1
|
Reynolds MF. New insights into the signal transduction mechanism of O 2-sensing FixL and other biological heme-based sensor proteins. J Inorg Biochem 2024; 259:112642. [PMID: 38908215 DOI: 10.1016/j.jinorgbio.2024.112642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Recent structural and biophysical studies of O2-sensing FixL, NO-sensing soluble guanylate cyclase, and other biological heme-based sensing proteins have begun to reveal the details of their molecular mechanisms and shed light on how nature regulates important biological processes such as nitrogen fixation, blood pressure, neurotransmission, photosynthesis and circadian rhythm. The O2-sensing FixL protein from S. meliloti, the eukaryotic NO-sensing protein sGC, and the CO-sensing CooA protein from R. rubrum transmit their biological signals through gas-binding to the heme domain of these proteins, which inhibits or activates the regulatory, enzymatic domain. These proteins appear to propagate their signal by specific structural changes in the heme sensor domain initiated by the appropriate gas binding to the heme, which is then propagated through a coiled-coil linker or other domain to the regulatory, enzymatic domain that sends out the biological signal. The current understanding of the signal transduction mechanisms of O2-sensing FixL, NO-sensing sGC, CO-sensing CooA and other biological heme-based gas sensing proteins and their mechanistic themes are discussed, with recommendations for future work to further understand this rapidly growing area of biological heme-based gas sensors.
Collapse
Affiliation(s)
- Mark F Reynolds
- Department of Chemistry and Biochemistry, Saint Joseph's University, 5600 City Avenue, Philadelphia, PA 19131, United States of America.
| |
Collapse
|
2
|
Abstract
To investigate gasocrine signaling, there is a critical need to identify gasoreceptors for the essential gasotransmitters like O2. Based on existing scientific literature, I propose that heme-based O2 sensors, featuring diverse signaling domains across genera, should be explicitly designated as O2 gasoreceptors. Acknowledging that O2 gasoreceptors are likely to belong to multiple protein classes with diverse signaling domains and pathways will facilitate a comprehensive search for O2 gasoreceptors in all organisms and across every cell type. This approach will broaden the investigation beyond specialized tissues or cells, encompassing a systemic exploration.
Collapse
Affiliation(s)
- Savani Anbalagan
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
3
|
Matilla MA, Genova R, Martín-Mora D, Maaβ S, Becher D, Krell T. The Cellular Abundance of Chemoreceptors, Chemosensory Signaling Proteins, Sensor Histidine Kinases, and Solute Binding Proteins of Pseudomonas aeruginosa Provides Insight into Sensory Preferences and Signaling Mechanisms. Int J Mol Sci 2023; 24:ijms24021363. [PMID: 36674894 PMCID: PMC9864684 DOI: 10.3390/ijms24021363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/12/2023] Open
Abstract
Chemosensory pathways and two-component systems are important bacterial signal transduction systems. In the human pathogen Pseudomonas aeruginosa, these systems control many virulence traits. Previous studies showed that inorganic phosphate (Pi) deficiency induces virulence. We report here the abundance of chemosensory and two-component signaling proteins of P. aeruginosa grown in Pi deficient and sufficient media. The cellular abundance of chemoreceptors differed greatly, since a 2400-fold difference between the most and least abundant receptors was observed. For many chemoreceptors, their amount varied with the growth condition. The amount of chemoreceptors did not correlate with the magnitude of chemotaxis to their cognate chemoeffectors. Of the four chemosensory pathways, proteins of the Che chemotaxis pathway were most abundant and showed little variation in different growth conditions. The abundance of chemoreceptors and solute binding proteins indicates a sensing preference for amino acids and polyamines. There was an excess of response regulators over sensor histidine kinases in two-component systems. In contrast, ratios of the response regulators CheY and CheB to the histidine kinase CheA of the Che pathway were all below 1, indicative of different signaling mechanisms. This study will serve as a reference for exploring sensing preferences and signaling mechanisms of other bacteria.
Collapse
Affiliation(s)
- Miguel A. Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | - Roberta Genova
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | - David Martín-Mora
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | - Sandra Maaβ
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, D-17489 Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, D-17489 Greifswald, Germany
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
- Correspondence: ; Tel.: +34-958-526579
| |
Collapse
|
4
|
Stuffle EC, Suzuki T, Orillard E, Watts KJ. The Aer2 chemoreceptor from Vibrio vulnificus is a tri-PAS-heme oxygen sensor. Mol Microbiol 2023; 119:59-73. [PMID: 36420630 PMCID: PMC10107281 DOI: 10.1111/mmi.15007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
The marine pathogen Vibrio vulnificus senses and responds to environmental stimuli via two chemosensory systems and 42-53 chemoreceptors. Here, we present an analysis of the V. vulnificus Aer2 chemoreceptor, VvAer2, which is the first V. vulnificus chemoreceptor to be characterized. VvAer2 is related to the Aer2 receptors of other gammaproteobacteria, but uncharacteristically contains three PAS domains (PAS1-3), rather than one or two. Using an E. coli chemotaxis hijack assay, we determined that VvAer2, like other Aer2 receptors, senses and responds to O2 . All three VvAer2 PAS domains bound pentacoordinate b-type heme and exhibited similar O2 affinities. PAS2 and PAS3 both stabilized O2 via conserved Iβ-Trp residues, but PAS1, which was easily oxidized in vitro, was unaffected by Iβ-Trp replacement. Our results support a model in which PAS1 is largely dispensable for O2 -mediated signaling, whereas PAS2 modulates PAS3 signaling, and PAS3 signals to the downstream domains. Each PAS domain appeared to be positionally optimized, because PAS swapping caused altered signaling properties, and neither PAS1 nor PAS2 could replace PAS3. Our findings strengthen previous conclusions that Aer2 receptors are O2 sensors, but with distinct N-terminal domain arrangements that facilitate, modulate and tune responses based on environmental signals.
Collapse
Affiliation(s)
- Erwin C Stuffle
- Division of Microbiology and Molecular Genetics, Loma Linda University, California, Loma Linda, USA
| | - Tise Suzuki
- Division of Biochemistry, Loma Linda University, California, Loma Linda, USA
| | - Emilie Orillard
- College of Health Sciences, Western University of Health Sciences, California, Pomona, USA
| | - Kylie J Watts
- Division of Microbiology and Molecular Genetics, Loma Linda University, California, Loma Linda, USA
| |
Collapse
|
5
|
Hadjidemetriou K, Kaur S, Cassidy CK, Zhang P. Mechanisms of E. coli chemotaxis signaling pathways visualized using cryoET and computational approaches. Biochem Soc Trans 2022; 50:1595-1605. [PMID: 36421737 PMCID: PMC9788364 DOI: 10.1042/bst20220191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022]
Abstract
Chemotaxis signaling pathways enable bacteria to sense and respond to their chemical environment and, in some species, are critical for lifestyle processes such as biofilm formation and pathogenesis. The signal transduction underlying chemotaxis behavior is mediated by large, highly ordered protein complexes known as chemosensory arrays. For nearly two decades, cryo-electron tomography (cryoET) has been used to image chemosensory arrays, providing an increasingly detailed understanding of their structure and function. In this mini-review, we provide an overview of the use of cryoET to study chemosensory arrays, including imaging strategies, key results, and outstanding questions. We further discuss the application of molecular modeling and simulation techniques to complement structure determination efforts and provide insight into signaling mechanisms. We close the review with a brief outlook, highlighting promising future directions for the field.
Collapse
Affiliation(s)
| | - Satinder Kaur
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - C. Keith Cassidy
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - Peijun Zhang
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, U.K
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, U.K
| |
Collapse
|
6
|
New Roles for HAMP Domains: the Tri-HAMP Region of Pseudomonas aeruginosa Aer2 Controls Receptor Signaling and Cellular Localization. J Bacteriol 2022; 204:e0022522. [PMID: 35916529 PMCID: PMC9487508 DOI: 10.1128/jb.00225-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Aer2 chemoreceptor from Pseudomonas aeruginosa is an O2 sensor involved in stress responses, virulence, and tuning the behavior of the chemotaxis (Che) system. Aer2 is the sole receptor of the Che2 system. It is soluble, but membrane associated, and forms complexes at the cell pole during stationary phase. The domain arrangement of Aer2 is unusual, with a PAS sensing domain sandwiched between five HAMP domains, followed by a C-terminal kinase-control output domain. The first three HAMP domains form a poly-HAMP chain N-terminal to the PAS sensing domain. HAMP domains are often located between signal input and output domains, where they transduce signals. Given that HAMP1 to 3 reside N-terminal to the input-output pathway, we undertook a systematic examination of their function in Aer2. We found that HAMP1 to 3 influence PAS signaling over a considerable distance, as the majority of HAMP1, 2 and 3 mutations, and deletions of helical phase stutters, led to nonresponsive signal-off or off-biased receptors. PAS signal-on lesions that mimic activated Aer2 also failed to override N-terminal HAMP signal-off replacements. This indicates that HAMP1 to 3 are critical coupling partners for PAS signaling and likely function as a cohesive unit and moveable scaffold to correctly orient and poise PAS dimers for O2-mediated signaling in Aer2. HAMP1 additionally controlled the clustering and polar localization of Aer2 in P. aeruginosa. Localization was not driven by HAMP1 charge, and HAMP1 signal-off mutants still localized. Employing HAMP as a clustering and localization determinant, as well as a facilitator of PAS signaling, are newly recognized roles for HAMP domains. IMPORTANCE P. aeruginosa is an opportunistic pathogen that interprets environmental stimuli via 26 chemoreceptors that signal through 4 distinct chemosensory systems. The second chemosensory system, Che2, contains a receptor named Aer2 that senses O2 and mediates stress responses and virulence and tunes chemotactic behavior. Aer2 is membrane associated, but soluble, and has three N-terminal HAMP domains (HAMP1 to 3) that reside outside the signal input-output pathway of Aer2. In this study, we determined that HAMP1 to 3 facilitate O2-dependent signaling from the PAS sensing domain and that HAMP1 controls the formation of Aer2-containing polar foci in P. aeruginosa. Both of these are newly recognized roles for HAMP domains that may be applicable to other non-signal-transducing HAMP domains and poly-HAMP chains.
Collapse
|
7
|
Abstract
In this study, we provide the first characterization of a chemoreceptor from Leptospira interrogans, the cause of leptospirosis. This receptor is related to the Aer2 receptors that have been studied in other bacteria. In those organisms, Aer2 is a soluble receptor with one or two PAS-heme domains and signals in response to O2 binding. In contrast, L. interrogans Aer2 (LiAer2) is an unusual membrane-bound Aer2 with a periplasmic domain and three cytoplasmic PAS-heme domains. Each of the three PAS domains bound b-type heme via conserved Eη-His residues. They also bound O2 and CO with similar affinities to each other and other PAS-heme domains. However, all three PAS domains were uniquely hexacoordinate in the deoxy-heme state, whereas other Aer2-PAS domains are pentacoordinate. Similar to other Aer2 receptors, LiAer2 could hijack the E. coli chemotaxis pathway but only when it was expressed with an E. coli high-abundance chemoreceptor. Unexpectedly, the response was inverted relative to classic Aer2 receptors. That is, LiAer2 caused E. coli to tumble (it was signal-on) in the absence of O2 and to stop tumbling in its presence. Thus, an endogenous ligand in the deoxy-heme state was correlated with signal-on LiAer2, and its displacement for gas-binding turned signaling off. This response also occurred in a soluble version of LiAer2 lacking the periplasmic domain, transmembrane (TM) region, and first two PAS domains, meaning that PAS3 alone was sufficient for O2-mediated control. Future studies are needed to understand the unique signaling mechanisms of this unusual Aer2 receptor. IMPORTANCE Leptospira interrogans, the cause of the zoonotic infection leptospirosis, is found in soil and water contaminated with animal urine. L. interrogans survives in complex environments with the aid of 12 chemoreceptors, none of which has been explicitly studied. In this study, we characterized the first L. interrogans chemoreceptor, LiAer2, and reported its unique characteristics. LiAer2 is membrane-bound, has three cytoplasmic PAS-heme domains that each bound hexacoordinate b-type heme and O2 turned LiAer2 signaling off. An endogenous ligand in the deoxy-heme state was correlated with signal-on LiAer2 and its displacement for O2-binding turned signaling off. Our study corroborated previous findings that Aer2 receptors are O2 sensors, but also demonstrated that they do not all function the same way.
Collapse
|
8
|
The Response Regulator FlmD Regulates Biofilm Formation in Comamonas testosteroni through the Transcriptional Activator SoxR. Microorganisms 2022; 10:microorganisms10020356. [PMID: 35208812 PMCID: PMC8880074 DOI: 10.3390/microorganisms10020356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
Biofilm formation is a survival strategy by which microorganisms adapt to environmental challenges. It is regulated by various signals, such as the second messenger c-di-GMP. We previously found that the Flm chemosensory pathway could respond to chemical signals and regulate biofilm formation. This regulation is independent of c-di-GMP. A previous study revealed that the response regulator FlmD is involved in biofilm formation; however, how chemical signals are transmitted downstream of FlmD remained unclear. In the present study, transcriptome analysis and gel shift assay reveal that SoxR, a transcriptional activator of the efflux transporter acrAB-tolC operon, mediates the downstream signaling of FlmD. Phosphorylated FlmD interacts with SoxR and disrupts the interaction between SoxR and the acrAB-tolC operon. It causes a decrease in the expression of acrAB-tolC operon. The downregulation of acrA, acrB, or tolC gene expression results in making less biofilm formation. In conclusion, we identified that the transcription regulator SoxR plays a role in the c-di-GMP independent regulation of biofilm formation in Comamonas testosteroni.
Collapse
|
9
|
Orillard E, Anaya S, Johnson MS, Watts KJ. Oxygen-Induced Conformational Changes in the PAS-Heme Domain of the Pseudomonas aeruginosa Aer2 Receptor. Biochemistry 2021; 60:2610-2622. [PMID: 34383467 DOI: 10.1021/acs.biochem.1c00452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Aer2 receptor from Pseudomonas aeruginosa has an O2-binding PAS-heme domain that stabilizes O2 via a Trp residue in the distal heme pocket. Trp rotates ∼90° to bond with the ligand and initiate signaling. Although the isolated PAS domain is monomeric, both in solution and in a cyanide-bound crystal structure, an unliganded structure forms a dimer. An overlay of the two structures suggests possible signaling motions but also predicts implausible clashes at the dimer interface when the ligand is bound. Moreover, in a full-length Aer2 dimer, PAS is sandwiched between multiple N- and C-terminal HAMP domains, which would feasibly restrict PAS motions. To explore the PAS dimer interface and signal-induced motions in full-length Aer2, we introduced Cys substitutions and used thiol-reactive probes to examine in vivo accessibility and residue proximities under both aerobic and anaerobic conditions. In vivo, PAS dimers were retained in full-length Aer2 in the presence and absence of O2, and the dimer interface was consistent with the isolated PAS dimer structure. O2-mediated changes were also consistent with structural predictions in which the PAS N-terminal caps move apart and the C-terminal DxT region moves closer together. The DxT motif links PAS to the C-terminal HAMP domains and was critical for PAS-HAMP signaling. Removing the N-terminal HAMP domains altered the distal PAS dimer interface and prevented signaling, even after signal-on lesions were introduced into PAS. The N-terminal HAMP domains thus facilitate the O2-dependent shift of PAS to the signal-on conformation, clarifying their role upstream of the PAS-sensing domain.
Collapse
Affiliation(s)
- Emilie Orillard
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, California 92350, United States
| | - Selina Anaya
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, California 92350, United States
| | - Mark S Johnson
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, California 92350, United States
| | - Kylie J Watts
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, California 92350, United States
| |
Collapse
|
10
|
Gumerov VM, Andrianova EP, Zhulin IB. Diversity of bacterial chemosensory systems. Curr Opin Microbiol 2021; 61:42-50. [PMID: 33684668 DOI: 10.1016/j.mib.2021.01.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/20/2022]
Abstract
Chemosensory system is the most complex, specialized mode of signal transduction in bacteria and archaea. It is composed of several core and auxiliary protein components that are highly organized in order to deliver a fast response to changing environmental conditions. Chemosensory pathways were studied in-depth in a handful of model organisms and experimentally characterized at least to some degree in approximately thirty other species. However, genome-wide analyses have revealed their presence in thousands of sequenced microbial genomes. Both experimental and computational studies uncovered substantial diversity in system design, functional regulation, cellular localization and phyletic distribution of chemosensory pathways. Here, we summarize advances and expose gaps in our current understanding of the diversity of chemosensory systems.
Collapse
Affiliation(s)
- Vadim M Gumerov
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210 USA
| | | | - Igor B Zhulin
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210 USA.
| |
Collapse
|
11
|
Evidence for Pentapeptide-Dependent and Independent CheB Methylesterases. Int J Mol Sci 2020; 21:ijms21228459. [PMID: 33187094 PMCID: PMC7698151 DOI: 10.3390/ijms21228459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022] Open
Abstract
Many bacteria possess multiple chemosensory pathways that are composed of homologous signaling proteins. These pathways appear to be functionally insulated from each other, but little information is available on the corresponding molecular basis. We report here a novel mechanism that contributes to pathway insulation. We show that, of the four CheB paralogs of Pseudomonas aeruginosa PAO1, only CheB2 recognizes a pentapeptide at the C-terminal extension of the McpB (Aer2) chemoreceptor (KD = 93 µM). McpB is the sole chemoreceptor that stimulates the Che2 pathway, and CheB2 is the methylesterase of this pathway. Pectobacterium atrosepticum SCRI1043 has a single CheB, CheB_Pec, and 19 of its 36 chemoreceptors contain a C-terminal pentapeptide. The deletion of cheB_Pec abolished chemotaxis, but, surprisingly, none of the pentapeptides bound to CheB_Pec. To determine the corresponding structural basis, we solved the 3D structure of CheB_Pec. Its structure aligned well with that of the pentapeptide-dependent enzyme from Salmonella enterica. However, no electron density was observed in the CheB_Pec region corresponding to the pentapeptide-binding site in the Escherichia coli CheB. We hypothesize that this structural disorder is associated with the failure to bind pentapeptides. Combined data show that CheB methylesterases can be divided into pentapeptide-dependent and independent enzymes.
Collapse
|