1
|
Christel S, Carrell AA, Hochanadel LH, Villalobos Solis MI, Abraham PE, Jawdy SS, Chaves JE, Engle NL, Berhane TK, Yao T, Chen JG, Muchero W, Tschaplinski TJ, Cregger MA, Michener JK. Catabolic pathway acquisition by rhizosphere bacteria readily enables growth with a root exudate component but does not affect root colonization. mBio 2025; 16:e0301624. [PMID: 39660924 PMCID: PMC11708038 DOI: 10.1128/mbio.03016-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Horizontal gene transfer (HGT) is a fundamental evolutionary process that plays a key role in bacterial evolution. The likelihood of a successful transfer event is expected to depend on the precise balance of costs and benefits resulting from pathway acquisition. Most experimental analyses of HGT have focused on phenotypes that have large fitness benefits under appropriate selective conditions, such as antibiotic resistance. However, many examples of HGT involve phenotypes that are predicted to provide smaller benefits, such as the ability to catabolize additional carbon sources. We have experimentally simulated the consequences of one such HGT event in the laboratory, studying the effects of transferring a pathway for catabolism of the plant-derived aromatic compound salicyl alcohol between rhizosphere isolates from the Pseudomonas genus. We find that pathway acquisition enables rapid catabolism of salicyl alcohol with only minor disruptions to the existing metabolic and regulatory networks of the new host. However, this new catabolic potential does not confer a measurable fitness advantage during competitive growth in the rhizosphere. We conclude that the phenotype of salicyl alcohol catabolism is readily transferable but is selectively neutral under environmentally relevant conditions. We propose that this condition is common and that HGT of many pathways will be self-limiting because the selective benefits are small.IMPORTANCEHorizontal gene transfer (HGT) is a key process in microbial evolution, but the factors limiting HGT are poorly understood. Aside from the rather unique scenario of antibiotic resistance, the evolutionary benefits of pathway acquisition are still unclear. To experimentally test the effects of pathway acquisition, we transferred a pathway for catabolism of a plant-derived aromatic compound between soil bacteria isolated from the roots of poplar trees and determined the resulting phenotypic and fitness effects. We found that pathway acquisition allowed bacteria to grow using the plant-derived compound in the laboratory, but that this new phenotype did not provide an advantage when the bacteria were reinoculated onto plant roots. These results suggest that the benefits of pathway acquisition may be small when measured under ecologically-relevant conditions. From an engineering perspective, efforts to alter microbial community composition in situ by manipulating catabolic pathways or nutrient availability will be challenging when gaining access to a new niche does not provide a benefit.
Collapse
Affiliation(s)
- Stephan Christel
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Alyssa A. Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Leah H. Hochanadel
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Paul E. Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Sara S. Jawdy
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Julie E. Chaves
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Nancy L. Engle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Tao Yao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Melissa A. Cregger
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Joshua K. Michener
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
2
|
Azubuike CC, Allemann MN, Michener JK. Microbial assimilation of lignin-derived aromatic compounds and conversion to value-added products. Curr Opin Microbiol 2021; 65:64-72. [PMID: 34775172 DOI: 10.1016/j.mib.2021.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/03/2022]
Abstract
Lignin is an abundant and sustainable source of aromatic compounds that can be converted to value-added products. However, lignin is underutilized, since depolymerization produces a complex mixture of aromatic compounds that is difficult to convert to a single product. Microbial conversion of mixed aromatic substrates provides a potential solution to this conversion challenge. Recent advances have expanded the range of lignin-derived aromatic substrates that can be assimilated and demonstrated efficient conversion via central metabolism to new potential products. The development of additional non-model microbial hosts and genetic tools for these hosts have accelerated engineering efforts. However, yields with real depolymerized lignin are still low, and additional work will be required to achieve viable conversion processes.
Collapse
Affiliation(s)
| | - Marco N Allemann
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Joshua K Michener
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
| |
Collapse
|
3
|
Pyridoxal and α-ketoglutarate independently improve function of Saccharomyces cerevisiae Thi5 in the metabolic network of Salmonella enterica. J Bacteriol 2021; 204:e0045021. [PMID: 34662241 DOI: 10.1128/jb.00450-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial metabolism is often considered modular, but metabolic engineering studies have shown that transferring pathways, or modules, between organisms is not always straightforward. The Thi5-dependent pathway(s) for synthesis of the pyrimidine moiety of thiamine from Saccharomyces cerevisiae and Legionella pneumophila functioned differently when incorporated into the metabolic network of Salmonella enterica. Function of Thi5 from Saccharomyces cerevisiae (ScThi5) required modification of the underlying metabolic network, while LpThi5 functioned with the native network. Here we probe the metabolic requirements for heterologous function of ScThi5 and report a strong genetic and physiological evidence for a connection between alpha-ketoglutarate (αKG) levels and ScThi5 function. The connection was built with two classes of genetic suppressors linked to metabolic flux or metabolite pool changes. Further, direct modulation of nitrogen assimilation through nutritional or genetic modification implicated αKG levels in Thi5 function. Exogenous pyridoxal similarly improved ScThi5 function in S. enterica. Finally, directly increasing αKG and PLP with supplementation improved function of both ScThi5 and relevant variants of Thi5 from Legionella pneumophila (LpThi5). The data herein suggest structural differences between ScThi5 and LpThi5 impact their level of function in vivo and implicate αKG in supporting function of the Thi5 pathway when placed in the heterologous metabolic network of S. enterica. IMPORTANCE Thiamine biosynthesis is a model metabolic node that has been used to extend our understanding of metabolic network structure and individual enzyme function. The requirements for in vivo function of the Thi5-dependent pathway found in Legionella and yeast are poorly characterized. Here we suggest that αKG modulates function of the Thi5 pathway in S. enterica and provide evidence that structural variation between ScThi5 and LpThi5 contribute to their functional differences in a Salmonella enterica host.
Collapse
|
4
|
Challenges and opportunities in biological funneling of heterogeneous and toxic substrates beyond lignin. Curr Opin Biotechnol 2021; 73:1-13. [PMID: 34242853 DOI: 10.1016/j.copbio.2021.06.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022]
Abstract
Significant developments in the understanding and manipulation of microbial metabolism have enabled the use of engineered biological systems toward a more sustainable energy and materials economy. While developments in metabolic engineering have primarily focused on the conversion of carbohydrates, substantial opportunities exist for using these same principles to extract value from more heterogeneous and toxic waste streams, such as those derived from lignin, biomass pyrolysis, or industrial waste. Funneling heterogeneous substrates from these streams toward valuable products, termed biological funneling, presents new challenges in balancing multiple catabolic pathways competing for shared cellular resources and engineering against perturbation from toxic substrates. Solutions to many of these challenges have been explored within the field of lignin valorization. This perspective aims to extend beyond lignin to highlight the challenges and discuss opportunities for use of biological systems to upgrade previously inaccessible waste streams.
Collapse
|
5
|
Yaguchi AL, Lee SJ, Blenner MA. Synthetic Biology towards Engineering Microbial Lignin Biotransformation. Trends Biotechnol 2021; 39:1037-1064. [PMID: 33712323 DOI: 10.1016/j.tibtech.2021.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 01/19/2023]
Abstract
Lignin is the second most abundant biopolymer on earth and is a major source of aromatic compounds; however, it is vastly underutilized owing to its heterogeneous and recalcitrant nature. Microorganisms have evolved efficient mechanisms that overcome these challenges to depolymerize lignin and funnel complex mixtures of lignin-derived monomers to central metabolites. This review summarizes recent synthetic biology efforts to enhance lignin depolymerization and aromatic catabolism in bacterial and fungal hosts for the production of both natural and novel bioproducts. We also highlight difficulties in engineering complex phenotypes and discuss the outlook for the future of lignin biological valorization.
Collapse
Affiliation(s)
- Allison L Yaguchi
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 South Palmetto Boulevard, Clemson, SC 29634, USA
| | - Stephen J Lee
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 South Palmetto Boulevard, Clemson, SC 29634, USA
| | - Mark A Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 South Palmetto Boulevard, Clemson, SC 29634, USA; Current address: Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA.
| |
Collapse
|