1
|
Wan Q, Zhai S, Chen M, Xu M, Guo S. Comparative phenotype and transcriptome analysis revealed the role of ferric uptake regulator (Fur) in the virulence of Vibrio harveyi isolated from diseased American eel (Anguilla rostrata). JOURNAL OF FISH DISEASES 2024; 47:e13931. [PMID: 38373044 DOI: 10.1111/jfd.13931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/20/2024]
Abstract
Vibrio harveyi is commonly found in salt and brackish water and is recognized as a serious bacterial pathogen in aquaculture worldwide. In this study, we cloned the ferric uptake regulator (fur) gene from V. harveyi wild-type strain HA_1, which was isolated from diseased American eels (Anguilla rostrata) and has a length of 450 bp, encoding 149 amino acids. Then, a mutant strain, HA_1-Δfur, was constructed through homologous recombination of a suicide plasmid (pCVD442). The HA_1-Δfur mutant exhibited weaker biofilm formation and swarming motility, and 18-fold decrease (5.5%) in virulence to the American eels; compared to the wild-type strain, the mutant strain showed time and diameter differences in growth and haemolysis, respectively. Additionally, the adhesion ability of the mutant strain was significantly decreased. Moreover, there were 15 different biochemical indicators observed between the two strains. Transcriptome analysis revealed that 875 genes were differentially expressed in the Δfur mutant, with 385 up-regulated and 490 down-regulated DEGs. GO and KEGG enrichment analysis revealed that, compared to the wild-type strain, the type II and type VI secretion systems (T2SS and T6SS), amino acid synthesis and transport and energy metabolism pathways were significantly down-regulated, but the ABC transporters and biosynthesis of siderophore group non-ribosomal peptides pathways were up-regulated in the Δfur strain. The qRT-PCR results further confirmed that DEGs responsible for amino acid transport and energy metabolism were positively regulated, but DEGs involved in iron acquisition were negatively regulated in the Δfur strain. These findings suggest that the virulence of the Δfur strain was significantly decreased, which is closely related to phenotype changing and gene transcript regulation.
Collapse
Affiliation(s)
- Qijuan Wan
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Shaowei Zhai
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Minxia Chen
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Ming Xu
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Songlin Guo
- Fisheries College of Jimei University/Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| |
Collapse
|
2
|
Tang B, Wang B, Xu Z, Hou R, Zhang M, Chen X, Liu Y, Liu F. Iron ions regulate antifungal HSAF biosynthesis in Lysobacter enzymogenes by manipulating the DNA-binding affinity of the ferric uptake regulator (Fur). Microbiol Spectr 2023; 11:e0061723. [PMID: 37737630 PMCID: PMC10581043 DOI: 10.1128/spectrum.00617-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/05/2023] [Indexed: 09/23/2023] Open
Abstract
Heat-stable antifungal factor (HSAF), produced by Lysobacter enzymogenes OH11, is regarded as a potential biological pesticide due to its broad-spectrum antifungal activity and novel mode of action. However, the current production of HSAF is low and cannot meet the requirements for large-scale production. Herein, we discovered that iron ions greatly promoted HSAF production, and the ferric uptake regulator (Fur) was involved in this regulatory process. Fur was also found to participate in the regulation of iron homeostasis in OH11 via the classic inhibition mechanism of Holo-Fur. Furthermore, Fur was collectively observed to directly bind to the promoter of the HSAF biosynthesis gene, and its DNA-binding affinity was attenuated by the addition of iron ions in vitro and in vivo. Its regulatory mechanism followed the uncommon inhibition mechanism of Apo-Fur. In summary, Fur exhibited a bidirectional regulatory mechanism in OH11. This study reveals a novel regulatory mechanism whereby Fur upregulates the biosynthesis of secondary metabolites. These findings contribute to the improvement of HSAF production and may guide its development into biological pesticides. IMPORTANCE HSAF possesses potent and broad antifungal activity with a novel mode of action. The HSAF yield is critical for fermentation production. In this study, iron ions were found to increase HSAF production, and the specific mechanism was elaborated. These results provide theoretical support for genetic transformation to improve HSAF yield, supporting its development into biological pesticides.
Collapse
Affiliation(s)
- Bao Tang
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, Jiangsu, China
- School of Life Sciences, Jiangsu University, Zhengjiang, Jiangsu, China
| | - Bo Wang
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, Jiangsu, China
| | - Zhizhou Xu
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, Jiangsu, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Rouxian Hou
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, Jiangsu, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Min Zhang
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, Jiangsu, China
| | - Xian Chen
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, Jiangsu, China
| | - Youzhou Liu
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, Jiangsu, China
| | - Fengquan Liu
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Institute of Plant Protection, Nanjing, Jiangsu, China
- College of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
3
|
Abstract
The ferric uptake regulator (Fur) protein is the founding member of the FUR superfamily of metalloregulatory proteins that control metal homeostasis in bacteria. FUR proteins regulate metal homeostasis in response to the binding of iron (Fur), zinc (Zur), manganese (Mur), or nickel (Nur). FUR family proteins are generally dimers in solution, but the DNA-bound complex can involve a single dimer, a dimer-of-dimers, or an extended array of bound protein. Elevated FUR levels due to changes in cell physiology increase DNA occupancy and may also kinetically facilitate protein dissociation. Interactions between FUR proteins and other regulators are commonplace, often including cooperative and competitive DNA-binding interactions within the regulatory region. Further, there are many emerging examples of allosteric regulators that interact directly with FUR family proteins. Here, we focus on newly uncovered examples of allosteric regulation by diverse Fur antagonists (Escherichia coli YdiV/SlyD, Salmonella enterica EIIANtr, Vibrio parahaemolyticus FcrX, Acinetobacter baumannii BlsA, Bacillus subtilis YlaN, and Pseudomonas aeruginosa PacT) as well as one Zur antagonist (Mycobacterium bovis CmtR). Small molecules and metal complexes may also serve as regulatory ligands, with examples including heme binding to Bradyrhizobium japonicum Irr and 2-oxoglutarate binding to Anabaena FurA. How these protein-protein and protein-ligand interactions act in conjunction with regulatory metal ions to facilitate signal integration is an active area of investigation.
Collapse
Affiliation(s)
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Yang H, Song H, Zhang J, Li W, Han Q, Zhang W. Proteomic analysis reveals the adaptation of Vibrio splendidus to an iron deprivation condition. Appl Microbiol Biotechnol 2023; 107:2533-2546. [PMID: 36922441 DOI: 10.1007/s00253-023-12460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
Vibrio splendidus is a ubiquitous Gram-negative marine bacterium that causes diseases within a wide range of marine cultured animals. Since iron deprivation is the frequent situation that the bacteria usually encounter, we aimed to explore the effect of iron deprivation on the proteomic profile of V. splendidus in the present study. There were 425 differentially expressed proteins (DEPs) responded to the iron deprivation condition. When the cells were grown under iron deprivation condition, the oxidation‒reduction processes, single-organism metabolic processes, the catalytic activity, and binding activity were downregulated, while the transport process, membrane cell component, and ion binding activity were upregulated, apart from the iron uptake processes. Kyoto Encyclopedia of Genes and Genomes analysis showed that various metabolism pathways, biosynthesis pathways, energy generation pathways of tricarboxylic acid cycle, and oxidative phosphorylation were downregulated, while various degradation pathways and several special metabolism pathways were upregulated. The proteomic profiles of cells at a OD600 ≈ 0.4 grown under iron deprivation condition showed high similarity to that of the cells at a OD600 ≈ 0.8 grown without iron chelator 2,2'-bipyridine. Correspondingly, the protease activity, the activity of autoinducer 2 (AI-2), and indole content separately catalyzed by LuxS and TnaA, were measured to verify the proteomic data. Our present study gives basic information on the global protein profiles of V. splendidus grown under iron deprivation condition and suggests that the iron deprivation condition cause the cell growth enter a state of higher cell density earlier. KEY POINTS: • Adaptation of V. splendidus to iron deprivation was explored by proteomic analysis. • GO and KEGG of DEPs under different iron levels or cell densities were determined. • Iron deprivation caused the cell enter a state of higher cell density earlier.
Collapse
Affiliation(s)
- Huirong Yang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Zhejiang Province, Ningbo, 315832, People's Republic of China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Beilun District, 169 Qixingnan RoadZhejiang Province, Ningbo, 315832, People's Republic of China
| | - Huimin Song
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Zhejiang Province, Ningbo, 315832, People's Republic of China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Beilun District, 169 Qixingnan RoadZhejiang Province, Ningbo, 315832, People's Republic of China
| | - Jinxia Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Zhejiang Province, Ningbo, 315832, People's Republic of China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Beilun District, 169 Qixingnan RoadZhejiang Province, Ningbo, 315832, People's Republic of China
| | - Weisheng Li
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Zhejiang Province, Ningbo, 315832, People's Republic of China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Beilun District, 169 Qixingnan RoadZhejiang Province, Ningbo, 315832, People's Republic of China
| | - Qingxi Han
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Zhejiang Province, Ningbo, 315832, People's Republic of China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Beilun District, 169 Qixingnan RoadZhejiang Province, Ningbo, 315832, People's Republic of China
| | - Weiwei Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Zhejiang Province, Ningbo, 315832, People's Republic of China.
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Beilun District, 169 Qixingnan RoadZhejiang Province, Ningbo, 315832, People's Republic of China.
| |
Collapse
|
5
|
Zhang J, Cui X, Zhang M, Bai B, Yang Y, Fan S. The antibacterial mechanism of perilla rosmarinic acid. Biotechnol Appl Biochem 2022; 69:1757-1764. [PMID: 34490944 DOI: 10.1002/bab.2248] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022]
Abstract
Rosmarinic acid (RosA) is a phenolic acid compound extracted from perilla. In this experiment, the Oxford cup method was used to verify the antibacterial activity of PerillaRosA against Escherichia coli, Staphylococcus aureus, Salmonella, and Bacillus subtilis. By polyacrylamide gel electrophoresis, the effect of RosA on bacterial nucleic acid and bacterial Na+ /K+ -ATP-ase activity, and scanning electron microscope to exploration of its antibacterial mechanism preliminarily. The results showed that RosA had antibacterial properties against all four bacteria. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of E. coli were 0.8 and 0.9 mg/ml, respectively. The MIC and MBC of Salmonella were 0.9 and 1.0 mg/ml, respectively. The MIC and MBC of S. aureus and B. subtilis were both 1.0 and 1.1 mg/ml. RosA has the bacteriostasis function, which can destroy bacterial cells and cell proteins and inhibit the activity of Na+ /K+ -ATP-ase in cells.
Collapse
Affiliation(s)
- Jinhua Zhang
- College of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, China
| | - Xin Cui
- College of Life Science, Shanxi University, Taiyuan, China
| | - Min Zhang
- College of Life Science, Shanxi University, Taiyuan, China
| | - Baoqing Bai
- College of Life Science, Shanxi University, Taiyuan, China
| | - Yukun Yang
- College of Life Science, Shanxi University, Taiyuan, China
| | - Sanhong Fan
- College of Life Science, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, China
| |
Collapse
|
6
|
Aduse-Opoku J, Joseph S, Devine DA, Marsh PD, Curtis MA. Molecular basis for avirulence of spontaneous variants of Porphyromonas gingivalis: genomic analysis of strains W50, BE1 and BR1. Mol Oral Microbiol 2022; 37:122-132. [PMID: 35622827 PMCID: PMC9328147 DOI: 10.1111/omi.12373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022]
Abstract
The periodontal pathogen Porphyromonas gingivalis is genetically heterogeneous. However, the spontaneous generation of phenotypically different sub‐strains has also been reported. McKee et al. (1988) cultured P. gingivalis W50 in a chemostat during investigations into the growth and properties of this bacterium. Cell viability on blood agar plates revealed two types of non‐pigmenting variants, W50 beige (BE1), and W50 brown (BR1), in samples grown in a high‐hemin medium after day 7, and the population of these variants increased to approximately 25% of the total counts by day 21. W50, BE1 and BR1 had phenotypic alterations in pigmentation, reduced protease activity and haemagglutination and susceptibility to complement killing. Furthermore, the variants exhibited significant attenuation in a mouse model of virulence. Other investigators showed that in BE1, the predominant extracellular Arg‐gingipain was RgpB, and no reaction with an A‐lipopolysaccharide‐specific MAb 1B5 (Collinson et al., 1998; Slaney et al., 2006). In order to determine the genetic basis for these phenotypic properties, we performed hybrid DNA sequence long reads using Oxford Nanopore and the short paired‐end DNA sequence reads of Illumina HiSeq platforms to generate closed circular genomes of the parent and variants. Comparative analysis indicated loss of intact kgp in the 20 kb region of the hagA‐kgp locus in the two variants BE1 and BR1. Deletions in hagA led to smaller open reading frames in the variants, and BR1 had incurred a major chromosomal DNA inversion. Additional minor changes to the genomes of both variants were also observed. Given the importance of Kgp and HagA to protease activity and haemagglutination, respectively, in this bacterium, genomic changes at this locus may account for most of the phenotypic alterations of the variants. The homologous and repetitive nature of hagA and kgp and the features at the inverted junctions are indicative of specific and stable homologous recombination events, which may underlie the genetic heterogeneity of this species.
Collapse
Affiliation(s)
- Joseph Aduse-Opoku
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London
| | - Susan Joseph
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London
| | - Deirdre A Devine
- Division of Oral Biology, School of Dentistry, University of Leeds
| | - Philip D Marsh
- Division of Oral Biology, School of Dentistry, University of Leeds
| | - Michael A Curtis
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London
| |
Collapse
|