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 05/16/2024]
Abstract
Increasing evidence suggests that DNA phosphorothioate (PT) modification serves several purposes in the bacterial host, and some restriction enzymes specifically target PT-DNA. PT-dependent restriction enzymes (PDREs) bind PT-DNA through their DNA sulfur binding domain (SBD) with dissociation constants (KD) of 5 nM~1 μM. Here, we report that SprMcrA, a PDRE, failed to dissociate from PT-DNA after cleavage due to high binding affinity, resulting in low DNA cleavage efficiency. Expression of SBDs in Escherichia coli cells with PT modification induced a drastic loss of cell viability at 25°C when both DNA strands of a PT site were bound, with one SBD on each DNA strand. However, at this temperature, SBD binding to only one PT DNA strand elicited a severe growth lag rather than lethality. This cell growth inhibition phenotype was alleviated by raising the growth temperature. An in vitro assay mimicking DNA replication and RNA transcription demonstrated that the bound SBD hindered the synthesis of new DNA and RNA when using PT-DNA as the template. Our findings suggest that DNA modification-targeting proteins might regulate cellular processes involved in DNA metabolism in addition to being components of restriction-modification systems and epigenetic readers.
Collapse
Affiliation(s)
- Yuli Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Fulin Ge
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jinling Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wenyue Hu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Hu W, Yang B, Xiao Q, Wang Y, Shuai Y, Zhao G, Zhang L, Deng Z, He X, Liu G. Characterization of a promiscuous DNA sulfur binding domain and application in site-directed RNA base editing. Nucleic Acids Res 2023; 51:10782-10794. [PMID: 37702119 PMCID: PMC10602919 DOI: 10.1093/nar/gkad743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/19/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023] Open
Abstract
Phosphorothioate (PT)-modification was discovered in prokaryotes and is involved in many biological functions such as restriction-modification systems. PT-modification can be recognized by the sulfur binding domains (SBDs) of PT-dependent restriction endonucleases, through coordination with the sulfur atom, accompanied by interactions with the DNA backbone and bases. The unique characteristics of PT recognition endow SBDs with the potential to be developed into gene-targeting tools, but previously reported SBDs display sequence-specificity for PT-DNA, which limits their applications. In this work, we identified a novel sequence-promiscuous SBDHga from Hahella ganghwensis. We solved the crystal structure of SBDHga complexed with PT-DNA substrate to 1.8 Å resolution and revealed the recognition mechanism. A shorter L4 loop of SBDHga interacts with the DNA backbone, in contrast with previously reported SBDs, which interact with DNA bases. Furthermore, we explored the feasibility of using SBDHga and a PT-oligonucleotide as targeting tools for site-directed adenosine-to-inosine (A-to-I) RNA editing. A GFP non-sense mutant RNA was repaired at about 60% by harnessing a chimeric SBD-hADAR2DD (deaminase domain of human adenosine deaminase acting on RNA), comparable with currently available RNA editing techniques. This work provides insights into understanding the mechanism of sequence-specificity for SBDs and for developing new tools for gene therapy.
Collapse
Affiliation(s)
- Wenyue Hu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Bingxu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Qingjie Xiao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
| | - Yuli Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Yuting Shuai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Gong Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, People's Republic of China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
5
|
Shuai Y, Ju Y, Li Y, Ma D, Jiang L, Zhang J, Tan GY, Liu X, Wang S, Zhang L, Liu G. A rapid nucleic acid detection platform based on phosphorothioate-DNA and sulfur binding domain. Synth Syst Biotechnol 2023; 8:213-219. [PMID: 36875498 PMCID: PMC9982451 DOI: 10.1016/j.synbio.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023] Open
Abstract
Nucleic acid detection plays a key role in diverse diagnosis and disease control. Currently available nucleic acid detection techniques are challenged by trade-offs among speed, simplicity, precision and cost. Here, we described a novel method, designated SENSOR (Sulfur DNA mediated nucleic acid sensing platform), for rapid nucleic acid detection. SENSOR was developed from phosphorothioate (PT)-DNA and sulfur binding domain (SBD) which specifically binds double-stranded PT-modified DNA. SENSOR utilizes PT-DNA oligo and SBD as targeting module, which is linked with split luciferase reporter to generate luminescence signal within 10 min. We tested detection on synthesized nucleic acid and COVID-19 pseudovirus, achieving attomolar sensitivity combined with an amplification procedure. Single nucleotide polymorphisms (SNP) could also be discriminated. Indicating SENSOR a new promising nucleic acid detection technique.
Collapse
Affiliation(s)
- Yuting Shuai
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Yi Ju
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Yuanhang Li
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Dini Ma
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China.,State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic &Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lan Jiang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Shenlin Wang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Guang Liu
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China.,State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic &Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
6
|
Yang W, Fomenkov A, Heiter D, Xu SY, Ettwiller L. High-throughput sequencing of EcoWI restriction fragments maps the genome-wide landscape of phosphorothioate modification at base resolution. PLoS Genet 2022; 18:e1010389. [PMID: 36121836 PMCID: PMC9521924 DOI: 10.1371/journal.pgen.1010389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/29/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022] Open
Abstract
Phosphorothioation (PT), in which a non-bridging oxygen is replaced by a sulfur, is one of the rare modifications discovered in bacteria and archaea that occurs on the sugar-phosphate backbone as opposed to the nucleobase moiety of DNA. While PT modification is widespread in the prokaryotic kingdom, how PT modifications are distributed in the genomes and their exact roles in the cell remain to be defined. In this study, we developed a simple and convenient technique called EcoWI-seq based on a modification-dependent restriction endonuclease to identify genomic positions of PT modifications. EcoWI-seq shows similar performance than other PT modification detection techniques and additionally, is easily scalable while requiring little starting material. As a proof of principle, we applied EcoWI-seq to map the PT modifications at base resolution in the genomes of both the Salmonella enterica cerro 87 and E. coli expressing the dnd+ gene cluster. Specifically, we address whether the partial establishment of modified PT positions is a stochastic or deterministic process. EcoWI-seq reveals a systematic usage of the same subset of target sites in clones for which the PT modification has been independently established. Large number of bacteria have modified their DNA mainly as part of a strategy to resist virus infection. Most of the modifications are chemical variations on the canonical bases A, T, C or G with phosphorothioate (PT) being a rare exception of a modification that happens on the backbone of the DNA. Interestingly, this PT modification was first chemically synthesized for specific biotechnological processes before scientists discovered that bacteria and archaea naturally perform this modification using their enzymes. The exact roles of phosphorothioation in bacteria and archaea is still under investigation. To enable further investigation of PT modifications, we designed EcoWI-seq, a method to identify the exact positions of these modifications in bacterial genomes. Notably, we applied the EcoWI-seq to several strains of E. coli for which PT modification has been induced by cloning into these strains, the necessary genes for making such modification. We found that these strains, despite being independently made, followed a precise pattern of PT modification with always the same sites being modified. This result indicates a deterministic process for the establishment of PT modification.
Collapse
Affiliation(s)
- Weiwei Yang
- New England Biolabs Inc., Ipswich, Massachusetts, United States of America
| | - Alexey Fomenkov
- New England Biolabs Inc., Ipswich, Massachusetts, United States of America
| | - Dan Heiter
- New England Biolabs Inc., Ipswich, Massachusetts, United States of America
| | - Shuang-yong Xu
- New England Biolabs Inc., Ipswich, Massachusetts, United States of America
- * E-mail: (SYX); (LE)
| | - Laurence Ettwiller
- New England Biolabs Inc., Ipswich, Massachusetts, United States of America
- * E-mail: (SYX); (LE)
| |
Collapse
|
7
|
Involvement of the DNA Phosphorothioation System in TorR Binding and Anaerobic TMAO Respiration in Salmonella enterica. mBio 2022; 13:e0069922. [PMID: 35420479 PMCID: PMC9239176 DOI: 10.1128/mbio.00699-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the phosphorothioate (PT) modification, in which the nonbridging oxygen in the DNA sugar-phosphate backbone is replaced by sulfur, has been reported to play versatile roles in multiple cellular processes, very little data have been obtained to define the role of PT in epigenetic regulation. In this study, we report that the PT system in Salmonella enterica serovar Cerro 87 is involved in the transcriptional regulation of the torCAD operon encoding the trimethylamine N-oxide (TMAO) respiration machinery that enables the use of TMAO as a terminal electron acceptor for respiration when oxygen is not available. In vitro, PT enhanced the binding of the transcriptional activator of the torCAD operon, namely, TorR, to its DNA substrate (tor boxes). However, in vivo, the PT modification protein complex DndCDE downregulated torCAD transcription through competing with the binding of TorR to the tor boxes. The altered expression of torCAD caused by PT modification proteins affected cell growth that relied on TMAO respiration. To our knowledge, this is the first report supporting that PT proteins participate in transcriptional regulation, showing a new function of PT systems.
Collapse
|
8
|
Hu W, Wang Y, Yang B, Lin C, Yu H, Liu G, Deng Z, Ou HY, He X. Bacterial YedK represses plasmid DNA replication and transformation through its DNA single-strand binding activity. Microbiol Res 2021; 252:126852. [PMID: 34454309 DOI: 10.1016/j.micres.2021.126852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
The SOS response-associated peptidase (SRAP) is an ancient protein superfamily in all domains of life. The mammalian SRAP was recently reported to covalently bind to the abasic sites (AP) in single stranded (ss) DNA to shield the chromosome integrity. YedK, the Escherichia coli SRAP, is not functionally characterized. Here we report the fortuitous pull-down of YedK from bacterial cell lysates by short (<20 bp) double stranded (ds) DNAs, further enrichment of YedK was observed when single stranded (ss) DNA was added. YedK can bind multiple DNA substrates, particularly with a high affinity to DNA duplex with single strand segment. As a SRAP protein, the involvement of YedK in SOS response was extensively examined, however yedK mutant of Escherichia coli showed no difference from the wild type strain upon the treatments with UV and various DNA damaging reagents, indicating its non-essentiality or redundancy in E. coli. Surprisingly, yedK mutants derived from Escherichia coli and Samonella enterica both showed an increased plasmid DNA transformation efficiency compared to the wild types. In accordance with this, induction of YedK effectively decreased the copy number of plasmid DNA. Site-directed mutagenesis of YedK demonstrated that residues involved in single strand DNA binding and cysteine residue at position 2 from N-terminus can discharge the repression of the plasmid transformation efficiency.
Collapse
Affiliation(s)
- Wenyue Hu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Yuli Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Bingxu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Chen Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Hao Yu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
9
|
Abstract
Actinobacteriophages are viruses that infect bacterial hosts in the phylum Actinobacteria. More than 17,000 actinobacteriophages have been described and over 3,000 complete genome sequences reported, resulting from large-scale, high-impact, integrated research-education initiatives such as the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Sciences (SEA-PHAGES) program. Their genomic diversity is enormous; actinobacteriophages comprise many architecturally mosaic genomes with distinct DNA sequences. Their genome diversity is driven by the highly dynamic interactions between phages and their hosts, and prophages can confer a variety of systems that defend against attack by genetically distinct phages; phages can neutralize these defense systems by coding for counter-defense proteins. These phages not only provide insights into diverse and dynamic phage populations but also have provided numerous tools for mycobacterial genetics. A case study using a three-phage cocktail to treat a patient with a drug-resistant Mycobacterium abscessus suggests that phages may have considerable potential for the therapeutic treatment of mycobacterial infections.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA;
| |
Collapse
|
10
|
Yu H, Li J, Liu G, Zhao G, Wang Y, Hu W, Deng Z, Wu G, Gan J, Zhao YL, He X. DNA backbone interactions impact the sequence specificity of DNA sulfur-binding domains: revelations from structural analyses. Nucleic Acids Res 2020; 48:8755-8766. [PMID: 32621606 PMCID: PMC7470945 DOI: 10.1093/nar/gkaa574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/04/2022] Open
Abstract
The sulfur atom of phosphorothioated DNA (PT-DNA) is coordinated by a surface cavity in the conserved sulfur-binding domain (SBD) of type IV restriction enzymes. However, some SBDs cannot recognize the sulfur atom in some sequence contexts. To illustrate the structural determinants for sequence specificity, we resolved the structure of SBDSpr, from endonuclease SprMcrA, in complex with DNA of GPSGCC, GPSATC and GPSAAC contexts. Structural and computational analyses explained why it binds the above PT-DNAs with an affinity in a decreasing order. The structural analysis of SBDSpr–GPSGCC and SBDSco–GPSGCC, the latter only recognizes DNA of GPSGCC, revealed that a positively charged loop above the sulfur-coordination cavity electrostatically interacts with the neighboring DNA phosphate linkage. The structural analysis indicated that the DNA–protein hydrogen bonding pattern and weak non-bonded interaction played important roles in sequence specificity of SBD protein. Exchanges of the positively-charged amino acid residues with the negatively-charged residues in the loop would enable SBDSco to extend recognization for more PT-DNA sequences, implying that type IV endonucleases can be engineered to recognize PT-DNA in novel target sequences.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Jiayi Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Guang Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Gong Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Yuli Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Wenyue Hu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Jianhua Gan
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
11
|
Lutz T, Czapinska H, Fomenkov A, Potapov V, Heiter DF, Cao B, Dedon P, Bochtler M, Xu SY. Protein Domain Guided Screen for Sequence Specific and Phosphorothioate-Dependent Restriction Endonucleases. Front Microbiol 2020; 11:1960. [PMID: 33013736 PMCID: PMC7461809 DOI: 10.3389/fmicb.2020.01960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/24/2020] [Indexed: 11/25/2022] Open
Abstract
Modification dependent restriction endonucleases (MDREs) restrict modified DNA, typically with limited sequence specificity (∼2-4 bp). Here, we focus on MDREs that have an SRA and/or SBD (sulfur binding domain) fused to an HNH endonuclease domain, cleaving cytosine modified or phosphorothioated (PT) DNA. We independently characterized the SBD-SRA-HNH endonuclease ScoMcrA, which preferentially cleaves 5hmC modified DNA. We report five SBD-HNH endonucleases, all recognizing GpsAAC/GpsTTC sequence and cleaving outside with a single nucleotide 3' stagger: EcoWI (N7/N6), Ksp11411I (N5/N4), Bsp305I (N6/N4-5), Mae9806I [N(8-10)/N(8-9)], and Sau43800I [N(8-9)/N(7-8)]. EcoWI and Bsp305I are more specific for PT modified DNA in Mg2+ buffer, and promiscuous with Mn2+. Ksp11411I is more PT specific with Ni2+. EcoWI and Ksp11411I cleave fully- and hemi-PT modified oligos, while Bsp305I cleaves only fully modified ones. EcoWI forms a dimer in solution and cleaves more efficiently in the presence of two modified sites. In addition, we demonstrate that EcoWI PT-dependent activity has biological function: EcoWI expressing cells restrict dnd+ GpsAAC modified plasmid strongly, and GpsGCC DNA weakly. This work establishes a framework for biotechnology applications of PT-dependent restriction endonucleases (PTDRs).
Collapse
Affiliation(s)
- Thomas Lutz
- New England Biolabs, Inc., Ipswich, MA, United States
| | | | | | | | | | - Bo Cao
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- College of Life Science, Qufu Normal University, Qufu, China
| | - Peter Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
| | | |
Collapse
|
12
|
Wang L, Jiang S, Deng Z, Dedon PC, Chen S. DNA phosphorothioate modification-a new multi-functional epigenetic system in bacteria. FEMS Microbiol Rev 2019; 43:109-122. [PMID: 30289455 PMCID: PMC6435447 DOI: 10.1093/femsre/fuy036] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022] Open
Abstract
Synthetic phosphorothioate (PT) internucleotide linkages, in which a nonbridging oxygen is replaced by a sulphur atom, share similar physical and chemical properties with phosphodiesters but confer enhanced nuclease tolerance on DNA/RNA, making PTs a valuable biochemical and pharmacological tool. Interestingly, PT modification was recently found to occur naturally in bacteria in a sequence-selective and RP configuration-specific manner. This oxygen-sulphur swap is catalysed by the gene products of dndABCDE, which constitute a defence barrier with DndFGH in some bacterial strains that can distinguish and attack non-PT-modified foreign DNA, resembling DNA methylation-based restriction-modification (R-M) systems. Despite their similar defensive mechanisms, PT- and methylation-based R-M systems have evolved to target different consensus contexts in the host cell because when they share the same recognition sequences, the protective function of each can be impeded. The redox and nucleophilic properties of PT sulphur render PT modification a versatile player in the maintenance of cellular redox homeostasis, epigenetic regulation and environmental fitness. The widespread presence of dnd systems is considered a consequence of extensive horizontal gene transfer, whereas the lability of PT during oxidative stress and the susceptibility of PT to PT-dependent endonucleases provide possible explanations for the ubiquitous but sporadic distribution of PT modification in the bacterial world.
Collapse
Affiliation(s)
- Lianrong Wang
- Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuhan 430071, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, China
| | - Susu Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, China
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Masschusetts Avenue, Cambridge, Massachusetts, USA
| | - Shi Chen
- Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuhan 430071, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, China
| |
Collapse
|