1
|
Wencker FDR, Lyon SE, Breaker RR. Evidence that ribosomal protein bS21 is a component of the OLE ribonucleoprotein complex. RNA Biol 2025; 22:1-14. [PMID: 40322971 PMCID: PMC12054373 DOI: 10.1080/15476286.2025.2491842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
OLE RNAs represent a large and highly structured noncoding RNA (ncRNA) class that is mostly found in Gram-positive extremophiles and/or anaerobes of the Bacillota phylum. These ~600-nucleotide RNAs are among the most structurally complex and well-conserved large ncRNAs whose precise biochemical functions remain to be established. In Halalkalibacterium halodurans, OLE RNA is involved in the adaptation to various unfavourable growth conditions, including exposure to cold (≤20°C), ethanol (≥3% [v/v]), excess Mg2+ (≥4 mM), and non-glucose carbon/energy sources. OLE forms a ribonucleoprotein (RNP) complex with the OLE-associated proteins A, B and C, which are known to be essential for OLE RNP complex function in this species. Bacteria lacking OLE RNA (Δole) or a functional OLE RNP complex exhibit growth defects under the stresses listed above. Here, we demonstrate that ribosomal protein bS21 is a natural component of the OLE RNP complex and we map its precise RNA binding site. The presence of bS21 results in a conformational change in OLE RNA resembling a k-turn substructure previously reported to be relevant to the function of the OLE RNP complex. Mutational disruption of the bS21 protein or its OLE RNA binding site results in growth inhibition under cold and ethanol stress to the same extent as the deletion of the gene for OLE RNA. These findings are consistent with the hypothesis that bS21 is a biologically relevant component of the OLE RNP complex under a subset of stresses managed by the OLE RNP complex.
Collapse
Affiliation(s)
- Freya D. R. Wencker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Seth E. Lyon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Ronald R. Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
2
|
Wang L, Xie J, Gong T, Wu H, Tu Y, Peng X, Shang S, Jia X, Ma H, Zou J, Xu S, Zheng X, Zhang D, Liu Y, Zhang C, Luo Y, Huang Z, Shao B, Ying B, Cheng Y, Guo Y, Lai Y, Huang D, Liu J, Wei Y, Sun S, Zhou X, Su Z. Cryo-EM reveals mechanisms of natural RNA multivalency. Science 2025; 388:545-550. [PMID: 40080543 DOI: 10.1126/science.adv3451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
Homo-oligomerization of biological macromolecules leads to functional assemblies that are critical to understanding various cellular processes. However, RNA quaternary structures have rarely been reported. Comparative genomics analysis has identified RNA families containing hundreds of sequences that adopt conserved secondary structures and likely fold into complex three-dimensional structures. In this study, we used cryo-electron microscopy (cryo-EM) to determine structures from four RNA families, including ARRPOF and OLE forming dimers and ROOL and GOLLD forming hexameric, octameric, and dodecameric nanostructures, at 2.6- to 4.6-angstrom resolutions. These homo-oligomeric assemblies reveal a plethora of structural motifs that contribute to RNA multivalency, including kissing-loop, palindromic base-pairing, A-stacking, metal ion coordination, pseudoknot, and minor-groove interactions. These results provide the molecular basis of intermolecular interactions driving RNA multivalency with potential functional relevance.
Collapse
Affiliation(s)
- Liu Wang
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | - Tao Gong
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hao Wu
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Yifan Tu
- The Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xin Peng
- The Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Sitong Shang
- The Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinyu Jia
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haiyun Ma
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Zou
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sheng Xu
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Xin Zheng
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dong Zhang
- The Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chong Zhang
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yongbo Luo
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zirui Huang
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Shao
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Cheng
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yingqiang Guo
- Cardiovascular Surgery Research Laboratory, Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Lai
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianquan Liu
- The Key Laboratory for Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuquan Wei
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Siqi Sun
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Xuedong Zhou
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital; The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Fernando CM, Breaker RR. Bioinformatic prediction of proteins relevant to functions of the bacterial OLE ribonucleoprotein complex. mSphere 2024; 9:e0015924. [PMID: 38771028 PMCID: PMC11332333 DOI: 10.1128/msphere.00159-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
OLE (ornate, large, extremophilic) RNAs are members of a noncoding RNA class present in many Gram-positive, extremophilic bacteria. The large size, complex structure, and extensive sequence conservation of OLE RNAs are characteristics consistent with the hypothesis that they likely function as ribozymes. The OLE RNA representative from Halalkalibacterium halodurans is known to localize to the phospholipid membrane and requires at least three essential protein partners: OapA, OapB, and OapC. However, the precise biochemical functions of this unusual ribonucleoprotein (RNP) complex remain unknown. Genetic disruption of OLE RNA or its partners revealed that the complex is beneficial under diverse stress conditions. To search for additional links between OLE RNA and other cellular components, we used phylogenetic profiling to identify proteins that are either correlated or anticorrelated with the presence of OLE RNA in various bacterial species. This analysis revealed strong correlations between the essential protein-binding partners of OLE RNA and organisms that carry the ole gene. Similarly, proteins involved in sporulation are correlated, suggesting a potential role for the OLE RNP complex in spore formation. Intriguingly, the Mg2+ transporter MpfA is strongly anticorrelated with OLE RNA. Evidence indicates that MpfA is structurally related to OapA and therefore MpfA may serve as a functional replacement for some contributions otherwise performed by the OLE RNP complex in species that lack this device. Indeed, OLE RNAs might represent an ancient RNA class that enabled primitive organisms to sense and respond to major cellular stresses.IMPORTANCEOLE (ornate, large, extremophilic) RNAs were first reported nearly 20 years ago, and they represent one of the largest and most intricately folded noncoding RNA classes whose biochemical function remains to be established. Other RNAs with similar size, structural complexity, and extent of sequence conservation have proven to catalyze chemical transformations. Therefore, we speculate that OLE RNAs likewise operate as ribozymes and that they might catalyze a fundamental reaction that has persisted since the RNA World era-a time before the emergence of proteins in evolution. To seek additional clues regarding the function of OLE RNA, we undertook a computational effort to identify potential protein components of the OLE ribonucleoprotein (RNP) complex or other proteins that have functional links to this device. This analysis revealed known protein partners and several additional proteins that might be physically or functionally linked to the OLE RNP complex. Finally, we identified a Mg2+ transporter protein, MpfA, that strongly anticorrelates with the OLE RNP complex. This latter result suggests that MpfA might perform at least some functions that are like those carried out by the OLE RNP complex.
Collapse
Affiliation(s)
- Chrishan M. Fernando
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Ronald R. Breaker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Lyon SE, Wencker FDR, Fernando CM, Harris KA, Breaker RR. Disruption of the bacterial OLE RNP complex impairs growth on alternative carbon sources. PNAS NEXUS 2024; 3:pgae075. [PMID: 38415217 PMCID: PMC10898510 DOI: 10.1093/pnasnexus/pgae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Ornate, large, extremophilic (OLE) RNAs comprise a class of large noncoding RNAs in bacteria whose members form a membrane-associated ribonucleoprotein (RNP) complex. This complex facilitates cellular adaptation to diverse stresses such as exposure to cold, short-chain alcohols, and elevated Mg2+ concentrations. Here, we report additional phenotypes exhibited by Halalkalibacterium halodurans (formerly called Bacillus halodurans) strains lacking functional OLE RNP complexes. Genetic disruption of the complex causes restricted growth compared to wild-type cells when cultured in minimal media (MM) wherein glucose is replaced with alternative carbon/energy sources. Genetic suppressor selections conducted in glutamate MM yielded isolates that carry mutations in or near genes relevant to Mn2+ homeostasis (ykoY and mntB), phosphate homeostasis (phoR), and putative multidrug resistance (bmrCD). These functional links between OLE RNA, carbon/energy management, and other fundamental processes including protein secretion are consistent with the hypothesis that the OLE RNP complex is a major contributor to cellular adaptation to unfavorable growth conditions.
Collapse
Affiliation(s)
- Seth E Lyon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Freya D R Wencker
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06511, USA
| | - Chrishan M Fernando
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Kimberly A Harris
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Ronald R Breaker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06511, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
5
|
Breaker RR, Harris KA, Lyon SE, Wencker FDR, Fernando CM. Evidence that OLE RNA is a component of a major stress-responsive ribonucleoprotein particle in extremophilic bacteria. Mol Microbiol 2023; 120:324-340. [PMID: 37469248 DOI: 10.1111/mmi.15129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
OLE RNA is a ~600-nucleotide noncoding RNA present in many Gram-positive bacteria that thrive mostly in extreme environments, including elevated temperature, salt, and pH conditions. The precise biochemical functions of this highly conserved RNA remain unknown, but it forms a ribonucleoprotein (RNP) complex that localizes to cell membranes. Genetic disruption of the RNA or its essential protein partners causes reduced cell growth under various stress conditions. These phenotypes include sensitivity to short-chain alcohols, cold intolerance, reduced growth on sub-optimal carbon sources, and intolerance of even modest concentrations of Mg2+ . Thus, many bacterial species appear to employ OLE RNA as a component of an intricate RNP apparatus to monitor fundamental cellular processes and make physiological and metabolic adaptations. Herein we hypothesize that the OLE RNP complex is functionally equivalent to the eukaryotic TOR complexes, which integrate signals from various diverse pathways to coordinate processes central to cell growth, replication, and survival.
Collapse
Affiliation(s)
- Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA
| | - Kimberly A Harris
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Seth E Lyon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Freya D R Wencker
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA
| | - Chrishan M Fernando
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Lyon SE, Harris KA, Odzer NB, Wilkins SG, Breaker RR. Ornate, large, extremophilic (OLE) RNA forms a kink turn necessary for OapC protein recognition and RNA function. J Biol Chem 2022; 298:102674. [PMID: 36336078 PMCID: PMC9723947 DOI: 10.1016/j.jbc.2022.102674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022] Open
Abstract
Ornate, large, extremophilic (OLE) RNAs represent a class of noncoding RNAs prevalent in Gram-positive, extremophilic/anaerobic bacterial species. OLE RNAs (∼600 nt), whose precise biochemical functions remain mysterious, form an intricate secondary structure interspersed with regions of highly conserved nucleotides. In the alkali-halophilic bacterium Bacillus halodurans, OLE RNA is a component of a ribonucleoprotein (RNP) complex involving at least two proteins named OapA and OapB, but additional components may exist that could point to functional roles for the RNA. Disruption of the genes for either OLE RNA, OapA, or OapB result in the inability of cells to overcome cold, alcohol, or Mg2+ stresses. In the current study, we used in vivo crosslinking followed by OLE RNA isolation to identify the protein YbxF as a potential additional partner in the OLE RNP complex. Notably, a mutation in the gene for this same protein was also reported to be present in a strain wherein the complex is nonfunctional. The B. halodurans YbxF (herein renamed OapC) is homologous to a bacterial protein earlier demonstrated to bind kink turn (k-turn) RNA structural motifs. In vitro RNA-protein binding assays reveal that OLE RNA forms a previously unrecognized k-turn that serves as the natural binding site for YbxF/OapC. Moreover, B. halodurans cells carrying OLE RNAs with disruptive mutations in the k-turn exhibit phenotypes identical to cells lacking functional OLE RNP complexes. These findings reveal that the YbxF/OapC protein of B. halodurans is important for the formation of a functional OLE RNP complex.
Collapse
Affiliation(s)
- Seth E Lyon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Kimberly A Harris
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Nicole B Odzer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Sarah G Wilkins
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Ronald R Breaker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA; Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
7
|
Gerovac M, Vogel J, Smirnov A. The World of Stable Ribonucleoproteins and Its Mapping With Grad-Seq and Related Approaches. Front Mol Biosci 2021; 8:661448. [PMID: 33898526 PMCID: PMC8058203 DOI: 10.3389/fmolb.2021.661448] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Macromolecular complexes of proteins and RNAs are essential building blocks of cells. These stable supramolecular particles can be viewed as minimal biochemical units whose structural organization, i.e., the way the RNA and the protein interact with each other, is directly linked to their biological function. Whether those are dynamic regulatory ribonucleoproteins (RNPs) or integrated molecular machines involved in gene expression, the comprehensive knowledge of these units is critical to our understanding of key molecular mechanisms and cell physiology phenomena. Such is the goal of diverse complexomic approaches and in particular of the recently developed gradient profiling by sequencing (Grad-seq). By separating cellular protein and RNA complexes on a density gradient and quantifying their distributions genome-wide by mass spectrometry and deep sequencing, Grad-seq charts global landscapes of native macromolecular assemblies. In this review, we propose a function-based ontology of stable RNPs and discuss how Grad-seq and related approaches transformed our perspective of bacterial and eukaryotic ribonucleoproteins by guiding the discovery of new RNA-binding proteins and unusual classes of noncoding RNAs. We highlight some methodological aspects and developments that permit to further boost the power of this technique and to look for exciting new biology in understudied and challenging biological models.
Collapse
Affiliation(s)
- Milan Gerovac
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Alexandre Smirnov
- UMR 7156—Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| |
Collapse
|
8
|
Structure of a bacterial OapB protein with its OLE RNA target gives insights into the architecture of the OLE ribonucleoprotein complex. Proc Natl Acad Sci U S A 2021; 118:2020393118. [PMID: 33619097 PMCID: PMC7936274 DOI: 10.1073/pnas.2020393118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacterial noncoding RNAs (ncRNAs) play key roles in many biological processes including gene regulation, RNA processing and modification, and protein synthesis and translocation. OLE RNAs, found in many Gram-positive species, are one of the largest highly structured ncRNA classes whose biochemical functions remain unknown. In Bacillus halodurans, OLE RNAs interact with at least two proteins, OapA and OapB, which are required to assemble a functional OLE ribonucleoprotein (RNP) complex contributing to cellular responses to certain environmental stresses. We established X-ray structural models that reveal the sequence elements and tertiary structural features of OLE RNA that are critical for its specific recognition by OapB, which will aid future exploration of the biological and biochemical functions of the unusual OLE RNP complex. The OLE (ornate, large, and extremophilic) RNA class is one of the most complex and well-conserved bacterial noncoding RNAs known to exist. This RNA is known to be important for bacterial responses to stress caused by short-chain alcohols, cold, and elevated Mg2+ concentrations. These biological functions have been shown to require the formation of a ribonucleoprotein (RNP) complex including at least two protein partners: OLE-associated protein A (OapA) and OLE-associated protein B (OapB). OapB directly binds OLE RNA with high-affinity and specificity and is believed to assist in assembling the functional OLE RNP complex. To provide the atomic details of OapB–OLE RNA interaction and to potentially reveal previously uncharacterized protein–RNA interfaces, we determined the structure of OapB from Bacillus halodurans alone and in complex with an OLE RNA fragment at resolutions of 1.0 Å and 2.0 Å, respectively. The structure of OapB exhibits a K-shaped overall architecture wherein its conserved KOW motif and additional unique structural elements of OapB form a bipartite RNA-binding surface that docks to the P13 hairpin and P12.2 helix of OLE RNA. These high-resolution structures elucidate the molecular contacts used by OapB to form a stable RNP complex and explain the high conservation of sequences and structural features at the OapB–OLE RNA-binding interface. These findings provide insight into the role of OapB in the assembly and biological function of OLE RNP complex and can guide the exploration of additional possible OLE RNA-binding interactions present in OapB.
Collapse
|
9
|
Widner DL, Harris KA, Corey L, Breaker RR. Bacillus halodurans OapB forms a high-affinity complex with the P13 region of the noncoding RNA OLE. J Biol Chem 2020; 295:9326-9334. [PMID: 32376692 DOI: 10.1074/jbc.ra120.012676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/28/2020] [Indexed: 11/06/2022] Open
Abstract
Noncoding RNAs (ncRNAs) longer than 200 nucleotides are rare in bacteria, likely because bacterial genomes are under strong evolutionary pressures to maintain a small genome size. Of the long ncRNAs unique to bacteria, the OLE (ornate, large, extremophilic) RNA class is among the largest and most structurally complex. OLE RNAs form a ribonucleoprotein (RNP) complex by partnering with at least two proteins, OapA and OapB, that directly bind OLE RNA. The biochemical functions of the OLE RNP complex remain unknown, but are required for proper adaptation to certain environmental stresses, such as cold temperatures, short chain alcohols, and high magnesium concentrations. In the current study, we used electrophoretic mobility shift assays to examine the binding of OLE RNA fragments by OapB and found that OapB recognizes a small subregion of OLE RNA, including stem P13, with a dissociation constant (KD ) of ∼700 pm Analyses with mutated RNA constructs, and the application of in vitro selection, revealed that strong binding of OLE RNA by OapB requires a stem containing a precisely located single-nucleotide bulge and a GNRA tetraloop. Although the vast majority of bacteria with the ole gene also have the oapB gene, there are many whose genomes contain oapB but lack ole, suggesting that OapB has other RNA partners in some species that might exhibit similar structural features.
Collapse
Affiliation(s)
- Danielle L Widner
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Kimberly A Harris
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA.,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Lukas Corey
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Ronald R Breaker
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, USA .,Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA.,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|