1
|
A Farrugia M, Rajagopalan R, Kroos L. Transcriptomic analysis of Myxococcus xanthus csgA, fruA, and mrpC mutants reveals extensive and diverse roles of key regulators in the multicellular developmental process. BMC Genomics 2025; 26:355. [PMID: 40200151 PMCID: PMC11980068 DOI: 10.1186/s12864-025-11417-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/28/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND The bacterium Myxococcus xanthus provides an important multicellular model for understanding stress responses. The regulatory proteins CsgA, FruA, and MrpC are essential to survive prolonged starvation by forming fruiting bodies, which are mounds containing hardy round spores formed from vegetative rods, but the genome-wide pathways affected by these proteins remain poorly understood. Only a fruA mutant transcriptome and MrpC ChIP-seq have been reported. We describe RNA-seq transcriptome analysis of csgA, fruA, and mrpC mutants relative to a wild-type laboratory strain midway during the starvation-induced developmental process, when mounds, but not spores, have formed. RESULTS We show that CsgA, FruA, and MrpC broadly impact developmental gene expression, with over 60% of the genes differentially expressed in one or more mutants. Building upon previous investigations, we found that strongly regulated genes in the mrpC mutant correlate with MrpC DNA-binding sites located ~ 80 bp upstream of transcriptional start sites. We also confirmed that FruA directly or indirectly regulates many genes negatively, as well as many others positively. CsgA regulates indirectly and its strongest effects are positive. MrpC strongly stimulates fruA transcription and FruA accumulation, impacting many genes, but our results reveal that MrpC is also a strong negative or positive regulator of hundreds of genes independently of FruA. Indeed, we observed nearly every possible pattern of coregulation, unique regulation, and counterregulation by comparing the wild-type and mutant transcriptomes, indicating diverse roles of CsgA, FruA, and MrpC in the developmental gene regulatory network. The genes most strongly regulated were coregulated in two or three of the mutants. Each set of genes exhibiting differential expression in one or more mutants was analyzed for enrichment of gene ontology (GO) terms or KEGG pathways, and predicted protein-protein interactions. These analyses highlighted enrichment of pathways involved in cellular signaling, protein synthesis, energetics, and envelope function. In particular, we describe how CsgA, FruA, and MrpC control production of ribosomes, lipid signals, and peptidoglycan intermediates during development. CONCLUSIONS By comparing wild-type and mutant transcriptomes midway in development, this study documents individual and coordinate regulation of crucial pathways by CsgA, FruA, and MrpC, providing a valuable resource for future investigations.
Collapse
Affiliation(s)
- Mark A Farrugia
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Ramya Rajagopalan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
- Department of Molecular & Cellular Biology, Kennesaw State University, Kennesaw, GA, USA.
| | - Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Weltzer ML, Govaerts J, Wall D. Chimeric aggregative multicellularity in absence of kin discrimination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626738. [PMID: 39677713 PMCID: PMC11643034 DOI: 10.1101/2024.12.04.626738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Aggregative multicellularity is a cooperative strategy employed by some microorganisms. Unlike clonal expansion within protected environments during multicellular eukaryotic development, an aggregation strategy introduces the potential for genetic conflicts and exploitation by cheaters, threatening the stability of the social system. Myxococcus xanthus, a soil-dwelling bacterium, employs aggregative multicellularity to form multicellular fruiting bodies that produce spores in response to starvation. Studies of natural fruiting bodies show that this process is restricted to close kin or clonemates. Here, we investigate the mechanisms underlying kin recognition during development in M. xanthus. By co-culturing two distantly related M. xanthus strains under vegetative and starvation conditions, we observed that the strains segregate in both contexts. During vegetative growth, one strain antagonized the other using the type VI secretion system (T6SS). T6SS-mediated antagonism was also observed during development, resulting in monoclonal fruiting bodies when WT strains were mixed. In contrast, mixtures of T6SS knockout strains formed chimeric fruiting bodies, that produced viable spores from both strains. These findings suggest that T6SS is the primary mechanism of kin discrimination in distantly related M. xanthus strains, and its use ensures the development of monoclonal fruiting bodies and social integrity.
Collapse
Affiliation(s)
- Michael L. Weltzer
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY, USA
| | - Jack Govaerts
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY, USA
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY, USA
| |
Collapse
|
3
|
Hoang Y, Franklin J, Dufour YS, Kroos L. Short-range C-signaling restricts cheating behavior during Myxococcus xanthus development. mBio 2024; 15:e0244024. [PMID: 39422488 PMCID: PMC11559036 DOI: 10.1128/mbio.02440-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Myxococcus xanthus uses short-range C-signaling to coordinate multicellular mound formation with sporulation during fruiting body development. A csgA mutant deficient in C-signaling can cheat on wild type (WT) in mixtures and form spores disproportionately, but our understanding of cheating behavior is incomplete. We subjected mixtures of WT and csgA cells at different ratios to co-development and used confocal microscopy and image analysis to quantify the arrangement and morphology of cells. At a ratio of one WT to four csgA cells (1:4), mounds failed to form. At 1:2, only a few mounds and spores formed. At 1:1, mounds formed with a similar number and arrangement of WT and csgA rods early in development, but later the number of csgA spores near the bottom of these nascent fruiting bodies (NFBs) exceeded that of WT. This cheating after mound formation involved csgA forming spores at a greater rate, while WT disappeared at a greater rate, either lysing or exiting NFBs. At 2:1 and 4:1, csgA rods were more abundant than expected throughout the biofilm both before and during mound formation, and cheating continued after mound formation. We conclude that C-signaling restricts cheating behavior by requiring sufficient WT cells in mixtures. Excess cheaters may interfere with positive feedback loops that depend on the cellular arrangement to enhance C-signaling during mound building. Since long-range signaling could not likewise communicate the cellular arrangement, we propose that C-signaling was favored evolutionarily and that other short-range signaling mechanisms provided selective advantages in bacterial biofilm and multicellular animal development. IMPORTANCE Bacteria communicate using both long- and short-range signals. Signaling affects community composition, structure, and function. Adherent communities called biofilms impact medicine, agriculture, industry, and the environment. To facilitate the manipulation of biofilms for societal benefits, a better understanding of short-range signaling is necessary. We investigated the susceptibility of short-range C-signaling to cheating during Myxococcus xanthus biofilm development. A mutant deficient in C-signaling fails to form mounds containing spores (i.e., fruiting bodies) but cheats on C-signaling by wild type in starved cell mixtures and forms spores disproportionately. We found that cheating requires sufficient wild-type cells in the initial mix and can occur both before mound formation and later during the sporulation stage of development. By restricting cheating behavior, short-range C-signaling may have been favored evolutionarily rather than long-range diffusible signaling. Cheating restrictions imposed by short-range signaling may have likewise driven the evolution of multicellularity broadly.
Collapse
Affiliation(s)
- Y. Hoang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Joshua Franklin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Yann S. Dufour
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
4
|
Saha S, Kroos L. Regulation of late-acting operons by three transcription factors and a CRISPR-Cas component during Myxococcus xanthus development. Mol Microbiol 2024; 121:1002-1020. [PMID: 38525557 DOI: 10.1111/mmi.15252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Upon starvation, rod-shaped Myxococcus xanthus bacteria form mounds and then differentiate into round, stress-resistant spores. Little is known about the regulation of late-acting operons important for spore formation. C-signaling has been proposed to activate FruA, which binds DNA cooperatively with MrpC to stimulate transcription of developmental genes. We report that this model can explain regulation of the fadIJ operon involved in spore metabolism, but not that of the spore coat biogenesis operons exoA-I, exoL-P, and nfsA-H. Rather, a mutation in fruA increased the transcript levels from these operons early in development, suggesting negative regulation by FruA, and a mutation in mrpC affected transcript levels from each operon differently. FruA bound to all four promoter regions in vitro, but strikingly each promoter region was unique in terms of whether or not MrpC and/or the DNA-binding domain of Nla6 bound, and in terms of cooperative binding. Furthermore, the DevI component of a CRISPR-Cas system is a negative regulator of all four operons, based on transcript measurements. Our results demonstrate complex regulation of sporulation genes by three transcription factors and a CRISPR-Cas component, which we propose produces spores suited to withstand starvation and environmental insults.
Collapse
Affiliation(s)
- Shreya Saha
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Cell density, alignment, and orientation correlate with C-signal-dependent gene expression during Myxococcus xanthus development. Proc Natl Acad Sci U S A 2021; 118:2111706118. [PMID: 34732578 DOI: 10.1073/pnas.2111706118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
Starving Myxococcus xanthus bacteria use short-range C-signaling to coordinate their movements and construct multicellular mounds, which mature into fruiting bodies as rods differentiate into spherical spores. Differentiation requires efficient C-signaling to drive the expression of developmental genes, but how the arrangement of cells within nascent fruiting bodies (NFBs) affects C-signaling is not fully understood. Here, we used confocal microscopy and cell segmentation to visualize and quantify the arrangement, morphology, and gene expression of cells near the bottom of NFBs at much higher resolution than previously achieved. We discovered that "transitioning cells" (TCs), intermediate in morphology between rods and spores, comprised 10 to 15% of the total population. Spores appeared midway between the center and the edge of NFBs early in their development and near the center as maturation progressed. The developmental pattern, as well as C-signal-dependent gene expression in TCs and spores, were correlated with cell density, the alignment of neighboring rods, and the tangential orientation of rods early in the development of NFBs. These dynamic radial patterns support a model in which the arrangement of cells within the NFBs affects C-signaling efficiency to regulate precisely the expression of developmental genes and cellular differentiation in space and time. Developmental patterns in other bacterial biofilms may likewise rely on short-range signaling to communicate multiple aspects of cellular arrangement, analogous to juxtacrine and paracrine signaling during animal development.
Collapse
|
6
|
McLoon AL, Boeck ME, Bruckskotten M, Keyel AC, Søgaard-Andersen L. Transcriptomic analysis of the Myxococcus xanthus FruA regulon, and comparative developmental transcriptomic analysis of two fruiting body forming species, Myxococcus xanthus and Myxococcus stipitatus. BMC Genomics 2021; 22:784. [PMID: 34724903 PMCID: PMC8561891 DOI: 10.1186/s12864-021-08051-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/30/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The Myxococcales are well known for their predatory and developmental social processes, and for the molecular complexity of regulation of these processes. Many species within this order have unusually large genomes compared to other bacteria, and their genomes have many genes that are unique to one specific sequenced species or strain. Here, we describe RNAseq based transcriptome analysis of the FruA regulon of Myxococcus xanthus and a comparative RNAseq analysis of two Myxococcus species, M. xanthus and Myxococcus stipitatus, as they respond to starvation and begin forming fruiting bodies. RESULTS We show that both species have large numbers of genes that are developmentally regulated, with over half the genome showing statistically significant changes in expression during development in each species. We also included a non-fruiting mutant of M. xanthus that is missing the transcriptional regulator FruA to identify the direct and indirect FruA regulon and to identify transcriptional changes that are specific to fruiting and not just the starvation response. We then identified Interpro gene ontologies and COG annotations that are significantly up- or down-regulated during development in each species. Our analyses support previous data for M. xanthus showing developmental upregulation of signal transduction genes, and downregulation of genes related to cell-cycle, translation, metabolism, and in some cases, DNA replication. Gene expression in M. stipitatus follows similar trends. Although not all specific genes show similar regulation patterns in both species, many critical developmental genes in M. xanthus have conserved expression patterns in M. stipitatus, and some groups of otherwise unstudied orthologous genes share expression patterns. CONCLUSIONS By identifying the FruA regulon and identifying genes that are similarly and uniquely regulated in two different species, this work provides a more complete picture of transcription during Myxococcus development. We also provide an R script to allow other scientists to mine our data for genes whose expression patterns match a user-selected gene of interest.
Collapse
Affiliation(s)
- Anna L McLoon
- Biology Department, Siena College, Loudonville, NY, USA
| | - Max E Boeck
- Biology Department, Regis University, Denver, CO, USA
| | - Marc Bruckskotten
- Center of Medical Genetics and Human Genetics, Philipps-University, Marburg, Germany
| | - Alexander C Keyel
- Department of Atmospheric and Environmental Sciences, University at Albany, Albany, NY, USA
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
7
|
An ambruticin-sensing complex modulates Myxococcus xanthus development and mediates myxobacterial interspecies communication. Nat Commun 2020; 11:5563. [PMID: 33149152 PMCID: PMC7643160 DOI: 10.1038/s41467-020-19384-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 10/07/2020] [Indexed: 01/01/2023] Open
Abstract
Starvation induces cell aggregation in the soil bacterium Myxococcus xanthus, followed by formation of fruiting bodies packed with myxospores. Sporulation in the absence of fruiting bodies can be artificially induced by high concentrations of glycerol through unclear mechanisms. Here, we show that a compound (ambruticin VS-3) produced by a different myxobacterium, Sorangium cellulosum, affects the development of M. xanthus in a similar manner. Both glycerol (at millimolar levels) and ambruticin VS-3 (at nanomolar concentrations) inhibit M. xanthus fruiting body formation under starvation, and induce sporulation in the presence of nutrients. The response is mediated in M. xanthus by three hybrid histidine kinases (AskA, AskB, AskC) that form complexes interacting with two major developmental regulators (MrpC, FruA). In addition, AskB binds directly to the mrpC promoter in vitro. Thus, our work indicates that the AskABC-dependent regulatory pathway mediates the responses to ambruticin VS-3 and glycerol. We hypothesize that production of ambruticin VS-3 may allow S. sorangium to outcompete M. xanthus under both starvation and growth conditions in soil. Starvation induces cell aggregation and formation of spore-containing fruiting bodies in the bacterium Myxococcus xanthus. Here, the authors show that a different myxobacterial species produces a compound that inhibits the development of fruiting bodies in M. xanthus, by affecting the function of histidine kinases and major regulators.
Collapse
|
8
|
Feeley BE, Bhardwaj V, McLaughlin PT, Diggs S, Blaha GM, Higgs PI. An amino-terminal threonine/serine motif is necessary for activity of the Crp/Fnr homolog, MrpC and for Myxococcus xanthus developmental robustness. Mol Microbiol 2019; 112:1531-1551. [PMID: 31449700 DOI: 10.1111/mmi.14378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2019] [Indexed: 11/30/2022]
Abstract
The Crp/Fnr family of transcriptional regulators play central roles in transcriptional control of diverse physiological responses, and are activated by a surprising diversity of mechanisms. MrpC is a Crp/Fnr homolog that controls the Myxococcus xanthus developmental program. A long-standing model proposed that MrpC activity is controlled by the Pkn8/Pkn14 serine/threonine kinase cascade, which phosphorylates MrpC on threonine residue(s) located in its extreme amino-terminus. In this study, we demonstrate that a stretch of consecutive threonine and serine residues, T21 T22 S23 S24, is necessary for MrpC activity by promoting efficient DNA binding. Mass spectrometry analysis indicated the TTSS motif is not directly phosphorylated by Pkn14 in vitro but is necessary for efficient Pkn14-dependent phosphorylation on several residues in the remainder of the protein. In an important correction to a long-standing model, we show Pkn8 and Pkn14 kinase activities do not play obvious roles in controlling MrpC activity in wild-type M. xanthus under laboratory conditions. Instead, we propose Pkn14 modulates MrpC DNA binding in response to unknown environmental conditions. Interestingly, substitutions in the TTSS motif caused developmental defects that varied between biological replicates, revealing that MrpC plays a role in promoting a robust developmental phenotype.
Collapse
Affiliation(s)
- Brooke E Feeley
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Vidhi Bhardwaj
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Hesse, Germany
| | | | - Stephen Diggs
- Department of Biochemistry, University of California, Riverside, Riverside, CA, USA
| | - Gregor M Blaha
- Department of Biochemistry, University of California, Riverside, Riverside, CA, USA
| | - Penelope I Higgs
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|