1
|
Patil RS, Sharma S, Bhaskarwar AV, Nambiar S, Bhat NA, Koppolu MK, Bhukya H. TetR and OmpR family regulators in natural product biosynthesis and resistance. Proteins 2025; 93:38-71. [PMID: 37874037 DOI: 10.1002/prot.26621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023]
Abstract
This article provides a comprehensive review and sequence-structure analysis of transcription regulator (TR) families, TetR and OmpR/PhoB, involved in specialized secondary metabolite (SSM) biosynthesis and resistance. Transcription regulation is a fundamental process, playing a crucial role in orchestrating gene expression to confer a survival advantage in response to frequent environmental stress conditions. This process, coupled with signal sensing, enables bacteria to respond to a diverse range of intra and extracellular signals. Thus, major bacterial signaling systems use a receptor domain to sense chemical stimuli along with an output domain responsible for transcription regulation through DNA-binding. Sensory and output domains on a single polypeptide chain (one component system, OCS) allow response to stimuli by allostery, that is, DNA-binding affinity modulation upon signal presence/absence. On the other hand, two component systems (TCSs) allow cross-talk between the sensory and output domains as they are disjoint and transmit information by phosphorelay to mount a response. In both cases, however, TRs play a central role. Biosynthesis of SSMs, which includes antibiotics, is heavily regulated by TRs as it diverts the cell's resources towards the production of these expendable compounds, which also have clinical applications. These TRs have evolved to relay information across specific signals and target genes, thus providing a rich source of unique mechanisms to explore towards addressing the rapid escalation in antimicrobial resistance (AMR). Here, we focus on the TetR and OmpR family TRs, which belong to OCS and TCS, respectively. These TR families are well-known examples of regulators in secondary metabolism and are ubiquitous across different bacteria, as they also participate in a myriad of cellular processes apart from SSM biosynthesis and resistance. As a result, these families exhibit higher sequence divergence, which is also evident from our bioinformatic analysis of 158 389 and 77 437 sequences from TetR and OmpR family TRs, respectively. The analysis of both sequence and structure allowed us to identify novel motifs in addition to the known motifs responsible for TR function and its structural integrity. Understanding the diverse mechanisms employed by these TRs is essential for unraveling the biosynthesis of SSMs. This can also help exploit their regulatory role in biosynthesis for significant pharmaceutical, agricultural, and industrial applications.
Collapse
Affiliation(s)
- Rachit S Patil
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Siddhant Sharma
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Aditya V Bhaskarwar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Souparnika Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Niharika A Bhat
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Mani Kanta Koppolu
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Hussain Bhukya
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| |
Collapse
|
2
|
He S, Wang W, Wang W, Hu H, Xu P, Tang H. Microbial production of cis,cis-muconic acid from aromatic compounds in engineered Pseudomonas. Synth Syst Biotechnol 2023; 8:536-545. [PMID: 37637202 PMCID: PMC10448021 DOI: 10.1016/j.synbio.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023] Open
Abstract
Industrial expansion has led to environmental pollution by xenobiotic compounds like polycyclic aromatic hydrocarbons and monoaromatic hydrocarbons. Pseudomonas spp. have broad metabolic potential for degrading aromatic compounds. The objective of this study was to develop a "biological funneling" strategy based on genetic modification to convert complex aromatic compounds into cis,cis-muconate (ccMA) using Pseudomonas putida B6-2 and P. brassicacearum MPDS as biocatalysts. The engineered strains B6-2 (B6-2ΔcatBΔsalC) and MPDS (MPDSΔsalC(pUCP18k-catA)) thrived with biphenyl or naphthalene as the sole carbon source and produced ccMA, attaining molar conversions of 95.3% (ccMA/biphenyl) and 100% (ccMA/naphthalene). Under mixed substrates, B6-2ΔcatBΔsalC grew on biphenyl as a carbon source and transformed ccMA from non-growth substrates benzoate or salicylate to obtain higher product concentration. Inserting exogenous clusters like bedDC1C2AB and xylCMAB allowed B6-2 recombinant strains to convert benzene and toluene to ccMA. In mixed substrates, constructed consortia of engineered strains B6-2 and MPDS specialized in catabolism of biphenyl and naphthalene; the highest molar conversion rate of ccMA from mixed substrates was 85.2% when B6-2ΔcatBΔsalC was added after 24 h of MPDSΔsalC(pUCP18k-catA) incubation with biphenyl and naphthalene. This study provides worthwhile insights into efficient production of ccMA from aromatic hydrocarbons by reusing complex pollutants.
Collapse
Affiliation(s)
- Siyang He
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Weiwei Wang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Weidong Wang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Haiyang Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
3
|
Mutanda I, Sun J, Jiang J, Zhu D. Bacterial membrane transporter systems for aromatic compounds: Regulation, engineering, and biotechnological applications. Biotechnol Adv 2022; 59:107952. [PMID: 35398204 DOI: 10.1016/j.biotechadv.2022.107952] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/20/2022] [Accepted: 04/02/2022] [Indexed: 12/13/2022]
Abstract
Aromatic compounds are ubiquitous in nature; they are the building blocks of abundant lignin, and constitute a substantial proportion of synthetic chemicals and organic pollutants. Uptake and degradation of aromatic compounds by bacteria have relevance in bioremediation, bio-based plastic recycling, and microbial conversion of lignocellulosic biomass into high-value commodity chemicals. While remarkable progress has been achieved in understanding aromatic metabolism in biodegraders, the membrane transporter systems responsible for uptake and efflux of aromatic compounds and their degradation products are still poorly understood. Membrane transporters are responsible for the initial recognition, uptake, and efflux of aromatic compounds; thus, in addition to controlling influx and efflux, the transporter system also forms part of stress tolerance mechanisms through excreting toxic metabolites. This review discusses significant advancements in our understanding of the nature and identity of the bacterial membrane transporter systems for aromatics, the molecular and structural basis of substrate recognition, mechanisms of translocation, functional regulation, and biotechnological applications. Most of these developments were enabled through the availability of crystal structures, advancements in computational biophysics, genome sequencing, omics studies, bioinformatics, and synthetic biology. We provide a comprehensive overview of recently reported knowledge on aromatic transporter systems in bacteria, point gaps in our understanding of the underlying translocation mechanisms, highlight existing limitations in harnessing transporter systems in synthetic biology applications, and suggest future research directions.
Collapse
Affiliation(s)
- Ishmael Mutanda
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianxiong Jiang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
4
|
Towards robust Pseudomonas cell factories to harbour novel biosynthetic pathways. Essays Biochem 2021; 65:319-336. [PMID: 34223620 PMCID: PMC8314020 DOI: 10.1042/ebc20200173] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/01/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Biotechnological production in bacteria enables access to numerous valuable chemical compounds. Nowadays, advanced molecular genetic toolsets, enzyme engineering as well as the combinatorial use of biocatalysts, pathways, and circuits even bring new-to-nature compounds within reach. However, the associated substrates and biosynthetic products often cause severe chemical stress to the bacterial hosts. Species of the Pseudomonas clade thus represent especially valuable chassis as they are endowed with multiple stress response mechanisms, which allow them to cope with a variety of harmful chemicals. A built-in cell envelope stress response enables fast adaptations that sustain membrane integrity under adverse conditions. Further, effective export machineries can prevent intracellular accumulation of diverse harmful compounds. Finally, toxic chemicals such as reactive aldehydes can be eliminated by oxidation and stress-induced damage can be recovered. Exploiting and engineering these features will be essential to support an effective production of natural compounds and new chemicals. In this article, we therefore discuss major resistance strategies of Pseudomonads along with approaches pursued for their targeted exploitation and engineering in a biotechnological context. We further highlight strategies for the identification of yet unknown tolerance-associated genes and their utilisation for engineering next-generation chassis and finally discuss effective measures for pathway fine-tuning to establish stable cell factories for the effective production of natural compounds and novel biochemicals.
Collapse
|
5
|
Wang W, Li Q, Zhang L, Cui J, Yu H, Wang X, Ouyang X, Tao F, Xu P, Tang H. Genetic mapping of highly versatile and solvent-tolerant Pseudomonas putida B6-2 (ATCC BAA-2545) as a 'superstar' for mineralization of PAHs and dioxin-like compounds. Environ Microbiol 2021; 23:4309-4325. [PMID: 34056829 DOI: 10.1111/1462-2920.15613] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/25/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and dioxin-like compounds, including sulfur, nitrogen and oxygen heterocycles, are widespread and toxic environmental pollutants. A wide variety of microorganisms capable of growing with aromatic polycyclic compounds are essential for bioremediation of the contaminated sites and the Earth's carbon cycle. Here, cells of Pseudomonas putida B6-2 (ATCC BAA-2545) grown in the presence of biphenyl (BP) are able to simultaneously degrade PAHs and their derivatives, even when they are present as mixtures, and tolerate high concentrations of extremely toxic solvents. Genetic analysis of the 6.37 Mb genome of strain B6-2 reveals coexistence of gene clusters responsible for central catabolic systems of aromatic compounds and for solvent tolerance. We used functional transcriptomics and proteomics to identify the candidate genes associated with catabolism of BP and a mixture of BP, dibenzofuran, dibenzothiophene and carbazole. Moreover, we observed dynamic changes in transcriptional levels with BP, including in metabolic pathways of aromatic compounds, chemotaxis, efflux pumps and transporters potentially involved in adaptation to PAHs. This study on the highly versatile activities of strain B6-2 suggests it to be a potentially useful model for bioremediation of polluted sites and for investigation of biochemical, genetic and evolutionary aspects of Pseudomonas.
Collapse
Affiliation(s)
- Weiwei Wang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qinggang Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Lige Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Cui
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Yu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyu Wang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xingyu Ouyang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|