1
|
Marbehan X, Roger M, Fournier F, Infossi P, Guedon E, Delecourt L, Lebrun R, Giudici-Orticoni MT, Delaunay S. Combining metabolic flux analysis with proteomics to shed light on the metabolic flexibility: the case of Desulfovibrio vulgaris Hildenborough. Front Microbiol 2024; 15:1336360. [PMID: 38463485 PMCID: PMC10920352 DOI: 10.3389/fmicb.2024.1336360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/24/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction Desulfovibrio vulgaris Hildenborough is a gram-negative anaerobic bacterium belonging to the sulfate-reducing bacteria that exhibits highly versatile metabolism. By switching from one energy mode to another depending on nutrients availability in the environments" it plays a central role in shaping ecosystems. Despite intensive efforts to study D. vulgaris energy metabolism at the genomic, biochemical and ecological level, bioenergetics in this microorganism remain far from being fully understood. Alternatively, metabolic modeling is a powerful tool to understand bioenergetics. However, all the current models for D. vulgaris appeared to be not easily adaptable to various environmental conditions. Methods To lift off these limitations, here we constructed a novel transparent and robust metabolic model to explain D. vulgaris bioenergetics by combining whole-cell proteomic analysis with modeling approaches (Flux Balance Analysis). Results The iDvu71 model showed over 0.95 correlation with experimental data. Further simulations allowed a detailed description of D. vulgaris metabolism in various conditions of growth. Altogether, the simulations run in this study highlighted the sulfate-to-lactate consumption ratio as a pivotal factor in D. vulgaris energy metabolism. Discussion In particular, the impact on the hydrogen/formate balance and biomass synthesis is discussed. Overall, this study provides a novel insight into D. vulgaris metabolic flexibility.
Collapse
Affiliation(s)
| | - Magali Roger
- BIP-UMR 7281, Laboratoire de Bioénergétique et Ingénierie des Protéines, Aix-Marseille Université, CNRS, Marseille, France
| | | | - Pascale Infossi
- BIP-UMR 7281, Laboratoire de Bioénergétique et Ingénierie des Protéines, Aix-Marseille Université, CNRS, Marseille, France
| | | | - Louis Delecourt
- BIP-UMR 7281, Laboratoire de Bioénergétique et Ingénierie des Protéines, Aix-Marseille Université, CNRS, Marseille, France
- LISM-UMR 7255, Laboratoire d’Ingénierie des Systèmes Macromoléculaires, Aix-Marseille Université, CNRS, Marseille, France
| | - Régine Lebrun
- IMM-FR3479, Marseille Protéomique, Aix-Marseille Université, CNRS, Marseille, France
| | - Marie-Thérèse Giudici-Orticoni
- BIP-UMR 7281, Laboratoire de Bioénergétique et Ingénierie des Protéines, Aix-Marseille Université, CNRS, Marseille, France
| | | |
Collapse
|
2
|
Kpebe A, Guendon C, Payne N, Ros J, Khelil Berbar M, Lebrun R, Baffert C, Shintu L, Brugna M. An essential role of the reversible electron-bifurcating hydrogenase Hnd for ethanol oxidation in Solidesulfovibrio fructosivorans. Front Microbiol 2023; 14:1139276. [PMID: 37051519 PMCID: PMC10084766 DOI: 10.3389/fmicb.2023.1139276] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
The tetrameric cytoplasmic FeFe hydrogenase Hnd from Solidesulfovibrio fructosivorans (formely Desulfovibrio fructosovorans) catalyses H2 oxidation and couples the exergonic reduction of NAD+ to the endergonic reduction of a ferredoxin by using a flavin-based electron-bifurcating mechanism. Regarding its implication in the bacterial physiology, we previously showed that Hnd, which is non-essential when bacteria grow fermentatively on pyruvate, is involved in ethanol metabolism. Under these conditions, it consumes H2 to produce reducing equivalents for ethanol production as a fermentative product. In this study, the approach implemented was to compare the two S. fructosivorans WT and the hndD deletion mutant strains when grown on ethanol as the sole carbon and energy source. Based on the determination of bacterial growth, metabolite consumption and production, gene expression followed by RT-q-PCR, and Hnd protein level followed by mass spectrometry, our results confirm the role of Hnd hydrogenase in the ethanol metabolism and furthermore uncover for the first time an essential function for a Desulfovibrio hydrogenase. Hnd is unequivocally required for S. fructosivorans growth on ethanol, and we propose that it produces H2 from NADH and reduced ferredoxin generated by an alcohol dehydrogenase and an aldehyde ferredoxin oxidoreductase catalyzing the conversion of ethanol into acetate. The produced H2 could then be recycled and used for sulfate reduction. Hnd is thus a reversible hydrogenase that operates in H2-consumption by an electron-bifurcating mechanism during pyruvate fermentation and in H2-production by an electron-confurcating mechanism when the bacterium uses ethanol as electron donor.
Collapse
Affiliation(s)
| | | | - Natalie Payne
- CNRS, Aix-Marseille Univ, BIP, Marseille, France
- CNRS, Aix-Marseille Univ, Centrale Marseille, ISM2, Marseille, France
| | - Julien Ros
- CNRS, Aix-Marseille Univ, BIP, Marseille, France
| | - Manel Khelil Berbar
- CNRS, Aix-Marseille Univ, Plate-forme Protéomique de l’IMM, FR 3479, Marseille Protéomique (MaP), Marseille, France
| | - Régine Lebrun
- CNRS, Aix-Marseille Univ, Plate-forme Protéomique de l’IMM, FR 3479, Marseille Protéomique (MaP), Marseille, France
| | | | - Laetitia Shintu
- CNRS, Aix-Marseille Univ, Centrale Marseille, ISM2, Marseille, France
| | - Myriam Brugna
- CNRS, Aix-Marseille Univ, BIP, Marseille, France
- *Correspondence: Myriam Brugna,
| |
Collapse
|
3
|
Payne N, Kpebe A, Guendon C, Baffert C, Maillot M, Haurogné T, Tranchida F, Brugna M, Shintu L. NMR-based metabolomic analysis of the physiological role of the electron-bifurcating FeFe-hydrogenase Hnd in Solidesulfovibrio fructosivorans under pyruvate fermentation. Microbiol Res 2023; 268:127279. [PMID: 36592576 DOI: 10.1016/j.micres.2022.127279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Solidesulfovibrio fructosivorans (formely Desulfovibrio fructosovorans), an anaerobic sulfate-reducing bacterium, possesses six gene clusters encoding six hydrogenases catalyzing the reversible oxidation of hydrogen gas (H2) into protons and electrons. One of these, named Hnd, was demonstrated to be an electron-bifurcating hydrogenase Hnd (Kpebe et al., 2018). It couples the exergonic reduction of NAD+ to the endergonic reduction of a ferredoxin with electrons derived from H2 and whose function has been recently shown to be involved in ethanol production under pyruvate fermentation (Payne 2022). To understand further the physiological role of Hnd in S. fructosivorans, we compared the mutant deleted of part of the hnd gene with the wild-type strain grown on pyruvate without sulfate using NMR-based metabolomics. Our results confirm that Hnd is profoundly involved in ethanol metabolism, but also indirectly intervenes in global carbon metabolism and additional metabolic processes such as the biosynthesis of branched-chain amino acids. We also highlight the metabolic reprogramming induced by the deletion of hndD that leads to the upregulation of several NADP-dependent pathways.
Collapse
Affiliation(s)
- Natalie Payne
- Aix Marseille Univ, CNRS, BIP, Marseille, France; Aix Marseille Univ, CNRS, Centrale Marseille, ISM2, Marseille, France
| | | | | | | | | | | | - Fabrice Tranchida
- Aix Marseille Univ, CNRS, Centrale Marseille, ISM2, Marseille, France
| | | | - Laetitia Shintu
- Aix Marseille Univ, CNRS, Centrale Marseille, ISM2, Marseille, France.
| |
Collapse
|