1
|
Gomberg AF, Grossman AD. It's complicated: relationships between integrative and conjugative elements and their bacterial hosts. Curr Opin Microbiol 2024; 82:102556. [PMID: 39423563 PMCID: PMC11625472 DOI: 10.1016/j.mib.2024.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Integrative and conjugative elements (ICEs) are typically found integrated in a bacterial host chromosome. They can excise, replicate, and transfer from cell to cell. Many contain genes that confer phenotypes to host cells, including antibiotic resistances, specialized metabolisms, phage defense, and symbiosis or pathogenesis determinants. Recent studies revealed that at least three ICEs (ICEclc, Tn916, and TnSmu1) cause growth arrest or death of host cells upon element activation. This review highlights the complex interactions between ICEs and their hosts, including the recent examples of the significant costs to host cells. We contrast two examples of killing, ICEclc and Tn916, in which killing, respectively, benefits or impairs conjugation and emphasize the importance of understanding the impacts of ICE-host relationships on conjugation. ICEs are typically only active in a small fraction of cells in a population, and we discuss how phenotypes normally occurring in a small subset of host cells can be uncovered.
Collapse
Affiliation(s)
- Alexa Fs Gomberg
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
| |
Collapse
|
2
|
Lee E, Priutt E, Woods S, Quick A, King S, McLellan LK, Shields RC. Genomic analysis of conjugative and chromosomally integrated mobile genetic elements in oral streptococci. Appl Environ Microbiol 2024; 90:e0136024. [PMID: 39254330 PMCID: PMC11497809 DOI: 10.1128/aem.01360-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
This study aimed to investigate the diversity of conjugative and chromosomally integrated mobile genetic elements (cciMGEs) within six oral streptococci species. cciMGEs, including integrative and conjugative elements (ICEs) and integrative and mobilizable elements (IMEs), are stably maintained on the host cell chromosome; however, under certain conditions, they are able to excise, form extrachromosomal circles, and transfer via a conjugation apparatus. Many cciMGEs encode "cargo" functions that aid survival in new niches and evolve new antimicrobial resistance or virulence properties, whereas others have been shown to influence host bacterial physiology. Here, using a workflow employing preexisting bioinformatics tools, we analyzed 551 genomes for the presence of cciMGEs across six common health- and disease-associated oral streptococci. We identified 486 cciMGEs, 173 of which were ICEs and 233 of which were IMEs. The cciMGEs were diverse in size, cargo genes, and relaxase types. We identified several novel relaxase proteins and a widespread IME carrying a small multidrug resistance transporter. Additionally, we provide evidence that several of the bioinformatically predicted cciMGEs encoded within various Streptococcus mutans strains are capable of excision and circularization, a critical step for cciMGE conjugative transfer. These findings highlight the significance and potential impact of MGEs in shaping the genetic landscape, pathogenicity, and antimicrobial resistance profiles of the oral microbiota.IMPORTANCEOral streptococci are important players in the oral microbiome, influencing both health and disease states within dental bacterial communities. Evolutionary adaptation, shaped in a major part by the horizontal transfer of genes, is essential for their survival in the oral cavity and within new environments. Conjugation is a significant driver of horizontal gene transfer; however, there is limited information regarding this process in oral bacteria. This study utilizes publicly available genome sequences to identify conjugative and chromosomally integrated mobile genetic elements (cciMGEs) across several species of oral streptococci and presents the preliminary characterization of these elements. Our findings significantly enhance our understanding of the mobile genomic landscape of oral streptococci critical for human health, with valuable insights into how cciMGEs might influence the survival and pathogenesis of these bacteria in the oral microbiome.
Collapse
Affiliation(s)
- Erica Lee
- New York Institute of Technology College of Osteopathic Medicine, Jonesboro, Arkansas, USA
| | - Erin Priutt
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Seth Woods
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Allison Quick
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Shawn King
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Lisa K. McLellan
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - Robert C. Shields
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| |
Collapse
|
3
|
Zhu X, Liang Z, Ma J, Huang J, Wang L, Yao H, Wu Z. The cadDX operon contributes to cadmium resistance, oxidative stress resistance, and virulence in zoonotic streptococci. Vet Res 2024; 55:119. [PMID: 39334407 PMCID: PMC11430099 DOI: 10.1186/s13567-024-01371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024] Open
Abstract
Mobile genetic elements (MGEs) enable bacteria to acquire novel genes and traits. However, the functions of cargo genes within MGEs remain poorly understood. The cadmium resistance operon cadDX is present in many gram-positive bacteria. Although cadDX has been reported to be involved in metal detoxification, its regulatory mechanisms and functions in bacterial pathogenesis are poorly understood. This study revealed that cadDX contributes to cadmium resistance, oxidative stress resistance, and virulence in Streptococcus suis, an important zoonotic pathogen in pigs and humans. CadX represses cadD expression by binding to the cadDX promoter. Notably, cadX responds to H2O2 stress through an additional promoter within the cadDX operon, mitigating the harmful effect of excessive cadD expression during oxidative stress. cadDX resides within an 11 K integrative and mobilizable element that can autonomously form circular structures. Moreover, cadDX is found in diverse MGEs, accounting for its widespread distribution across various bacteria, especially among pathogenic streptococci. Transferring cadDX into another zoonotic pathogen, Streptococcus agalactiae, results in similar phenotypes, including resistance to cadmium and oxidative stresses and increased virulence of S. agalactiae in mice. The new functions and regulatory mechanisms of cadDX shed light on the importance of the cadDX system in driving evolutionary adaptations and survival strategies across diverse gram-positive bacteria.
Collapse
Affiliation(s)
- Xinchi Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210014, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210014, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210014, China
| | - Zijing Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210014, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210014, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210014, China
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210014, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210014, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210014, China
| | - Jinhu Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210014, China
| | - Liping Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210014, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210014, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210014, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210014, China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210014, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210014, China.
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210014, China.
- Guangdong Provincial Key Laboratory of Research On the Technology of Pig Breeding and Pig Disease Prevention, Guangzhou, 511400, China.
| |
Collapse
|
4
|
Choi A, Dong K, Williams E, Pia L, Batagower J, Bending P, Shin I, Peters DI, Kaspar JR. Human saliva modifies growth, biofilm architecture, and competitive behaviors of oral streptococci. mSphere 2024; 9:e0077123. [PMID: 38319113 PMCID: PMC10900908 DOI: 10.1128/msphere.00771-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
The bacteria within supragingival biofilms participate in complex exchanges with other microbes inhabiting the same niche. One example is the mutans group streptococci (Streptococcus mutans), implicated in the development of tooth decay, and other health-associated commensal streptococci species. Previously, our group transcriptomically characterized intermicrobial interactions between S. mutans and several species of oral bacteria. However, these experiments were carried out in a medium without human saliva. To better mimic their natural environment, we first evaluated how inclusion of saliva affected growth and biofilm formation of eight Streptococcus species individually and found saliva to positively benefit growth rates while negatively influencing biofilm biomass accumulation and altering spatial arrangement. These results carried over during evaluation of 29 saliva-derived isolates of various species. Surprisingly, we also found that addition of saliva increased the competitive behaviors of S. mutans in coculture competitions against commensal streptococci that led to increases in biofilm microcolony volumes. Through transcriptomically characterizing mono- and cocultures of S. mutans and Streptococcus oralis with and without saliva, we determined that each species developed a nutritional niche under mixed-species growth, with S. mutans upregulating carbohydrate uptake and utilization pathways while S. oralis upregulated genome features related to peptide uptake and glycan foraging. S. mutans also upregulated genes involved in oxidative stress tolerance, particularly manganese uptake, which we could artificially manipulate by supplementing in manganese leading to an advantage over its opponent. Our report highlights observable changes in microbial behaviors through leveraging environmental- and host-supplied resources over their competitors. IMPORTANCE Dental caries (tooth decay) is the most prevalent disease for both children and adults nationwide. Caries are initiated from demineralization of the enamel due to organic acid production through the metabolic activity of oral bacteria growing in biofilm communities attached to the tooth's surface. Mutans group streptococci are closely associated with caries development and initiation of the cariogenic cycle, which decreases the amount of acid-sensitive, health-associated commensal bacteria while selecting for aciduric and acidogenic species that then further drives the disease process. Defining the exchanges that occur between mutans group streptococci and oral commensals in a condition that closely mimics their natural environment is of critical need toward identifying factors that can influence odontopathogen establishment, persistence, and outgrowth. The goal of our research is to develop strategies, potentially through manipulation of microbial interactions characterized here, that prevent the emergence of mutans group streptococci while keeping the protective flora intact.
Collapse
Affiliation(s)
- Allen Choi
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Kevin Dong
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Emily Williams
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Lindsey Pia
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Jordan Batagower
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Paige Bending
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Iris Shin
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Daniel I. Peters
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Justin R. Kaspar
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| |
Collapse
|
5
|
St. Pierre J, Roberts J, Alam MA, Shields RC. Construction of an arrayed CRISPRi library as a resource for essential gene function studies in Streptococcus mutans. Microbiol Spectr 2024; 12:e0314923. [PMID: 38054713 PMCID: PMC10783072 DOI: 10.1128/spectrum.03149-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE The construction of arrayed mutant libraries has advanced the field of bacterial genetics by allowing researchers to more efficiently study the exact function and importance of encoded genes. In this study, we constructed an arrayed clustered regularly interspaced short palindromic repeats interference (CRISPRi) library, known as S treptococcus mutans arrayed CRISPRi (SNAP), as a resource to study >250 essential and growth-supporting genes in Streptococcus mutans. SNAP will be made available to the research community, and we anticipate that its distribution will lead to high-quality, high-throughput, and reproducible studies of essential genes.
Collapse
Affiliation(s)
- Jackson St. Pierre
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
- New York Institute of Technology College of Osteopathic Medicine, Jonesboro, Arkansas, USA
| | - Justin Roberts
- Department of Chemistry & Physics, Arkansas State University, Jonesboro, Arkansas, USA
- University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mohammad A. Alam
- Department of Chemistry & Physics, Arkansas State University, Jonesboro, Arkansas, USA
| | - Robert C. Shields
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| |
Collapse
|
6
|
Zuber P, Kreth J. Aspects of oral streptococcal metabolic diversity: Imagining the landscape beneath the fog. Mol Microbiol 2023; 120:508-524. [PMID: 37329112 DOI: 10.1111/mmi.15106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
It is widely acknowledged that the human-associated microbial community influences host physiology, systemic health, disease progression, and even behavior. There is currently an increased interest in the oral microbiome, which occupies the entryway to much of what the human initially encounters from the environment. In addition to the dental pathology that results from a dysbiotic microbiome, microbial activity within the oral cavity exerts significant systemic effects. The composition and activity of the oral microbiome is influenced by (1) host-microbial interactions, (2) the emergence of niche-specific microbial "ecotypes," and (3) numerous microbe-microbe interactions, shaping the underlying microbial metabolic landscape. The oral streptococci are central players in the microbial activity ongoing in the oral cavity, due to their abundance and prevalence in the oral environment and the many interspecies interactions in which they participate. Streptococci are major determinants of a healthy homeostatic oral environment. The metabolic activities of oral Streptococci, particularly the metabolism involved in energy generation and regeneration of oxidative resources vary among the species and are important factors in niche-specific adaptations and intra-microbiome interactions. Here we summarize key differences among streptococcal central metabolic networks and species-specific differences in how the key glycolytic intermediates are utilized.
Collapse
Affiliation(s)
- Peter Zuber
- Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Jens Kreth
- School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
7
|
Choi A, Dong K, Williams E, Pia L, Batagower J, Bending P, Shin I, Peters DI, Kaspar JR. Human Saliva Modifies Growth, Biofilm Architecture and Competitive Behaviors of Oral Streptococci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554151. [PMID: 37662325 PMCID: PMC10473590 DOI: 10.1101/2023.08.21.554151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The bacteria within supragingival biofilms participate in complex exchanges with other microbes inhabiting the same niche. One example are the mutans group streptococci (Streptococcus mutans), implicated in the development of tooth decay, and other health-associated commensal streptococci species. Previously, our group transcriptomically characterized intermicrobial interactions between S. mutans and several species of oral bacteria. However, these experiments were carried out in a medium that was absent of human saliva. To better mimic their natural environment, we first evaluated how inclusion of saliva affected growth and biofilm formation of eight streptococci species individually, and found saliva to positively benefit growth rates while negatively influencing biomass accumulation and altering spatial arrangement. These results carried over during evaluation of 29 saliva-derived isolates of various species. Surprisingly, we also found that addition of saliva increased the competitive behaviors of S. mutans in coculture competitions against commensal streptococci that led to increases in biofilm microcolony volumes. Through transcriptomically characterizing mono- and cocultures of S. mutans and Streptococcus oralis with and without saliva, we determined that each species developed a nutritional niche under mixed-species growth, with S. mutans upregulating carbohydrate uptake and utilization pathways while S. oralis upregulated genome features related to peptide uptake and glycan foraging. S. mutans also upregulated genes involved in oxidative stress tolerance, particularly manganese uptake, which we could artificially manipulate by supplementing in manganese to give it an advantage over its opponent. Our report highlights observable changes in microbial behaviors via leveraging environmental- and host-supplied resources over their competitors.
Collapse
Affiliation(s)
- Allen Choi
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Kevin Dong
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Emily Williams
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Lindsey Pia
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Jordan Batagower
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Paige Bending
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Iris Shin
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Daniel I Peters
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Justin R Kaspar
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| |
Collapse
|