1
|
Robin B, Dewitte A, Alaimo V, Lecoeur C, Pierre F, Billon G, Sebbane F, Bontemps-Gallo S. The CpxAR signaling system confers a fitness advantage for flea gut colonization by the plague bacillus. J Bacteriol 2024; 206:e0017324. [PMID: 39158280 PMCID: PMC11411919 DOI: 10.1128/jb.00173-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
The adaptation of Yersinia pestis, the flea-borne plague agent, to fluctuating environmental conditions is essential for the successful colonization of the flea vector. A previous comparative transcriptomic analysis showed that the Cpx pathway of Y. pestis is up-regulated in infected fleas. The CpxAR two-component system is a component of the envelope stress response and is critical for maintaining the integrity of the cell. Here, a phenotypic screening revealed a survival defect of the cpxAR mutant to oxidative stress and copper. The measured copper concentration in the digestive tract contents of fed fleas increased fourfold during the digestive process. By direct analysis of phosphorylation of CpxR by a Phos-Tag gel approach, we demonstrated that biologically relevant concentrations of copper triggered the system. Then, a competitive challenge highlighted the role of the CpxAR system in bacterial fitness during flea infection. Lastly, an in vitro sequential exposure to copper and then H2O2 to mimic the flea suggests a model in which, within the insect digestive tract, the CpxAR system would be triggered by copper, establishing an oxidative stress response. IMPORTANCE The bacterium Yersinia pestis is the agent of flea-borne plague. Our knowledge of the mechanisms used by the plague bacillus to infect the flea vector is limited. The up-regulation of the envelope stress response under the control of the Cpx signaling pathway was previously shown in a transcriptomic study. Here, our in vivo and in vitro approaches suggest a model in which Y. pestis uses the CpxAR phosphorelay system to sense and respond to the copper present in the flea gut, thereby optimizing the flea gut colonization. In other words, the system is essential for bacterial fitness in the flea.
Collapse
Affiliation(s)
- Brandon Robin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Amélie Dewitte
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Véronique Alaimo
- Univ. Lille, CNRS, UMR 8516 – LASIRE, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille, France
| | - Cecile Lecoeur
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - François Pierre
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Gabriel Billon
- Univ. Lille, CNRS, UMR 8516 – LASIRE, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille, France
| | - Florent Sebbane
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Sébastien Bontemps-Gallo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
2
|
Cochard C, Caby M, Gruau P, Madec E, Marceau M, Macavei I, Lemoine J, Le Danvic C, Bouchart F, Delrue B, Bontemps-Gallo S, Lacroix JM. Emergence of the Dickeya genus involved duplication of the OmpF porin and the adaptation of the EnvZ-OmpR signaling network. Microbiol Spectr 2023; 11:e0083323. [PMID: 37642428 PMCID: PMC10581057 DOI: 10.1128/spectrum.00833-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/06/2023] [Indexed: 08/31/2023] Open
Abstract
Genome evolution, and more specifically gene duplication, is a key process shaping host-microorganism interaction. The conserved paralogs usually provide an advantage to the bacterium to thrive. If not, these genes become pseudogenes and disappear. Here, we show that during the emergence of the genus Dickeya, the gene encoding the porin OmpF was duplicated. Our results show that the ompF2 expression is deleterious to the virulence of Dickeya dadantii, the agent causing soft rot disease. Interestingly, ompF2 is regulated while ompF is constitutive but activated by the EnvZ-OmpR two-component system. In vitro, acidic pH triggers the system. The pH measured in four eudicotyledons increased from an initial pH of 5.5 to 7 within 8 h post-infection. Then, the pH decreased to 5.5 at 10 h post-infection and until full maceration of the plant tissue. Yet, the production of phenolic acids by the plant's defenses prevents the activation of the EnvZ-OmpR system to avoid the ompF2 expression even though environmental conditions should trigger this system. We highlight that gene duplication in a pathogen is not automatically an advantage for the infectious process and that, there was a need for our model organism to adapt its genetic regulatory networks to conserve these duplicated genes. IMPORTANCE Dickeya species cause various diseases in a wide range of crops and ornamental plants. Understanding the molecular program that allows the bacterium to colonize the plant is key to developing new pest control methods. Unlike other enterobacterial pathogens, Dickeya dadantii, the causal agent of soft rot disease, does not require the EnvZ-OmpR system for virulence. Here, we showed that during the emergence of the genus Dickeya, the gene encoding the porin OmpF was duplicated and that the expression of ompF2 was deleterious for virulence. We revealed that while the EnvZ-OmpR system was activated in vitro by acidic pH and even though the pH was acidic when the plant is colonized, this system was repressed by phenolic acid (generated by the plant's defenses). These results provide a unique- biologically relevant-perspective on the consequence of gene duplication and the adaptive nature of regulatory networks to retain the duplicated gene.
Collapse
Affiliation(s)
- Clémence Cochard
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Marine Caby
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Peggy Gruau
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Edwige Madec
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Michael Marceau
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Iulia Macavei
- Univ. Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, Villeurbanne, France
| | - Jérôme Lemoine
- Univ. Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, Villeurbanne, France
| | - Chrystelle Le Danvic
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- R&D Department, ALLICE, Paris, France
| | - Franck Bouchart
- Université Polytechnique Hauts-de-France, EA 2443 - LMCPA - Laboratoire des Matériaux Céramiques et Procédés Associés, Valenciennes, France
| | - Brigitte Delrue
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Sébastien Bontemps-Gallo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Jean-Marie Lacroix
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
3
|
Dewitte A, Werkmeister E, Pierre F, Sebbane F, Bontemps-Gallo S. A Widefield Light Microscopy-Based Approach Provides Further Insights into the Colonization of the Flea Proventriculus by Yersinia pestis. Appl Environ Microbiol 2023; 89:e0209122. [PMID: 36939324 PMCID: PMC10132112 DOI: 10.1128/aem.02091-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/21/2023] [Indexed: 03/21/2023] Open
Abstract
Yersinia pestis (the agent of flea-borne plague) must obstruct the flea's proventriculus to maintain transmission to a mammalian host. To this end, Y. pestis must consolidate a mass that entrapped Y. pestis within the proventriculus very early after its ingestion. We developed a semiautomated fluorescent image analysis method and used it to monitor and compare colonization of the flea proventriculus by a fully competent flea-blocking Y. pestis strain, a partially competent strain, and a noncompetent strain. Our data suggested that flea blockage results primarily from the replication of Y. pestis trapped in the anterior half of the proventriculus. However, consolidation of the bacteria-entrapping mass and colonization of the entire proventricular lumen increased the likelihood of flea blockage. The data also showed that consolidation of the bacterial mass is not a prerequisite for colonization of the proventriculus but allowed Y. pestis to maintain itself in a large flea population for an extended period of time. Taken as the whole, the data suggest that a strategy targeting bacterial mass consolidation could significantly reduce the likelihood of Y. pestis being transmitted by fleas (due to gut blockage), but also the possibility of using fleas as a long-term reservoir. IMPORTANCE Yersinia pestis (the causative agent of plague) is one of the deadliest bacterial pathogens. It circulates primarily among rodent populations and their fleas. Better knowledge of the mechanisms leading to the flea-borne transmission of Y. pestis is likely to generate strategies for controlling or even eradicating this bacillus. It is known that Y. pestis obstructs the flea's foregut so that the insect starves, frantically bites its mammalian host, and regurgitates Y. pestis at the bite site. Here, we developed a semiautomated fluorescent image analysis method and used it to document and compare foregut colonization and disease progression in fleas infected with a fully competent flea-blocking Y. pestis strain, a partially competent strain, and a noncompetent strain. Overall, our data provided new insights into Y. pestis' obstruction of the proventriculus for transmission but also the ecology of plague.
Collapse
Affiliation(s)
- Amélie Dewitte
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d'Immunité de Lille, Lille, France
| | - Elisabeth Werkmeister
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d'Immunité de Lille, Lille, France
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US41-UMS2014 - PLBS, Lille, France
| | - François Pierre
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d'Immunité de Lille, Lille, France
| | - Florent Sebbane
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d'Immunité de Lille, Lille, France
| | - Sébastien Bontemps-Gallo
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d'Immunité de Lille, Lille, France
| |
Collapse
|
4
|
Wu YL, Hu SF, Zhang XL, Wang HM, Pan HY, Liu GH, Deng YP. Complete bacterial profile and potential pathogens of cat fleas Ctenocephalides felis. Acta Trop 2023; 243:106923. [PMID: 37080265 DOI: 10.1016/j.actatropica.2023.106923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 04/22/2023]
Abstract
Fleas are important ectoparasites and vectors associated with a wide range of pathogenic diseases, posing threats to public health concerns, especially cat fleas that spread worldwide. Understanding the microbial components is essential due to cat fleas are capable of transmitting pathogens to humans, causing diseases like plague and murine typhus. In the present study, metagenomic next-generation sequencing was applied to obtain the complete microbiota and related functions in the gut of Ctenocephalides felis. A total of 1,870 species was taxonomically recognized including 1,407 bacteria, 365 eukaryotes, 69 viruses, and 29 archaea. Proteobacteria was the dominant phylum among the six samples. Pathogens Rickettsia felis, Acinetobacter baumannii, Coxiella burnetii, and Anaplasma phagocytophilum were taxonomically identified and had high abundances in all samples. The resistance gene MexD was predominant in microbial communities of all cat fleas. We also performed epidemiological surveys of pathogens R. felis, A. baumannii, C. burnetii, and A. phagocytophilum among 165 cat fleas collected from seven provinces in China, while only the DNAs of R. felis (38/165, 23.03%) and C. burnetii (2/165, 1.21%) were obtained. The data provide new insight and understanding of flea intestinal microbiota and provided novel information for preventing and controlling fleas and their transmitted diseases.
Collapse
Affiliation(s)
- Ya-Li Wu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, China
| | - Shi-Feng Hu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, China
| | - Xue-Ling Zhang
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, China
| | - Hui-Mei Wang
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, China
| | - Hai-Yu Pan
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, China
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, China.
| | - Yuan-Ping Deng
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, 410128, China.
| |
Collapse
|
5
|
Liu L, Liu W, He Y, Liu Y, Wu H, Zhang Y, Zhang Q. Transcriptional Regulation of hmsB, A Temperature-Dependent Small RNA, by RovM in Yersinia pestis Biovar Microtus. Curr Microbiol 2023; 80:182. [PMID: 37046126 DOI: 10.1007/s00284-023-03293-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/04/2022] [Indexed: 04/14/2023]
Abstract
HmsB, a temperature-dependent sRNA, promotes biofilm formation by Yersinia pestis, but whether its own expression is regulated by other regulators is still poorly understood. RovM is a global regulator that activates biofilm formation but represses the virulence of Y. pestis. In this work, the results of primer extension, quantitative real-time PCR (qRT-PCR), and LacZ fusion demonstrated that RovM was able to activate hmsB expression. However, the results of electrophoretic mobility shift assay (EMSA) showed that His-RovM did not bind to the upstream DNA region of hmsB. Thus, RovM may exert its regulatory action on hmsB expression in an indirect manner. The data presented here enriched the content of the regulatory circuits that control gene expression in Y. pestis.
Collapse
Affiliation(s)
- Lei Liu
- Department of Transfusion Medicine, General Hospital of Central Theater Command of the PLA, Wuhan, 430070, Hubei, China
| | - Wanbing Liu
- Department of Transfusion Medicine, General Hospital of Central Theater Command of the PLA, Wuhan, 430070, Hubei, China
| | - Yingyu He
- Department of Transfusion Medicine, General Hospital of Central Theater Command of the PLA, Wuhan, 430070, Hubei, China
| | - Yan Liu
- Department of Transfusion Medicine, General Hospital of Central Theater Command of the PLA, Wuhan, 430070, Hubei, China
| | - Haisheng Wu
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, China
| | - Yiquan Zhang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, China.
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, 226006, Jiangsu, China.
| | - Qinwen Zhang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, 811602, China.
| |
Collapse
|
6
|
Nie W, Chen X, Tang Y, Xu N, Zhang H. Potential dsRNAs can be delivered to aquatic for defense pathogens. Front Bioeng Biotechnol 2022; 10:1066799. [PMID: 36466329 PMCID: PMC9712207 DOI: 10.3389/fbioe.2022.1066799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 10/29/2023] Open
Abstract
The use of antibiotics to facilitate resistance to pathogens in aquatic animals is a traditional method of pathogen control that is harmful to the environment and human health. RNAi is an emerging technology in which homologous small RNA molecules target specific genes for degradation, and it has already shown success in laboratory experiments. However, further research is needed before it can be applied in aquafarms. Many laboratories inject the dsRNA into aquatic animals for RNAi, which is obviously impractical and very time consuming in aquafarms. Therefore, to enable the use of RNAi on a large scale, the methods used to prepare dsRNA need to be continuously in order to be fast and efficient. At the same time, it is necessary to consider the issue of biological safety. This review summarizes the key harmful genes associated with aquatic pathogens (viruses, bacteria, and parasites) and provides potential targets for the preparation of dsRNA; it also lists some current examples where RNAi technology is used to control aquatic species, as well as how to deliver dsRNA to the target hydrobiont.
Collapse
Affiliation(s)
| | | | | | | | - Hao Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Nlp enhances biofilm formation by Yersinia pestis biovar microtus. Microb Pathog 2022; 169:105659. [PMID: 35760284 DOI: 10.1016/j.micpath.2022.105659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022]
Abstract
Biofilms formed by Yersinia pestis are able to attach to and block flea's proventriculus, which stimulates the transmission of this pathogen from fleas to mammals. In this study, we found that Nlp (YP1143) enhanced biofilm formation by Y. pestis and had regulatory effects on biofilm-associated genes at the transcriptional level. Phenotypic assays, including colony morphology assay, crystal violet staining, and Caenorhabditis elegans biofilm assay, disclosed that Nlp strongly promoted biofilm formation by Y. pestis. Further gene regulation assays showed that Nlp stimulated the expression of hmsHFRS, hmsCDE and hmsB, while had no regulatory effect on the expression of hmsT and hmsP at the transcriptional level. These findings promoted us to gain more understanding of the complex regulatory circuits controlling biofilm formation by Y. pestis.
Collapse
|
8
|
Gahlot DK, Wai SN, Erickson DL, Francis MS. Cpx-signalling facilitates Hms-dependent biofilm formation by Yersinia pseudotuberculosis. NPJ Biofilms Microbiomes 2022; 8:13. [PMID: 35351893 PMCID: PMC8964730 DOI: 10.1038/s41522-022-00281-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
Bacteria often reside in sessile communities called biofilms, where they adhere to a variety of surfaces and exist as aggregates in a viscous polymeric matrix. Biofilms are resistant to antimicrobial treatments, and are a major contributor to the persistence and chronicity of many bacterial infections. Herein, we determined that the CpxA-CpxR two-component system influenced the ability of enteropathogenic Yersinia pseudotuberculosis to develop biofilms. Mutant bacteria that accumulated the active CpxR~P isoform failed to form biofilms on plastic or on the surface of the Caenorhabditis elegans nematode. A failure to form biofilms on the worm surface prompted their survival when grown on the lawns of Y. pseudotuberculosis. Exopolysaccharide production by the hms loci is the major driver of biofilms formed by Yersinia. We used a number of molecular genetic approaches to demonstrate that active CpxR~P binds directly to the promoter regulatory elements of the hms loci to activate the repressors of hms expression and to repress the activators of hms expression. Consequently, active Cpx-signalling culminated in a loss of exopolysaccharide production. Hence, the development of Y. pseudotuberculosis biofilms on multiple surfaces is controlled by the Cpx-signalling, and at least in part this occurs through repressive effects on the Hms-dependent exopolysaccharide production.
Collapse
|
9
|
What do we know about osmoadaptation of Yersinia pestis? Arch Microbiol 2021; 204:11. [PMID: 34878588 DOI: 10.1007/s00203-021-02610-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
The plague agent Yersinia pestis mainly spreads among mammalian hosts and their associated fleas. Production of a successful mammal-flea-mammal life cycle implies that Y. pestis senses and responds to distinct cues in both host and vector. Among these cues, osmolarity is a fundamental parameter. The plague bacillus lives in a tightly regulated environment in the mammalian host, while osmolarity fluctuates in the flea gut (300-550 mOsM). Here, we review the mechanisms that enable Y. pestis to perceive fluctuations in osmolarity, as well as genomic plasticity and physiological adaptation of the bacterium to this stress.
Collapse
|
10
|
Bouvenot T, Dewitte A, Bennaceur N, Pradel E, Pierre F, Bontemps-Gallo S, Sebbane F. Interplay between Yersinia pestis and its flea vector in lipoate metabolism. THE ISME JOURNAL 2021; 15:1136-1149. [PMID: 33479491 PMCID: PMC8182812 DOI: 10.1038/s41396-020-00839-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/22/2020] [Accepted: 11/11/2020] [Indexed: 01/29/2023]
Abstract
To thrive, vector-borne pathogens must survive in the vector's gut. How these pathogens successfully exploit this environment in time and space has not been extensively characterized. Using Yersinia pestis (the plague bacillus) and its flea vector, we developed a bioluminescence-based approach and employed it to investigate the mechanisms of pathogenesis at an unprecedented level of detail. Remarkably, lipoylation of metabolic enzymes, via the biosynthesis and salvage of lipoate, increases the Y. pestis transmission rate by fleas. Interestingly, the salvage pathway's lipoate/octanoate ligase LplA enhances the first step in lipoate biosynthesis during foregut colonization but not during midgut colonization. Lastly, Y. pestis primarily uses lipoate provided by digestive proteolysis (presumably as lipoyl peptides) rather than free lipoate in blood, which is quickly depleted by the vector. Thus, spatial and temporal factors dictate the bacterium's lipoylation strategies during an infection, and replenishment of lipoate by digestive proteolysis in the vector might constitute an Achilles' heel that is exploited by pathogens.
Collapse
Affiliation(s)
- Typhanie Bouvenot
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Amélie Dewitte
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Nadia Bennaceur
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Elizabeth Pradel
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - François Pierre
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Sébastien Bontemps-Gallo
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Florent Sebbane
- grid.503422.20000 0001 2242 6780Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
11
|
Hinnebusch BJ, Jarrett CO, Bland DM. Molecular and Genetic Mechanisms That Mediate Transmission of Yersinia pestis by Fleas. Biomolecules 2021; 11:210. [PMID: 33546271 PMCID: PMC7913351 DOI: 10.3390/biom11020210] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
The ability to cause plague in mammals represents only half of the life history of Yersinia pestis. It is also able to colonize and produce a transmissible infection in the digestive tract of the flea, its insect host. Parallel to studies of the molecular mechanisms by which Y. pestis is able to overcome the immune response of its mammalian hosts, disseminate, and produce septicemia, studies of Y. pestis-flea interactions have led to the identification and characterization of important factors that lead to transmission by flea bite. Y. pestis adapts to the unique conditions in the flea gut by altering its metabolic physiology in ways that promote biofilm development, a common strategy by which bacteria cope with a nutrient-limited environment. Biofilm localization to the flea foregut disrupts normal fluid dynamics of blood feeding, resulting in regurgitative transmission. Many of the important genes, regulatory pathways, and molecules required for this process have been identified and are reviewed here.
Collapse
Affiliation(s)
- B. Joseph Hinnebusch
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (C.O.J.); (D.M.B.)
| | | | | |
Collapse
|
12
|
Jaworska K, Ludwiczak M, Murawska E, Raczkowska A, Brzostek K. The Regulator OmpR in Yersinia enterocolitica Participates in Iron Homeostasis by Modulating Fur Level and Affecting the Expression of Genes Involved in Iron Uptake. Int J Mol Sci 2021; 22:ijms22031475. [PMID: 33540627 PMCID: PMC7867234 DOI: 10.3390/ijms22031475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/02/2022] Open
Abstract
In this study, we found that the loss of OmpR, the response regulator of the two-component EnvZ/OmpR system, increases the cellular level of Fur, the master regulator of iron homeostasis in Y. enterocolitica. Furthermore, we demonstrated that transcription of the fur gene from the YePfur promoter is subject to negative OmpR-dependent regulation. Four putative OmpR-binding sites (OBSs) were indicated by in silico analysis of the fur promoter region, and their removal affected OmpR-dependent fur expression. Moreover, OmpR binds specifically to the predicted OBSs which exhibit a distinct hierarchy of binding affinity. Finally, the data demonstrate that OmpR, by direct binding to the promoters of the fecA, fepA and feoA genes, involved in the iron transport and being under Fur repressor activity, modulates their expression. It seems that the negative effect of OmpR on fecA and fepA transcription is sufficient to counteract the indirect, positive effect of OmpR resulting from decreasing the Fur repressor level. The expression of feoA was positively regulated by OmpR and this mode of action seems to be direct and indirect. Together, the expression of fecA, fepA and feoA in Y. enterocolitica has been proposed to be under a complex mode of regulation involving OmpR and Fur regulators.
Collapse
|
13
|
Byvalov AA, Konyshev IV, Uversky VN, Dentovskaya SV, Anisimov AP. Yersinia Outer Membrane Vesicles as Potential Vaccine Candidates in Protecting against Plague. Biomolecules 2020; 10:E1694. [PMID: 33353123 PMCID: PMC7766529 DOI: 10.3390/biom10121694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/03/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022] Open
Abstract
Despite the relatively low incidence of plague, its etiological agent, Yersinia pestis, is an exceptional epidemic danger due to the high infectivity and mortality of this infectious disease. Reports on the isolation of drug-resistant Y. pestis strains indicate the advisability of using asymmetric responses, such as phage therapy and vaccine prophylaxis in the fight against this problem. The current relatively effective live plague vaccine is not approved for use in most countries because of its ability to cause heavy local and system reactions and even a generalized infectious process in people with a repressed immune status or metabolic disorders, as well as lethal infection in some species of nonhuman primates. Therefore, developing alternative vaccines is of high priority and importance. However, until now, work on the development of plague vaccines has mainly focused on screening for the potential immunogens. Several investigators have identified the protective potency of bacterial outer membrane vesicles (OMVs) as a promising basis for bacterial vaccine candidates. This review is aimed at presenting these candidates of plague vaccine and the results of their analysis in animal models.
Collapse
Affiliation(s)
- Andrey A. Byvalov
- Komi Research Center, Laboratory of Microbial Physiology, Institute of Physiology, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia;
- Department of Biotechnology, Vyatka State University, 610000 Kirov, Russia
| | - Ilya V. Konyshev
- Komi Research Center, Laboratory of Microbial Physiology, Institute of Physiology, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia;
- Department of Biotechnology, Vyatka State University, 610000 Kirov, Russia
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Svetlana V. Dentovskaya
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia;
| | - Andrey P. Anisimov
- Laboratory for Plague Microbiology, Especially Dangerous Infections Department, State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia;
| |
Collapse
|
14
|
The Diverse Roles of the Global Transcriptional Regulator PhoP in the Lifecycle of Yersinia pestis. Pathogens 2020; 9:pathogens9121039. [PMID: 33322274 PMCID: PMC7764729 DOI: 10.3390/pathogens9121039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 11/18/2022] Open
Abstract
Yersinia pestis, the causative agent of plague, has a complex infectious cycle that alternates between mammalian hosts (rodents and humans) and insect vectors (fleas). Consequently, it must adapt to a wide range of host environments to achieve successful propagation. Y. pestis PhoP is a response regulator of the PhoP/PhoQ two-component signal transduction system that plays a critical role in the pathogen’s adaptation to hostile conditions. PhoP is activated in response to various host-associated stress signals detected by the sensor kinase PhoQ and mediates changes in global gene expression profiles that lead to cellular responses. Y. pestis PhoP is required for resistance to antimicrobial peptides, as well as growth under low Mg2+ and other stress conditions, and controls a number of metabolic pathways, including an alternate carbon catabolism. Loss of phoP function in Y. pestis causes severe defects in survival inside mammalian macrophages and neutrophils in vitro, and a mild attenuation in murine plague models in vivo, suggesting its role in pathogenesis. A Y. pestisphoP mutant also exhibits reduced ability to form biofilm and to block fleas in vivo, indicating that the gene is also important for establishing a transmissible infection in this vector. Additionally, phoP promotes the survival of Y. pestis inside the soil-dwelling amoeba Acanthamoeba castellanii, a potential reservoir while the pathogen is quiescent. In this review, we summarize our current knowledge on the mechanisms of PhoP-mediated gene regulation in Y. pestis and examine the significance of the roles played by the PhoP regulon at each stage of the Y. pestis life cycle.
Collapse
|
15
|
Putative Horizontally Acquired Genes, Highly Transcribed during Yersinia pestis Flea Infection, Are Induced by Hyperosmotic Stress and Function in Aromatic Amino Acid Metabolism. J Bacteriol 2020; 202:JB.00733-19. [PMID: 32205462 PMCID: PMC7221256 DOI: 10.1128/jb.00733-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/17/2020] [Indexed: 11/20/2022] Open
Abstract
Distinct gene repertoires are expressed during Y. pestis infection of its flea and mammalian hosts. The functions of many of these genes remain predicted or unknown, necessitating their characterization, as this may provide a better understanding of Y. pestis specialized biological adaptations to the discrete environments of its two hosts. This study provides functional context to adjacently clustered horizontally acquired genes predominantly expressed in the flea host by deciphering their fundamental processes with regard to (i) transcriptional organization, (ii) transcription activation signals, and (iii) biochemical function. Our data support a role for these genes in osmoadaptation and aromatic amino acid metabolism, highlighting these as preferential processes by which Y. pestis gene expression is modulated during flea infection. While alternating between insects and mammals during its life cycle, Yersinia pestis, the flea-transmitted bacterium that causes plague, regulates its gene expression appropriately to adapt to these two physiologically disparate host environments. In fleas competent to transmit Y. pestis, low-GC-content genes y3555, y3551, and y3550 are highly transcribed, suggesting that these genes have a highly prioritized role in flea infection. Here, we demonstrate that y3555, y3551, and y3550 are transcribed as part of a single polycistronic mRNA comprising the y3555, y3554, y3553, y355x, y3551, and y3550 genes. Additionally, y355x-y3551-y3550 compose another operon, while y3550 can be also transcribed as a monocistronic mRNA. The expression of these genes is induced by hyperosmotic salinity stress, which serves as an explicit environmental stimulus that initiates transcriptional activity from the predicted y3550 promoter. Y3555 has homology to pyridoxal 5′-phosphate (PLP)-dependent aromatic aminotransferases, while Y3550 and Y3551 are homologous to the Rid protein superfamily (YjgF/YER057c/UK114) members that forestall damage caused by reactive intermediates formed during PLP-dependent enzymatic activity. We demonstrate that y3551 specifically encodes an archetypal RidA protein with 2-aminoacrylate deaminase activity but Y3550 lacks Rid deaminase function. Heterologous expression of y3555 generates a critical aspartate requirement in a Salmonella entericaaspC mutant, while its in vitro expression, and specifically its heterologous coexpression with y3550, enhances the growth rate of an Escherichia coli ΔaspC ΔtyrB mutant in a defined minimal amino acid-supplemented medium. Our data suggest that the y3555, y3551, and y3550 genes operate cooperatively to optimize aromatic amino acid metabolism and are induced under conditions of hyperosmotic salinity stress. IMPORTANCE Distinct gene repertoires are expressed during Y. pestis infection of its flea and mammalian hosts. The functions of many of these genes remain predicted or unknown, necessitating their characterization, as this may provide a better understanding of Y. pestis specialized biological adaptations to the discrete environments of its two hosts. This study provides functional context to adjacently clustered horizontally acquired genes predominantly expressed in the flea host by deciphering their fundamental processes with regard to (i) transcriptional organization, (ii) transcription activation signals, and (iii) biochemical function. Our data support a role for these genes in osmoadaptation and aromatic amino acid metabolism, highlighting these as preferential processes by which Y. pestis gene expression is modulated during flea infection.
Collapse
|
16
|
Dewitte A, Bouvenot T, Pierre F, Ricard I, Pradel E, Barois N, Hujeux A, Bontemps-Gallo S, Sebbane F. A refined model of how Yersinia pestis produces a transmissible infection in its flea vector. PLoS Pathog 2020; 16:e1008440. [PMID: 32294143 PMCID: PMC7185726 DOI: 10.1371/journal.ppat.1008440] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/27/2020] [Accepted: 02/27/2020] [Indexed: 12/25/2022] Open
Abstract
In flea-borne plague, blockage of the flea's foregut by Yersinia pestis hastens transmission to the mammalian host. Based on microscopy observations, we first suggest that flea blockage results from primary infection of the foregut and not from midgut colonization. In this model, flea infection is characterized by the recurrent production of a mass that fills the lumen of the proventriculus and encompasses a large number of Y. pestis. This recurrence phase ends when the proventricular cast is hard enough to block blood ingestion. We further showed that ymt (known to be essential for flea infection) is crucial for cast production, whereas the hmsHFRS operon (known to be essential for the formation of the biofilm that blocks the gut) is needed for cast consolidation. By screening a library of mutants (each lacking a locus previously known to be upregulated in the flea gut) for biofilm formation, we found that rpiA is important for flea blockage but not for colonization of the midgut. This locus may initially be required to resist toxic compounds within the proventricular cast. However, once the bacterium has adapted to the flea, rpiA helps to form the biofilm that consolidates the proventricular cast. Lastly, we used genetic techniques to demonstrate that ribose-5-phosphate isomerase activity (due to the recent gain of a second copy of rpiA (y2892)) accentuated blockage but not midgut colonization. It is noteworthy that rpiA is an ancestral gene, hmsHFRS and rpiA2 were acquired by the recent ancestor of Y. pestis, and ymt was acquired by Y. pestis itself. Our present results (i) highlight the physiopathological and molecular mechanisms leading to flea blockage, (ii) show that the role of a gene like rpiA changes in space and in time during an infection, and (iii) emphasize that evolution is a gradual process punctuated by sudden jumps.
Collapse
Affiliation(s)
- Amélie Dewitte
- Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017- CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Typhanie Bouvenot
- Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017- CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - François Pierre
- Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017- CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Isabelle Ricard
- Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017- CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Elizabeth Pradel
- Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017- CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Nicolas Barois
- Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017- CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Anaïs Hujeux
- Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017- CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Sébastien Bontemps-Gallo
- Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017- CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Florent Sebbane
- Univ. Lille, Inserm, CNRS, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017- CIIL - Center for Infection and Immunity of Lille, Lille, France
- * E-mail:
| |
Collapse
|
17
|
Zhang M, Kang J, Wu B, Qin Y, Huang L, Zhao L, Mao L, Wang S, Yan Q. Comparative transcriptome and phenotype analysis revealed the role and mechanism of ompR in the virulence of fish pathogenic Aeromonas hydrophila. Microbiologyopen 2020; 9:e1041. [PMID: 32282134 PMCID: PMC7349151 DOI: 10.1002/mbo3.1041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/16/2022] Open
Abstract
Aeromonas hydrophila B11 strain was isolated from diseased Anguilla japonica, which had caused severe gill ulcers in farmed eel, causing huge economic losses. EnvZ‐OmpR is a model two‐component system in the bacteria and is widely used in the research of signal transduction and gene transcription regulation. In this study, the ompR of A. hydrophila B11 strain was first silenced by RNAi technology. The role of ompR in the pathogenicity of A. hydrophila B11 was investigated by analyzing both the bacterial comparative transcriptome and phenotype. The qRT‐PCR results showed that the expression of ompR in the ompR‐RNAi strain decreased by 97% compared with the wild‐type strain. The virulence test showed that after inhibition of the ompR expression, the LD50 of A. hydrophila B11 decreased by an order of magnitude, suggesting that ompR is involved in the regulation of bacterial virulence. Comparative transcriptome analysis showed that the expression of ompR can directly regulate the expression of several important virulence‐related genes, such as the bacterial type II secretion system; moreover, ompR expression also regulates the expression of multiple genes related to bacterial chemotaxis, motility, adhesion, and biofilm formation. Further studies on the phenotype of A. hydrophila B11 and ompR‐RNAi also confirmed that the downregulation of ompR expression can decrease bacterial chemotaxis, adhesion, and biofilm formation.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Jianping Kang
- Fujian Fisheries Technology Extension Center, Fuzhou, China
| | - Bin Wu
- Fujian Fisheries Technology Extension Center, Fuzhou, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China.,Fujian Province Key Laboratory of Special Aquatic Formula Feed, Fujian Tianma Science and Technology Group Co., Ltd., Fuqing, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Leilei Mao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Suyun Wang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| |
Collapse
|
18
|
Nieckarz M, Kaczor P, Jaworska K, Raczkowska A, Brzostek K. Urease Expression in Pathogenic Yersinia enterocolitica Strains of Bio-Serotypes 2/O:9 and 1B/O:8 Is Differentially Regulated by the OmpR Regulator. Front Microbiol 2020; 11:607. [PMID: 32322248 PMCID: PMC7156557 DOI: 10.3389/fmicb.2020.00607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/19/2020] [Indexed: 12/31/2022] Open
Abstract
Yersinia enterocolitica exhibits a dual lifestyle, existing as both a saprophyte and a pathogen colonizing different niches within a host organism. OmpR has been recognized as a regulator that controls the expression of genes involved in many different cellular processes and the virulence of pathogenic bacteria. Here, we have examined the influence of OmpR and varying temperature (26°C vs. 37°C) on the cytoplasmic proteome of Y. enterocolitica Ye9N (bio-serotype 2/O:9, low pathogenicity). Differential label-free quantitative proteomic analysis indicated that OmpR affects the cellular abundance of a number of proteins including subunits of urease, an enzyme that plays a significant role in acid tolerance and the pathogenicity of Y. enterocolitica. The impact of OmpR on the expression of urease under different growth conditions was studied in more detail by comparing urease activity and the transcription of ure genes in Y. enterocolitica strains Ye9N and Ye8N (highly pathogenic bio-serotype 1B/O:8). Urease expression was higher in strain Ye9N than in Ye8N and in cells grown at 26°C compared to 37°C. However, low pH, high osmolarity and the presence of urea did not have a clear effect on urease expression in either strain. Further analysis showed that OmpR participates in the positive regulation of three transcriptional units encoding the multi-subunit urease (ureABC, ureEF, and ureGD) in strain Ye9N, but this was not the case in strain Ye8N. Binding of OmpR to the ureABC and ureEF promoter regions was confirmed using an electrophoretic mobility shift assay, suggesting that this factor plays a direct role in regulating the transcription of these operons. In addition, we determined that OmpR modulates the expression of a ureR-like gene encoding a putative regulator of the ure gene cluster, but in the opposite manner, i.e., positively in Ye9N and negatively in Ye8N. These findings provide some novel insights into the function of OmpR in adaptation strategies of Y. enterocolitica.
Collapse
Affiliation(s)
| | | | | | | | - Katarzyna Brzostek
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|