1
|
Yi A, Chen L, Wei J, Zhang ZS, Li W, Shi Y, Wang B, Wang X, Cui ZN. Synthesis and Biological Evaluation of Disulfides Based on Garlic Extract as Type III Secretion System Inhibitors against Erwinia amylovora. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12582-12590. [PMID: 40372403 DOI: 10.1021/acs.jafc.5c01631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Fire blight, caused by Erwinia amylovora, poses a significant threat to rosaceous plants, such as pears, apples, and hawthorns. The type III secretion system (T3SS) is a critical pathogenicity factor in the pathogenesis of E. amylovora. Disulfide compounds, including those derived from garlic extract, exhibit good bioactivity against both bacteria and fungi. In this study, we synthesized 39 disulfide compounds based on garlic extract and developed a high-throughput screening system incorporating the bacterial luciferase lux reporter gene. Compound 5c was identified as the most effective inhibitor, significantly suppressing the promoter expression of T3SS-related genes, such as hrpA and hrpL, in E. amylovora CFBP1430. Furthermore, compound 5c inhibited the hypersensitive response (HR) triggered by E. amylovora CFBP1430 in tobacco without affecting bacterial growth. Compound 5c also reduced the level of secretion of the pathogenic protein HrpN and diminished the pathogenicity of E. amylovora CFBP1430 in pear infection assays. These findings offer a theoretical foundation for the development of novel T3SS inhibitors aimed at the prevention and control of fire blight disease.
Collapse
Affiliation(s)
- Aoyun Yi
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Liangye Chen
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Junjie Wei
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhao-Sheng Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology Normal University, Nanchang 330013, China
| | - Wanjun Li
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yu Shi
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Bo Wang
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiangyun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zi-Ning Cui
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Rocha J, Shapiro LR, Chimileski S, Kolter R. Complementary roles of EPS, T3SS and Expansin for virulence of Erwinia tracheiphila, the causative agent of cucurbit wilt. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600446. [PMID: 38979168 PMCID: PMC11230154 DOI: 10.1101/2024.06.24.600446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Erwinia tracheiphila (Smith) is a recently emerged plant pathogen that causes severe economic losses in cucurbit crops in temperate Eastern North America. E. tracheiphila is xylem restricted, and virulence is thought to be related to Exopolysaccharides (EPS) and biofilm formation, which occlude the passage of sap in xylem vessels and causes systemic wilt. However, the role of EPS and biofilm formation, and their contribution to disease in relation to other virulence loci are unknown. Here, we use deletion mutants to explore the roles of EPS, Hrp Type III secretion system (Hrp T3SS) and Expansin in plant colonization and virulence. Then, we quantify the expression of the genes encoding these factors during infection. Our results show that Exopolysaccharides are essential for E. tracheiphila survival in host plants, while Hrp T3SS and Expansin are dispensable for survival but needed for systemic wilt symptom development. EPS and Hrp T3SS display contrasting expression patterns in the plant, reflecting their relevance in different stages of the infection. Finally, we show that expression of the eps and hrpT3SS operons is downregulated in mildly increased temperatures, suggesting a link between expression of these virulence factors and geographic restriction of E. tracheiphila to temperate regions. Our work highlights how E. tracheiphila virulence is a complex trait where several loci are coordinated during infection. These results further shed light into the relationship between virulence factors and the ecology of this pathosystem, which will be essential for developing sustainable management strategies for this emerging pathogen.
Collapse
Affiliation(s)
- Jorge Rocha
- Department of Microbiology, Harvard Medical School. 77 Avenue Louis Pasteur, Boston MA, US 02115
- Progama de Agricultura en Zonas Áridas; Centro de Investigaciones Biológicas del Noroeste. Av. Instituto Politécnico Nacional 195, La Paz, B.C.S. México 23096
| | - Lori R Shapiro
- Department of Microbiology, Harvard Medical School. 77 Avenue Louis Pasteur, Boston MA, US 02115
| | - Scott Chimileski
- Department of Microbiology, Harvard Medical School. 77 Avenue Louis Pasteur, Boston MA, US 02115
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory; Woods Hole, MA, US 02543
| | - Roberto Kolter
- Department of Microbiology, Harvard Medical School. 77 Avenue Louis Pasteur, Boston MA, US 02115
| |
Collapse
|
3
|
Yuan X, Sundin GW, Zeng Q, Johnson KB, Cox KD, Yu M, Huang J, Yang CH. Erwinia amylovora Type III Secretion System Inhibitors Reduce Fire Blight Infection Under Field Conditions. PHYTOPATHOLOGY 2023; 113:2197-2204. [PMID: 37344783 DOI: 10.1094/phyto-04-23-0111-sa] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Fire blight, caused by Erwinia amylovora, is an economically important disease in apples and pears worldwide. This pathogen relies on the type III secretion system (T3SS) to cause disease. Compounds that inhibit the function of the T3SS (T3SS inhibitors) have emerged as alternative strategies for bacterial plant disease management, as they block bacterial virulence without affecting growth, unlike traditional antibiotics. In this study, we investigated the mode of action of a T3SS inhibitor named TS108, a plant phenolic acid derivative, in E. amylovora. We showed that adding TS108 to an in vitro culture of E. amylovora repressed the expression of several T3SS regulon genes, including the master regulator gene hrpL. Further studies demonstrated that TS108 negatively regulates CsrB, a global regulatory small RNA, at the posttranscriptional level, resulting in a repression of hrpS, which encodes a key activator of hrpL. Additionally, TS108 has no impact on the expression of T3SS in Dickeya dadantii or Pseudomonas aeruginosa, suggesting that its inhibition of the E. amylovora T3SS is likely species specific. To better evaluate the performance of T3SS inhibitors in fire blight management, we conducted five independent field experiments in four states (Michigan, New York, Oregon, and Connecticut) from 2015 to 2022 and observed reductions in blossom blight incidence as high as 96.7% compared with untreated trees. In summary, the T3SS inhibitors exhibited good efficacy against fire blight.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011
| | - George W Sundin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511
| | - Kenneth B Johnson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Kerik D Cox
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY 14456
| | - Manda Yu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| | - Jian Huang
- T3 Bioscience, Lapham Hall 181, Milwaukee, WI 53211
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| |
Collapse
|
4
|
Wang X, He L, Zhang YQ, Tian H, He M, Herron AN, Cui ZN. Innovative Strategy for the Control of Citrus Canker: Inhibitors Targeting the Type III Secretion System of Xanthomonas citri Subsp. citri. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15971-15980. [PMID: 37831979 DOI: 10.1021/acs.jafc.3c05212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
To find potential type III secretion system (T3SS) inhibitors against citrus canker caused by Xanthomonas citri subsp. citri (Xcc), a new series of 5-phenyl-2-furan carboxylic acid derivatives stitched with 2-mercapto-1,3,4-thiadiazole were designed and synthesized. Among the 30 compounds synthesized, 14 compounds significantly inhibited the promoter activity of a harpin gene hpa1. Eight of the 14 compounds did not affect the growth of Xcc, but significantly reduced the hypersensitive response (HR) of tobacco and decreased the pathogenicity of Xcc on citrus plants. Subsequent studies have demonstrated that these inhibitory molecules effectively suppress the T3SS of Xcc and significantly impair the pathogen's ability to subvert citrus immunity, resulting in a reduction in the level of disease progression. As a result, our work has identified a series of potentially attractive agents for the control of citrus canker.
Collapse
Affiliation(s)
- Xin Wang
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Lulu He
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Qing Zhang
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hao Tian
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Min He
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | | | - Zi-Ning Cui
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Li JB, Xiong LT, Lu YR, Zhang YQ, Xu XL, Wang HH, Deng X, Hu XH, Cui ZN. Novel pyrimidin-4-one derivatives as potential T3SS inhibitors against Xanthomonas campestris pv. campestris. PEST MANAGEMENT SCIENCE 2023; 79:3666-3675. [PMID: 37184259 DOI: 10.1002/ps.7545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Cruciferous black rot is caused by Xanthomonas campestris pv. campestris (Xcc) infection and is a widespread disease worldwide. Excessive and repeated use of bactericide is an important cause of the development of bacterial resistance. It is imperative to take new approaches to screening compounds that target virulence factors rather than kill bacterial pathogens. The type III secretion system (T3SS) invades a variety of cells by transporting virulence effector factors into the cytoplasm and is an attractive antitoxic target. Toward the search of new T3SS inhibitors, an alternative series of novel pyrimidin-4-one derivatives were designed and synthesized and assessed for their effect in blocking the virulence. RESULTS All of the target compounds were characterized by proton (1 H) nuclear magnetic resonance (NMR), carbon-13 (13 C) NMR, fluorine-19 (19 F) NMR and high-resolution mass spectrometry (HRMS). All compounds were evaluated using high-throughput screening systems against Xcc. The results of the biological activity test revealed that the compound SPF-9 could highly inhibit the activity of xopN gene promoter and the hypersensitivity (HR) of tobacco without affecting bacterial growth. Moreover, messenger RNA (mRNA) level measurements showed that compound SPF-9 inhibited the expression of some representative genes (hrp/hrc genes). Compound SPF-9 weakened the pathogenicity of Xcc to Raphanus sativus L. CONCLUSION Compound SPF-9 has good potential for further development as a novel T3SS inhibitor against Xcc. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia-Bao Li
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Lan-Tu Xiong
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yan-Rong Lu
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yu-Qing Zhang
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xiao-Li Xu
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, China
| | - Hai-Hong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| | - Xu-Hong Hu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Zi-Ning Cui
- National Key Laboratory of Green Pesticide, Integrative Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Gadar K, McCarthy RR. Using next generation antimicrobials to target the mechanisms of infection. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:11. [PMID: 38686217 PMCID: PMC11057201 DOI: 10.1038/s44259-023-00011-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/28/2023] [Indexed: 05/02/2024]
Abstract
The remarkable impact of antibiotics on human health is being eroded at an alarming rate by the emergence of multidrug resistant pathogens. There is a recognised consensus that new strategies to tackle infection are urgently needed to limit the devasting impact of antibiotic resistance on our global healthcare infrastructure. Next generation antimicrobials (NGAs) are compounds that target bacterial virulence factors to disrupt pathogenic potential without impacting bacterial viability. By disabling the key virulence factors required to establish and maintain infection, NGAs make pathogens more vulnerable to clearance by the immune system and can potentially render them more susceptible to traditional antibiotics. In this review, we discuss the developing field of NGAs and how advancements in this area could offer a viable standalone alternative to traditional antibiotics or an effective means to prolong antibiotic efficacy when used in combination.
Collapse
Affiliation(s)
- Kavita Gadar
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH United Kingdom
| | - Ronan R. McCarthy
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH United Kingdom
| |
Collapse
|
7
|
Sharma A, Abrahamian P, Carvalho R, Choudhary M, Paret ML, Vallad GE, Jones JB. Future of Bacterial Disease Management in Crop Production. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:259-282. [PMID: 35790244 DOI: 10.1146/annurev-phyto-021621-121806] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacterial diseases are a constant threat to crop production globally. Current management strategies rely on an array of tactics, including improved cultural practices; application of bactericides, plant activators, and biocontrol agents; and use of resistant varieties when available. However, effective management remains a challenge, as the longevity of deployed tactics is threatened by constantly changing bacterial populations. Increased scrutiny of the impact of pesticides on human and environmental health underscores the need for alternative solutions that are durable, sustainable, accessible to farmers, and environmentally friendly. In this review, we discuss the strengths and shortcomings of existing practices and dissect recent advances that may shape the future of bacterial disease management. We conclude that disease resistance through genome modification may be the most effective arsenal against bacterial diseases. Nonetheless, more research is necessary for developing novel bacterial disease management tactics to meet the food demand of a growing global population.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
| | - Peter Abrahamian
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, USA
- Plant Pathogen Confirmatory Diagnostic Laboratory, USDA-APHIS, Beltsville, Maryland, USA
| | - Renato Carvalho
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
| | - Manoj Choudhary
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
| | - Mathews L Paret
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
- North Florida Research and Education Center, University of Florida, Quincy, Florida, USA
| | - Gary E Vallad
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
- Gulf Coast Research and Education Center, University of Florida, Wimauma, Florida, USA
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
8
|
Zambelloni R, Beckham KSH, Wu HJ, Elofsson M, Marquez R, Gabrielsen M, Roe AJ. Crystal structures of WrbA, a spurious target of the salicylidene acylhydrazide inhibitors of type III secretion in Gram-negative pathogens, and verification of improved specificity of next-generation compounds. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35829699 DOI: 10.1099/mic.0.001211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The enterohemorrhagic Escherichia coli pathotype is responsible for severe and dangerous infections in humans. Establishment of the infection requires colonization of the gastro-intestinal tract, which is dependent on the Type III Secretion System. The Type III Secretion System (T3SS) allows attachment of the pathogen to the mammalian host cell and cytoskeletal rearrangements within the host cell. Blocking the functionality of the T3SS is likely to reduce colonization and therefore limit the disease. This route offers an alternative to antibiotics, and problems with the development of antibiotics resistance. Salicylidene acylhydrazides have been shown to have an inhibitory effect on the T3SS in several pathogens. However, the main target of these compounds is still unclear. Past work has identified a number of putative protein targets of these compounds, one of which being WrbA. Whilst WrbA is considered an off-target interaction, this study presents the effect of the salicylidne acylhydrazide compounds on the activity of WrbA, along with crystal structures of WrbA from Yersinia pseudotuberculosis and Salmonella serovar Typhimurium; the latter also containing parts of the compound in the structure. We also present data showing that the original compounds were unstable in acidic conditions, and that later compounds showed improved stability.
Collapse
Affiliation(s)
- Riccardo Zambelloni
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Glasgow, G12 8TA, UK
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
- Sygnature Discovery Ltd, Biocity, Discovery Building, Nottingham, NG1 1GR, UK
| | - Katherine S H Beckham
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Glasgow, G12 8TA, UK
- EMBL Hamburg c/o DESY, Notkestraße 85, 22603 Hamburg, Germany
| | - Hong-Jin Wu
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Glasgow, G12 8TA, UK
| | - Mikael Elofsson
- Umeå Centre for Microbial Research, Department of Chemistry, Umeå University, Umeå, Sweden
| | - Rudi Marquez
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
- School of Physical and Chemical Sciences, Te Kura Matū, University of Canterbury, Christchurch, New Zealand
| | - Mads Gabrielsen
- MVLS Structural Biology and Biophysical Characterisation Facility, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andrew J Roe
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
9
|
Fontana R, Macchi G, Caproni A, Sicurella M, Buratto M, Salvatori F, Pappadà M, Manfredini S, Baldisserotto A, Marconi P. Control of Erwinia amylovora Growth by Moringa oleifera Leaf Extracts: In Vitro and in Planta Effects. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070957. [PMID: 35406937 PMCID: PMC9003111 DOI: 10.3390/plants11070957] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 06/12/2023]
Abstract
Erwinia amylovora (EA) is a phytopathogenic bacterium, the causative agent of bacterial fire blight, a disease that affects Rosaceaes. In order to replace antibiotics and copper, the antimicrobial activity of three extracts of Moringa oleifera Lam., methanolic (MeOH-MOE), hydroalcoholic (HA-MOE) and hydroalcoholic with maltodextrins (HAMD-MOE), was tested on eleven strains of EA isolated from apple trees by the Emilia-Romagna Phytosanitary Department. MIC and MBC have been evaluated; biofilm formation, swarming motility and amylovoran production were performed with the crystalviolet, soft-agar assay and the amylovoran method. All extracts demonstrated bacteriostatic activity at a concentration of 1 mg/mL, resulting in a 80% reduction in biofilm formation. HAMD-MOE, MeOH-MOE and HA-MOE caused an inhibition of motility of 60%, 65% and 30% after 6 days and a decrease in amylovoran synthesis of 84%, 63% and 93%, respectively. In planta results showed how the compounds were able to inhibit EA virulence on apple trees, mainly if they were applied as a preventive treatment, although the treatment showed a significant reduction in fire blight symptoms progression. The antibacterial activity of the extracts is mainly due to the high concentration of polyphenolic compounds detected in the extracts that was able to alter the permeability of bacterial membrane, resulting in slowing the synthesis of ATP and consequently of all ATP-dependent functions, such as motility and less selectivity towards harmful compounds, which can, thus, enter the cytoplasm and inhibit enzymes involved in replication and quorum sensing. The efficacy, eco-compatibility and low cost make such extracts a potential tool for the control of bacterial fire blight.
Collapse
Affiliation(s)
- Riccardo Fontana
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.F.); (A.C.); (M.B.); (F.S.); (M.P.)
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (G.M.); (A.B.)
| | - Giovanna Macchi
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (G.M.); (A.B.)
| | - Anna Caproni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.F.); (A.C.); (M.B.); (F.S.); (M.P.)
| | - Mariaconcetta Sicurella
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy;
| | - Mattia Buratto
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.F.); (A.C.); (M.B.); (F.S.); (M.P.)
| | - Francesca Salvatori
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.F.); (A.C.); (M.B.); (F.S.); (M.P.)
| | - Mariangela Pappadà
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.F.); (A.C.); (M.B.); (F.S.); (M.P.)
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (G.M.); (A.B.)
| | - Anna Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (G.M.); (A.B.)
| | - Peggy Marconi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (R.F.); (A.C.); (M.B.); (F.S.); (M.P.)
| |
Collapse
|
10
|
Developing Cyclic Peptomers as Broad-Spectrum Type III Secretion System Inhibitors in Gram-Negative Bacteria. Antimicrob Agents Chemother 2021; 65:e0169020. [PMID: 33875435 PMCID: PMC8373237 DOI: 10.1128/aac.01690-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Antibiotic-resistant bacteria are an emerging global health threat. New antimicrobials are urgently needed. The injectisome type III secretion system (T3SS), required by dozens of Gram-negative bacteria for virulence but largely absent from nonpathogenic bacteria, is an attractive antimicrobial target. We previously identified synthetic cyclic peptomers, inspired by the natural product phepropeptin D, that inhibit protein secretion through the Yersinia Ysc and Pseudomonas aeruginosa Psc T3SSs but do not inhibit bacterial growth. Here, we describe the identification of an isomer, 4EpDN, that is 2-fold more potent (50% inhibitory concentration [IC50] of 4 μM) than its parental compound. Furthermore, 4EpDN inhibited the Yersinia Ysa and the Salmonella SPI-1 T3SSs, suggesting that this cyclic peptomer has broad efficacy against evolutionarily distant injectisome T3SSs. Indeed, 4EpDN strongly inhibited intracellular growth of Chlamydia trachomatis in HeLa cells, which requires the T3SS. 4EpDN did not inhibit the unrelated twin arginine translocation (Tat) system, nor did it impact T3SS gene transcription. Moreover, although the injectisome and flagellar T3SSs are evolutionarily and structurally related, the 4EpDN cyclic peptomer did not inhibit secretion of substrates through the Salmonella flagellar T3SS, indicating that cyclic peptomers broadly but specifically target the injectisome T3SS. 4EpDN reduced the number of T3SS needles detected on the surface of Yersinia pseudotuberculosis as detected by microscopy. Collectively, these data suggest that cyclic peptomers specifically inhibit the injectisome T3SS from a variety of Gram-negative bacteria, possibly by preventing complete T3SS assembly.
Collapse
|
11
|
Hotinger JA, Pendergrass HA, May AE. Molecular Targets and Strategies for Inhibition of the Bacterial Type III Secretion System (T3SS); Inhibitors Directly Binding to T3SS Components. Biomolecules 2021; 11:biom11020316. [PMID: 33669653 PMCID: PMC7922566 DOI: 10.3390/biom11020316] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 01/01/2023] Open
Abstract
The type III secretion system (T3SS) is a virulence apparatus used by many Gram-negative pathogenic bacteria to cause infections. Pathogens utilizing a T3SS are responsible for millions of infections yearly. Since many T3SS knockout strains are incapable of causing systemic infection, the T3SS has emerged as an attractive anti-virulence target for therapeutic design. The T3SS is a multiprotein molecular syringe that enables pathogens to inject effector proteins into host cells. These effectors modify host cell mechanisms in a variety of ways beneficial to the pathogen. Due to the T3SS’s complex nature, there are numerous ways in which it can be targeted. This review will be focused on the direct targeting of components of the T3SS, including the needle, translocon, basal body, sorting platform, and effector proteins. Inhibitors will be considered a direct inhibitor if they have a binding partner that is a T3SS component, regardless of the inhibitory effect being structural or functional.
Collapse
|
12
|
Yuan X, Yu M, Yang CH. Innovation and Application of the Type III Secretion System Inhibitors in Plant Pathogenic Bacteria. Microorganisms 2020; 8:microorganisms8121956. [PMID: 33317075 PMCID: PMC7764658 DOI: 10.3390/microorganisms8121956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Many Gram-negative pathogenic bacteria rely on a functional type III secretion system (T3SS), which injects multiple effector proteins into eukaryotic host cells, for their pathogenicity. Genetic studies conducted in different host-microbe pathosystems often revealed a sophisticated regulatory mechanism of their T3SSs, suggesting that the expression of T3SS is tightly controlled and constantly monitored by bacteria in response to the ever-changing host environment. Therefore, it is critical to understand the regulation of T3SS in pathogenic bacteria for successful disease management. This review focuses on a model plant pathogen, Dickeyadadantii, and summarizes the current knowledge of its T3SS regulation. We highlight the roles of several T3SS regulators that were recently discovered, including the transcriptional regulators: FlhDC, RpoS, and SlyA; the post-transcriptional regulators: PNPase, Hfq with its dependent sRNA ArcZ, and the RsmA/B system; and the bacterial second messenger cyclic-di-GMP (c-di-GMP). Homologs of these regulatory components have also been characterized in almost all major bacterial plant pathogens like Erwiniaamylovora, Pseudomonassyringae, Pectobacterium spp., Xanthomonas spp., and Ralstonia spp. The second half of this review shifts focus to an in-depth discussion of the innovation and development of T3SS inhibitors, small molecules that inhibit T3SSs, in the field of plant pathology. This includes T3SS inhibitors that are derived from plant phenolic compounds, plant coumarins, and salicylidene acylhydrazides. We also discuss their modes of action in bacteria and application for controlling plant diseases.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Manda Yu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
- Correspondence: (M.Y.); (C.-H.Y.)
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
- Correspondence: (M.Y.); (C.-H.Y.)
| |
Collapse
|
13
|
Yu M, Singh J, Khan A, Sundin GW, Zhao Y. Complete Genome Sequence of the Fire Blight Pathogen Strain Erwinia amylovora Ea1189. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1277-1279. [PMID: 32808873 DOI: 10.1094/mpmi-06-20-0158-a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Erwinia amylovora causes fire blight, the most devastating bacterial disease of apples and pears in the United States and worldwide. The model strain E. amylovora Ea1189 has been extensively used to understand bacterial pathogenesis and molecular mechanisms of bacterial-plant interactions. In this work, we sequenced and assembled the de novo genome of Ea1189, using a combination of long Oxford Nanopore Technologies and short Illumina sequence reads. A complete gapless genome assembly of Ea1189 consists of a 3,797,741-bp circular chromosome and a 28,259-bp plasmid with 3,472 predicted genes, including 78 transfer RNAs, 22 ribosomal RNAs, and 20 noncoding RNAs. A comparison of the Ea1189 genome to previously sequenced E. amylovora complete genomes showed 99.94 to 99.97% sequence similarity with 314 to 946 single nucleotide polymorphisms. We believe that the availability of the complete genome sequence of strain Ea1189 will further support studies to understand evolution, diversity and structural variations of Erwinia strains, as well as the molecular basis of E. amylovora pathogenesis and its interactions with host plants, thus facilitating the development of effective management strategies for this important disease.
Collapse
Affiliation(s)
- Menghao Yu
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, IL 61801, U.S.A
| | - Jugpreet Singh
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, U.S.A
| | - Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, U.S.A
| | - George W Sundin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, IL 61801, U.S.A
| |
Collapse
|
14
|
Virulence Genetics of an Erwinia amylovora Putative Polysaccharide Transporter Family Member. J Bacteriol 2020; 202:JB.00390-20. [PMID: 32839177 DOI: 10.1128/jb.00390-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/07/2020] [Indexed: 01/26/2023] Open
Abstract
The Gram-negative enterobacterium Erwinia amylovora causes fire blight disease in apple and pear trees. Lipopolysaccharides and the exopolysaccharide amylovoran are essential E. amylovora virulence factors. We found that mutations in rfbX disrupted amylovoran production and virulence in apple fruits and tree shoots and that the deletion of yibD suppressed the rfbX mutant phenotype. The level of expression of yibD was about 10-fold higher in the ΔrfbX mutant than the wild type. A forward genetic suppressor screen in the ΔrfbX mutant uncovered multiple mutations in yibD and supported the conclusion that the virulence defect of rfbX mutants is due to reduced amylovoran production. The yibD and rfbX genes are expressed as a two-gene operon, yibD rfbX The rfbX gene encodes a previously uncharacterized putative polysaccharide subunit transporter, while yibD encodes a predicted glycosyltransferase. Mutation of rfbX did not have a detectable effect on lipopolysaccharide patterns; however, the overexpression of yibD in both the wild-type and ΔyibD ΔrfbX genetic backgrounds disrupted both amylovoran and lipopolysaccharide production. Additionally, the overexpression of yibD in the ΔyibD ΔrfbX mutant inhibited bacterial growth in amylovoran-inducing medium. This growth inhibition phenotype was used in a forward genetic suppressor screen and reverse-genetics tests to identify several genes involved in lipopolysaccharide production, which, when mutated, restored the ability of the ΔyibD ΔrfbX mutant overexpressing yibD to grow in amylovoran-inducing medium. Remarkably, all the lipopolysaccharide gene mutants tested were defective in lipopolysaccharide and amylovoran production. These results reveal a genetic connection between amylovoran and lipopolysaccharide production in E. amylovora IMPORTANCE This study discovered previously unknown genetic connections between exopolysaccharide and lipopolysaccharide production in the fire blight pathogen Erwinia amylovora This represents a step forward in our understanding of the biology underlying the production of these two macromolecules. Fire blight is an economically important disease that impacts the production of apples and pears worldwide. Few fire blight control measures are available, and growers rely heavily on antibiotic applications at bloom time. Both exopolysaccharide and lipopolysaccharide are E. amylovora virulence factors. Our results indicate that the overexpression of the yibD gene in E. amylovora disrupts both lipopolysaccharide production and exopolysaccharide production. This effect could potentially be used as the basis for the development of an antivirulence treatment for the prevention of fire blight disease.
Collapse
|
15
|
de Souza JB, Almeida-Souza HO, Zaini PA, Alves MN, de Souza AG, Pierry PM, da Silva AM, Goulart LR, Dandekar AM, Nascimento R. Xylella fastidiosa subsp. pauca Strains Fb7 and 9a5c from Citrus Display Differential Behavior, Secretome, and Plant Virulence. Int J Mol Sci 2020; 21:E6769. [PMID: 32942709 PMCID: PMC7555403 DOI: 10.3390/ijms21186769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 12/20/2022] Open
Abstract
Xylella fastidiosa colonizes the xylem of various cultivated and native plants worldwide. Citrus production in Brazil has been seriously affected, and major commercial varieties remain susceptible to Citrus Variegated Chlorosis (CVC). Collective cellular behaviors such as biofilm formation influence virulence and insect transmission of X. fastidiosa. The reference strain 9a5c produces a robust biofilm compared to Fb7 that remains mostly planktonic, and both were isolated from symptomatic citrus trees. This work deepens our understanding of these distinct behaviors at the molecular level, by comparing the cellular and secreted proteomes of these two CVC strains. Out of 1017 identified proteins, 128 showed differential abundance between the two strains. Different protein families were represented such as proteases, hemolysin-like proteins, and lipase/esterases, among others. Here we show that the lipase/esterase LesA is among the most abundant secreted proteins of CVC strains as well, and demonstrate its functionality by complementary activity assays. More severe symptoms were observed in Nicotiana tabacum inoculated with strain Fb7 compared to 9a5c. Our results support that systemic symptom development can be accelerated by strains that invest less in biofilm formation and more in plant colonization. This has potential application in modulating the bacterial-plant interaction and reducing disease severity.
Collapse
Affiliation(s)
- Jessica Brito de Souza
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia MG 38400-902, Brazil; (J.B.d.S.); (H.O.A.-S.); (A.G.d.S.); (L.R.G.); (R.N.)
| | - Hebréia Oliveira Almeida-Souza
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia MG 38400-902, Brazil; (J.B.d.S.); (H.O.A.-S.); (A.G.d.S.); (L.R.G.); (R.N.)
| | - Paulo Adriano Zaini
- Department of Plant Sciences, College of Agriculture and Environmental Sciences, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA;
| | - Mônica Neli Alves
- Department of Technology, School of Agricultural and Veterinary Studies, São Paulo State University (FCAV/UNESP), Via de Acesso Prof. Paulo Donato Castellane, Jaboticabal SP 14884-900, Brazil;
- Citriculture Defense Fund (Fundecitrus), Av. Dr. Adhemar Pereira de Barros 201, Araraquara SP 14807-040, Brazil
| | - Aline Gomes de Souza
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia MG 38400-902, Brazil; (J.B.d.S.); (H.O.A.-S.); (A.G.d.S.); (L.R.G.); (R.N.)
| | - Paulo Marques Pierry
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo SP 05508-000, Brazil; (P.M.P.); (A.M.d.S.)
| | - Aline Maria da Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo SP 05508-000, Brazil; (P.M.P.); (A.M.d.S.)
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia MG 38400-902, Brazil; (J.B.d.S.); (H.O.A.-S.); (A.G.d.S.); (L.R.G.); (R.N.)
| | - Abhaya M. Dandekar
- Department of Plant Sciences, College of Agriculture and Environmental Sciences, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA;
| | - Rafael Nascimento
- Institute of Biotechnology, Federal University of Uberlandia, Av. Amazonas, Bloco 2E, Campus Umuarama, Uberlandia MG 38400-902, Brazil; (J.B.d.S.); (H.O.A.-S.); (A.G.d.S.); (L.R.G.); (R.N.)
| |
Collapse
|
16
|
Vrisman CM, Deblais L, Helmy YA, Johnson R, Rajashekara G, Miller SA. Discovery and Characterization of Low-Molecular Weight Inhibitors of Erwinia tracheiphila. PHYTOPATHOLOGY 2020; 110:989-998. [PMID: 31971868 DOI: 10.1094/phyto-11-19-0440-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plant pathogenic bacteria in the genus Erwinia cause economically important diseases, including bacterial wilt of cucurbits caused by Erwinia tracheiphila. Conventional bactericides are insufficient to control this disease. Using high-throughput screening, 464 small molecules (SMs) with either cidal or static activity at 100 µM against a cucumber strain of E. tracheiphila were identified. Among them, 20 SMs (SM1 to SM20), composed of nine distinct chemical moiety structures, were cidal to multiple E. tracheiphila strains at 100 µM. These lead SMs had low toxicity to human cells and honey bees at 100 µM. No phytotoxicity was observed on melon plants at 100 µM, except when SM12 was either mixed with Silwet L-77 and foliar sprayed or when delivered through the roots. Lead SMs did not inhibit the growth of beneficial Pseudomonas and Enterobacter species but inhibited the growth of Bacillus species. Nineteen SMs were cidal to Xanthomonas cucurbitae and showed >50% growth inhibition against Pseudomonas syringae pv. lachrymans. In addition, 19 SMs were cidal or static against Erwinia amylovora in vitro. Five SMs demonstrated potential to suppress E. tracheiphila when foliar sprayed on melon plants at 2× the minimum bactericidal concentration. Thirteen SMs reduced Et load in melon plants when delivered via roots. Temperature and light did not affect the activity of SMs. In vitro cidal activity was observed after 3 to 10 h of exposure to these five SMs. Here, we report 19 SMs that provide chemical scaffolds for future development of bactericides against plant pathogenic bacterial species.
Collapse
Affiliation(s)
- Cláudio M Vrisman
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| | - Loïc Deblais
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| | - Yosra A Helmy
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| | - Reed Johnson
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| | - Gireesh Rajashekara
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| | - Sally A Miller
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691
| |
Collapse
|
17
|
Chemical Targeting and Manipulation of Type III Secretion in the Phytopathogen Xanthomonas campestris for Control of Disease. Appl Environ Microbiol 2020; 86:AEM.02349-19. [PMID: 31732574 PMCID: PMC6974632 DOI: 10.1128/aem.02349-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
The bacterium Xanthomonas campestris pv. campestris is known to cause black rot disease in many socioeconomically important vegetable crops worldwide. The management and control of black rot disease have been tackled with chemical and host resistance methods with variable success. This has motivated the development of alternative methods for preventing this disease. Here, we identify a set of novel small molecules capable of inhibiting X. campestris pv. campestris virulence, which may represent leading compounds for the further development of antivirulence agents that could be used in the control of black rot disease. Xanthomonas campestris pv. campestris is the causative agent of black rot disease in crucifer plants. This Gram-negative bacterium utilizes the type III secretion system (T3SS), encoded by the hrp gene cluster, to aid in its resistance to host defenses and the ability to cause disease. The T3SS injects a set of proteins known as effectors into host cells that come into contact with the bacterium. The T3SS is essential for the virulence and hypersensitive response (HR) of X. campestris pv. campestris, making it a potential target for disease control strategies. Using a unique and straightforward high-throughput screening method, we examined a large collection of diverse small molecules for their potential to modulate the T3SS without affecting the growth of X. campestris pv. campestris. Screening of 13,129 different compounds identified 10 small molecules that had a significant inhibitory influence on T3SS. Moreover, reverse transcription-quantitative PCR (qRT-PCR) assays demonstrated that all 10 compounds repress the expression of the hrp genes. Interestingly, the effect of these small molecules on hrp genes may be through the HpaS and ColS sensor kinase proteins that are key to the regulation of the T3SS in planta. Five of the compounds were also capable of inhibiting X. campestris pv. campestris virulence in a Chinese radish leaf-clipping assay. Furthermore, seven of the small molecules significantly weakened the HR in nonhost pepper plants challenged with X. campestris pv. campestris. Taken together, these small molecules may provide potential tool compounds for the further development of antivirulence agents that could be used in disease control of the plant pathogen X. campestris pv. campestris. IMPORTANCE The bacterium Xanthomonas campestris pv. campestris is known to cause black rot disease in many socioeconomically important vegetable crops worldwide. The management and control of black rot disease have been tackled with chemical and host resistance methods with variable success. This has motivated the development of alternative methods for preventing this disease. Here, we identify a set of novel small molecules capable of inhibiting X. campestris pv. campestris virulence, which may represent leading compounds for the further development of antivirulence agents that could be used in the control of black rot disease.
Collapse
|
18
|
Tao H, Tian H, Jiang S, Xiang X, Lin Y, Ahmed W, Tang R, Cui ZN. Synthesis and biological evaluation of 1,3,4-thiadiazole derivatives as type III secretion system inhibitors against Xanthomonas oryzae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 160:87-94. [PMID: 31519261 DOI: 10.1016/j.pestbp.2019.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) infection directly leads to a severe disease known as leaf blight, which is a major cause of yield loss of rice. Use of traditional bactericides has resulted in severe resistance in pathogenic bacteria. A new approach screening compounds that target the virulence factors rather than killing bacterial pathogens is imperative. In gram-negative bacteria, the type III secretion system (T3SS) is a conserved and significant virulence factor considered as a target for drug development. Therefore, we designed and synthesized a new series of 5-phenyl-2-furan carboxylic acid derivatives stitched with 2-mercapto-1,3,4-thiadiazole. Bioassays revealed that the title candidates attenuated the hypersensitive response through suppressing the promoter activity of a harpin gene hpa1 without affecting bacterial growth. Quantitative real time polymerase chain reaction (qRT-PCR) analysis demonstrated reduced the expression of several genes associated with T3SS, when title compounds were applied. Additionally, hrp gene cluster members, including hrpG and hrpX, had reduced mRNA levels. In vivo greenhouse tests showed that candidate compounds could alleviate the effects of Xoo infection in rice (Oryza sativa) and possess better protective activity against rice bacterial leaf blight than bismerthiazol and thiodiazole copper. All tested compounds were safe to rice. This work suggests there are new safe options for Xoo control in rice from these 1,3,4-thiadiazole derivatives.
Collapse
Affiliation(s)
- Hui Tao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Hao Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Shan Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Xuwen Xiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Yinuo Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Wasim Ahmed
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Riyuan Tang
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Zi-Ning Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
19
|
Ma YN, Chen L, Si NG, Jiang WJ, Zhou ZG, Liu JL, Zhang LQ. Identification of Benzyloxy Carbonimidoyl Dicyanide Derivatives as Novel Type III Secretion System Inhibitors via High-Throughput Screening. FRONTIERS IN PLANT SCIENCE 2019; 10:1059. [PMID: 31543889 PMCID: PMC6739442 DOI: 10.3389/fpls.2019.01059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
The type III secretion system (T3SS) in many Gram-negative bacterial pathogens is regarded as the most critical virulence determinant and an attractive target for novel anti-virulence drugs. In this study, we constructed a T3SS secretion reporter containing the β-lactamase gene fused with a signal peptide sequence of the T3SS effector gene, and established a high-throughput screening system for T3SS inhibitors in the plant pathogenic bacterium Acidovorax citrulli. From a library of 12,000 chemical compounds, we identified a series of benzyloxy carbonimidoyl dicyanide (BCD) derivatives that effectively blocked T3SS-dependent β-lactamase secretion. Substitution of halogens or nitro groups at the para-position on the benzene ring contributed to an increased inhibitory activity. One representative compound, BCD03 (3,4-dichloro-benzyloxy carbonimidoyl dicyanide), dramatically reduced pathogenicity of A. citrulli on melon seedlings, and attenuated hypersensitive responses in the non-host Nicotiana tabacum caused by pathogenic bacteria A. citrulli, Xanthomonas oryzae pv. oryzae and Pseudomonas syringae pv. tomato at sub-MIC concentrations. Western blotting assay further confirmed that BCD03 inhibited effector secretion from the above bacteria via T3SS in the liquid medium. Taken together, our data suggest that BCD derivatives act as novel inhibitors of T3SS in multiple plant bacterial pathogens.
Collapse
Affiliation(s)
- Yi-Nan Ma
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Liang Chen
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Co., Ltd, Shenyang, China
| | - Nai-Guo Si
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Co., Ltd, Shenyang, China
| | - Wen-Jun Jiang
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Zhi-Gang Zhou
- China-Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun-Li Liu
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Co., Ltd, Shenyang, China
| | - Li-Qun Zhang
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Jiang S, Li H, Ahmed W, Xiang X, Song G, Cui ZN. Discovery of Ethyl 2-Nitro-3-Arylacrylates Molecules as T3SS Inhibitor Reducing the Virulence of Plant Pathogenic Bacteria Xanthomonas. Front Microbiol 2019; 10:1874. [PMID: 31481941 PMCID: PMC6710329 DOI: 10.3389/fmicb.2019.01874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/29/2019] [Indexed: 11/13/2022] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a gram-negative pathogen which causes leaf blight disease. Known traditional bactericides are not much more effective in inhibiting this bacteria than before. Selecting the virulence factor of the bacteria as the target without affecting their growth has been considered as a novel method for developing new anti-microbial drugs. Type III secretion systems (T3SS) are one of the important and highly conserved virulence factors in most gram-negative pathogens, which has been considered as an effective target to develop new anti-microbial drugs. In order to discover potential anti-microbial drugs against Xoo pathogens, a series of ethyl 2-nitro-3-arylacrylates compounds were screened. Among them, the compounds I-9, I-12, and I-13 could highly inhibit the promoter activity of a harpin gene hpa1, which were used to further check for the influence on bacterial growth and on the hypersensitive response (HR) caused by Xoo bacteria on non-host plants. The results showed that above compounds could reduce HR without affecting bacterial growth and survival. Moreover, qRT-PCR analysis indicated that treatment with the three inhibitors (I-9, I-12, and I-13) could suppress the expression of the Xoo T3SS in different extent. The mRNA levels of representative genes in the hrp cluster, including the key regulatory genes hrpG and hrpX, were decreased. Last but not least, in vivo test ensured that the above compounds reduced the disease symptoms of Xoo on the rice and Xcc on the Chinese radish.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.,College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Hui Li
- College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Wasim Ahmed
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Xuwen Xiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Gaopeng Song
- College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Zi-Ning Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Synthesis and bioactivity of 1,3-thiazolidine-2-thione derivatives against type III secretion system of Xanthomonas oryzae. Bioorg Med Chem 2019; 27:3364-3371. [PMID: 31204227 DOI: 10.1016/j.bmc.2019.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/24/2019] [Accepted: 06/10/2019] [Indexed: 11/23/2022]
Abstract
Targeting virulence factors of bacterial without affecting their growth and survival, has been an initiative strategy for the development of novel anti-microbial agents. The type III secretion system (T3SS), one of essential and highly conserved virulence factors in most Gram-negative pathogenic bacteria, has been regarded as an effective target that developed new anti-microbial drugs. Xanthomonas oryzae pv. oryzae (Xoo) is one of the most important bacterial pathogens on rice, which causes leaf blight disease. To discover potential anti-virulence agents against the pathogens, a new series of 1,3-thiazolidine-2-thione derivatives containing 5-phenyl-2-furan were designed and synthesized. Their structures were characterized by 1H NMR, 13C NMR, MS, and elemental analysis. All the title compounds inhibited the promoter activity of a harpin gene hpa1, significantly, that were further checked for the impact on bacterial growth. The results indicated that treatment of Xoo with the title compound III-7 did not affect bacterial growth or survival. Moreover, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis showed that the expression of the Xoo T3SS was suppressed by treatment with the inhibitor. The mRNA levels of representative genes in the hrp (hypersensitive response and pathogenicity) cluster, as well as the regulatory genes hrpG and hrpX, were reduced. Finally, the in vivo test demonstrated that the compounds could reduce the disease symptoms of Xoo on the rice cultivar (Oryza sativa) IR24.
Collapse
|
22
|
Abstract
Antibiotic resistance is a major public health threat that has stimulated the scientific community to search for nontraditional therapeutic targets. Because virulence, but not the growth, of many Gram-negative bacterial pathogens depends on the multicomponent type three secretion system injectisome (T3SSi), the T3SSi has been an attractive target for identifying small molecules, peptides, and monoclonal antibodies that inhibit its function to render the pathogen avirulent. While many small-molecule lead compounds have been identified in whole-cell-based high-throughput screens (HTSs), only a few protein targets of these compounds are known; such knowledge is an important step to developing more potent and specific inhibitors. Evaluation of the efficacy of compounds in animal studies is ongoing. Some efforts involving the development of antibodies and vaccines that target the T3SSi are further along and include an antibody that is currently in phase II clinical trials. Continued research into these antivirulence therapies, used alone or in combination with traditional antibiotics, requires combined efforts from both pharmaceutical companies and academic labs.
Collapse
|
23
|
Fan S, Tian F, Fang L, Yang CH, He C. Transcriptional responses of Xanthomonas oryzae pv. oryzae to type III secretion system inhibitor ortho-coumaric acid. BMC Microbiol 2019; 19:163. [PMID: 31307395 PMCID: PMC6631524 DOI: 10.1186/s12866-019-1532-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/26/2019] [Indexed: 11/23/2022] Open
Abstract
Background We previously identified a plant-derived phenolic compound ortho-coumaric acid (OCA) as an inhibitor of type III secretion system (T3SS) of Xanthomonas oryzae pv. oryzae (Xoo), the pathogen causing bacterial leaf blight of rice, one of the most devastating bacterial diseases of this staple crop worldwide. However, the molecular mechanisms by which OCA suppresses T3SS and the transcriptional responses to the OCA treatments in Xoo remains unclear. Results The present study conducted the RNA-seq-based transcriptomic analysis to reveal changes in gene expression in Xoo in response to 30 min, 1 h, 3 h, and 6 h of OCA treatment. Results showed that OCA significantly inhibited the expression of T3SS genes after 30 min, and the inhibition also existed after 1 h, 3 h, and 6 h. After treatment for 30 min, membrane proteins in the functional category of cellular process was the predominant group affected, indicating that Xoo was in the early stress stage. Over time, more differentially-expressed genes (DEGs) gathered in the functional category of biological process. Analysis of common DEGs at all four of time points revealed the core elements of Xoo during the response to OCA treatment. Notable, a multidrug transporter cluster that consisted of a MarR-family protein (PXO_RS13760), a multidrug RND transporter (PXO_RS13755), a multidrug transporter (PXO_RS13750), and an MFS transporter (PXO_RS13745) were significantly up-regulated at all four of the time points. Although these three transporter genes were not upregulated by OCA in the PXO_RS13760 deletion mutant, the deficiency of PXO_RS13760 in Xoo did not affect T3SS transcript, and OCA still had the ability to inhibit the expression of T3SS in the mutant, suggesting that the MarR-family protein was involved in bacterial responses to OCA, but not direct OCA inhibition of T3SS in Xoo. Conclusions We analyzed the transcriptome of Xoo during OCA treatment at both early and late stages, which revealed the landscape of Xoo responses to OCA at the whole-genome transcription level. A multidrug transporter cluster was identified to be involved in the response process, but had no direct relation to T3SS in Xoo. Electronic supplementary material The online version of this article (10.1186/s12866-019-1532-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susu Fan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Shandong Academy of Sciences, Jinan, 250014, Shandong Province, China
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Liwei Fang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Chenyang He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
24
|
Tao H, Fan SS, Jiang S, Xiang X, Yan X, Zhang LH, Cui ZN. Small Molecule Inhibitors Specifically Targeting the Type III Secretion System of Xanthomonas oryzae on Rice. Int J Mol Sci 2019; 20:E971. [PMID: 30813400 PMCID: PMC6412923 DOI: 10.3390/ijms20040971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/27/2019] [Accepted: 02/03/2019] [Indexed: 11/24/2022] Open
Abstract
The initiative strategy for the development of novel anti-microbial agents usually uses the virulence factors of bacteria as a target, without affecting their growth and survival. The type III secretion system (T3SS), one of the essential virulence factors in most Gram-negative pathogenic bacteria because of its highly conserved construct, has been regarded as an effective target that developed new anti-microbial drugs. Xanthomonas oryzae pv. oryzae (Xoo) causes leaf blight diseases and is one of the most important pathogens on rice. To find potential anti-virulence agents against this pathogen, a number of natural compounds were screened for their effects on the T3SS of Xoo. Three of 34 compounds significantly inhibited the promoter activity of the harpin gene, hpa1, and were further checked for their impact on bacterial growth and on the hypersensitive response (HR) caused by Xoo on non-host tobacco plants. The results indicated that treatment of Xoo with CZ-1, CZ-4 and CZ-9 resulted in an obviously attenuated HR without affecting bacterial growth and survival. Moreover, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis showed that the expression of the Xoo T3SS was suppressed by treatment with the three inhibitors. The mRNA levels of representative genes in the hypersensitive response and pathogenicity (hrp) cluster, as well as the regulatory genes hrpG and hrpX, were reduced. Finally, the in vivo test demonstrated that the compounds could reduce the disease symptoms of Xoo on the rice cultivar (Oryza sativa) IR24.
Collapse
Affiliation(s)
- Hui Tao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Su-Su Fan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shan Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Xuwen Xiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaojing Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Lian-Hui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| | - Zi-Ning Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
25
|
Puigvert M, Solé M, López‐Garcia B, Coll NS, Beattie KD, Davis RA, Elofsson M, Valls M. Type III secretion inhibitors for the management of bacterial plant diseases. MOLECULAR PLANT PATHOLOGY 2019; 20:20-32. [PMID: 30062690 PMCID: PMC6430469 DOI: 10.1111/mpp.12736] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The identification of chemical compounds that prevent and combat bacterial diseases is fundamental for crop production. Bacterial virulence inhibitors are a promising alternative to classical control treatments, because they have a low environmental impact and are less likely to generate bacterial resistance. The major virulence determinant of most animal and plant bacterial pathogens is the type III secretion system (T3SS). In this work, we screened nine plant extracts and 12 isolated compounds-including molecules effective against human pathogens-for their capacity to inhibit the T3SS of plant pathogens and for their applicability as virulence inhibitors for crop protection. The screen was performed using a luminescent reporter system developed in the model pathogenic bacterium Ralstonia solanacearum. Five synthetic molecules, one natural product and two plant extracts were found to down-regulate T3SS transcription, most through the inhibition of the regulator hrpB. In addition, for three of the molecules, corresponding to salicylidene acylhydrazide derivatives, the inhibitory effect caused a dramatic decrease in the secretion capacity, which was translated into impaired plant responses. These candidate virulence inhibitors were then tested for their ability to protect plants. We demonstrated that salicylidene acylhydrazides can limit R. solanacearum multiplication in planta and protect tomato plants from bacterial speck caused by Pseudomonas syringae pv. tomato. Our work validates the efficiency of transcription reporters to discover compounds or natural product extracts that can be potentially applied to prevent bacterial plant diseases.
Collapse
Affiliation(s)
- Marina Puigvert
- Department of GeneticsUniversity of BarcelonaBarcelona08028CataloniaSpain
- Centre for Research in Agricultural Genomics (CSIC‐IRTA‐UAB‐UB)Bellaterra08193CataloniaSpain
| | - Montserrat Solé
- Centre for Research in Agricultural Genomics (CSIC‐IRTA‐UAB‐UB)Bellaterra08193CataloniaSpain
| | - Belén López‐Garcia
- Centre for Research in Agricultural Genomics (CSIC‐IRTA‐UAB‐UB)Bellaterra08193CataloniaSpain
| | - Núria S. Coll
- Centre for Research in Agricultural Genomics (CSIC‐IRTA‐UAB‐UB)Bellaterra08193CataloniaSpain
| | - Karren D. Beattie
- Griffith Institute for Drug DiscoveryGriffith UniversityQld4111Australia
| | - Rohan A. Davis
- Griffith Institute for Drug DiscoveryGriffith UniversityQld4111Australia
| | | | - Marc Valls
- Department of GeneticsUniversity of BarcelonaBarcelona08028CataloniaSpain
- Centre for Research in Agricultural Genomics (CSIC‐IRTA‐UAB‐UB)Bellaterra08193CataloniaSpain
| |
Collapse
|
26
|
Xiang X, Tao H, Jiang S, Zhang LH, Cui ZN. Synthesis and bioactivity of thiazolidin-2-cyanamide derivatives against type III secretion system of Xanthomonas oryzae on rice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 149:89-97. [PMID: 30033022 DOI: 10.1016/j.pestbp.2018.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/25/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Targeting virulence factors of bacterial without affecting their growth and survival, has been an initiative strategy for the development of novel anti-microbial agents. The type III secretion system (T3SS), one of essential and highly conserved virulence factors in most Gram-negative pathogenic bacteria, has been regarded as an effective target that developed new anti-microbial drugs. Xanthomonas oryzae pv. oryzae (Xoo) is one of the most Important bacterial pathogens on rice, which causes leaf blight disease. To discover potential anti-virulence agents against the pathogens, a new series of thiazolidin-2-cyanamide derivatives containing 5-phenyl-2-furan were designed and synthesized. Their structures were characterized by 1H NMR, 13C NMR, MS, and elemental analysis. All the title compounds inhibited the promoter activity of a harpin gene hpa1, significantly, that were further checked for the impact on bacterial growth and on the hypersensitive response (HR) caused by Xoo on non-host tobacco plants. The results indicated that treatment of Xoo with the title compounds II-2, II-3 and II-4 resulted in significantly attenuated HR without affecting bacterial growth or survival. Moreover, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis showed that the expression of the Xoo T3SS was suppressed by treatment with the three inhibitors. The mRNA levels of representative genes in the hrp (hypersensitive response and pathogenicity) cluster, as well as the regulatory genes hrpG and hrpX, were reduced. Finally, the in vivo test demonstrated that the compounds could reduce the disease symptoms of Xoo on the rice cultivar (Oryza sativa) IR24.
Collapse
Affiliation(s)
- Xuwen Xiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Hui Tao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Shan Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Lian-Hui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Ning Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
27
|
Zetterström CE, Uusitalo P, Qian W, Hinch S, Caraballo R, Grundström C, Elofsson M. Screening for Inhibitors of Acetaldehyde Dehydrogenase (AdhE) from Enterohemorrhagic Escherichia coli (EHEC). SLAS DISCOVERY 2018; 23:815-822. [PMID: 29630847 DOI: 10.1177/2472555218768062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Acetaldehyde dehydrogenase (AdhE) is a bifunctional acetaldehyde-coenzyme A (CoA) dehydrogenase and alcohol dehydrogenase involved in anaerobic metabolism in gram-negative bacteria. This enzyme was recently found to be a key regulator of the type three secretion (T3S) system in Escherichia coli. AdhE inhibitors can be used as tools to study bacterial virulence and a starting point for discovery of novel antibacterial agents. We developed a robust enzymatic assay, based on the acetaldehyde-CoA dehydrogenase activity of AdhE using both absorption and fluorescence detection models (Z' > 0.7). This assay was used to screen ~11,000 small molecules in 384-well format that resulted in three hits that were confirmed by resynthesis and validation. All three compounds are noncompetitive with respect to acetaldehyde and display a clear dose-response effect with hill slopes of 1-2. These new inhibitors will be used as chemical tools to study the interplay between metabolism and virulence and the role of AdhE in T3S regulation in gram-negative bacteria, and as starting points for the development of novel antibacterial agents.
Collapse
Affiliation(s)
- Caroline E Zetterström
- 1 Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Pia Uusitalo
- 1 Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Weixing Qian
- 1 Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Shannon Hinch
- 1 Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Rémi Caraballo
- 1 Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Christin Grundström
- 1 Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Mikael Elofsson
- 1 Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
28
|
Lee JH, Zhao Y. Integration of multiple stimuli-sensing systems to regulate HrpS and type III secretion system in Erwinia amylovora. Mol Genet Genomics 2017; 293:187-196. [PMID: 28965178 DOI: 10.1007/s00438-017-1376-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/20/2017] [Indexed: 12/13/2022]
Abstract
The bacterial enhancer binding protein (bEBP) HrpS is essential for Erwinia amylovora virulence by activating the type III secretion system (T3SS). However, how the hrpS gene is regulated remains poorly understood in E. amylovora. In this study, 5' rapid amplification of cDNA ends and promoter deletion analyses showed that the hrpS gene contains two promoters driven by HrpX/HrpY and the Rcs phosphorelay system, respectively. Electrophoretic mobility shift and gene expression assays demonstrated that integration host factor IHF positively regulates hrpS expression through directly binding the hrpX promoter and positively regulating hrpX/hrpY expression. Moreover, hrpX expression was down-regulated in the relA/spoT ((p)ppGpp-deficient) mutant and the dksA mutant, but up-regulated when the wild-type strain was treated with serine hydroxamate, which induced (p)ppGpp-mediated stringent response. Furthermore, the csrA mutant showed significantly reduced transcripts of major hrpS activators, including the hrpX/hrpY, rcsA and rcsB genes, indicating that CsrA is required for full hrpS expression. On the other hand, the csrB mutant exhibited up-regulation of the rcsA and rcsB genes, and hrpS expression was largely diminished in the csrB/rcsB mutant, indicating that the Rcs system is mainly responsible for the increased hrpS expression in the csrB mutant. These findings suggest that E. amylovora recruits multiple stimuli-sensing systems, including HrpX/HrpY, the Rcs phosphorelay system and the Gac-Csr system, to regulate hrpS and T3SS gene expression.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA.
| |
Collapse
|
29
|
Yang L, Li S, Qin X, Jiang G, Chen J, Li B, Yao X, Liang P, Zhang Y, Ding W. Exposure to Umbelliferone Reduces Ralstonia solanacearum Biofilm Formation, Transcription of Type III Secretion System Regulators and Effectors and Virulence on Tobacco. Front Microbiol 2017; 8:1234. [PMID: 28713361 PMCID: PMC5492427 DOI: 10.3389/fmicb.2017.01234] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/19/2017] [Indexed: 12/04/2022] Open
Abstract
Ralstonia solanacearum is one of the most devastating phytopathogens and causes bacterial wilt, which leads to severe economic loss due to its worldwide distribution and broad host range. Certain plant-derived compounds (PDCs) can impair bacterial virulence by suppressing pathogenic factors of R. solanacearum. However, the inhibitory mechanisms of PDCs in bacterial virulence remain largely unknown. In this study, we screened a library of coumarins and derivatives, natural PDCs with fused benzene and α-pyrone rings, for their effects on expression of the type III secretion system (T3SS) of R. solanacearum. Here, we show that umbelliferone (UM), a 7-hydroxycoumarin, suppressed T3SS regulator gene expression through HrpG–HrpB and PrhG–HrpB pathways. UM decreased gene expression of six type III effectors (RipX, RipD, RipP1, RipR, RipTAL, and RipW) of 10 representative effector genes but did not alter T2SS expression. In addition, biofilm formation of R. solanacearum was significantly reduced by UM, though swimming activity was not affected. We then observed that UM suppressed the wilting disease process by reducing colonization and proliferation in tobacco roots and stems. In summary, the findings reveal that UM may serve as a plant-derived inhibitor to manipulate R. solanacearum T3SS and biofilm formation, providing proof of concept that these key virulence factors are potential targets for the integrated control of bacterial wilt.
Collapse
Affiliation(s)
- Liang Yang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest UniversityChongqing, China
| | - Shili Li
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest UniversityChongqing, China
| | - Xiyun Qin
- Yunnan Academy of Tobacco Agricultural ResearchYuxi, China
| | - Gaofei Jiang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest UniversityChongqing, China.,Laboratoire des Interactions Plantes-Microorganismes, UMR441, Institut National de la Recherche AgronomiqueCastanet-Tolosan, France
| | - Juanni Chen
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest UniversityChongqing, China
| | - Bide Li
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest UniversityChongqing, China
| | - Xiaoyuan Yao
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest UniversityChongqing, China
| | - Peibo Liang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest UniversityChongqing, China
| | - Yong Zhang
- College of Resources and Environment, Southwest UniversityChongqing, China
| | - Wei Ding
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest UniversityChongqing, China
| |
Collapse
|
30
|
The salicylidene acylhydrazide INP0341 attenuates Pseudomonas aeruginosa virulence in vitro and in vivo. J Antibiot (Tokyo) 2017; 70:937-943. [PMID: 28588224 DOI: 10.1038/ja.2017.64] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/19/2017] [Accepted: 04/23/2017] [Indexed: 11/08/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can be very hard to treat because of high resistance to different antibiotics and alternative treatment regimens are greatly needed. An alternative or a complement to traditional antibiotic is to inhibit virulence of the bacteria. The salicylidene acylhydrazide, INP0341, belongs to a class of compounds that has previously been shown to inhibit virulence in a number of Gram-negative bacteria. In this study, the virulence blocking effect of INP0341 on P. aeruginosa was studied in vitro and in vivo. Two important and closely related virulence system were examined, the type III secretion system (T3SS) that translocates virulence effectors into the cytosol of the host cell to evade immune defense and facilitate colonization and the flagella system, needed for motility and biofilm formation. INP0341 was shown to inhibit expression and secretion of the T3SS toxin exoenzyme S (ExoS) and to prevent bacterial motility on agar plates and biofilm formation. In addition, INP0341 showed an increased survival of P. aeruginosa-infected mice. In conclusion, INP0341 attenuates P. aeruginosa virulence.
Collapse
|
31
|
Fan S, Tian F, Li J, Hutchins W, Chen H, Yang F, Yuan X, Cui Z, Yang C, He C. Identification of phenolic compounds that suppress the virulence of Xanthomonas oryzae on rice via the type III secretion system. MOLECULAR PLANT PATHOLOGY 2017; 18:555-568. [PMID: 27084974 PMCID: PMC6638228 DOI: 10.1111/mpp.12415] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The targeting of bacterial type III secretion systems (T3SSs), which are critical virulence factors in most Gram-negative pathogens, is regarded as an alternative strategy for the development of novel anti-microbial drugs. Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc) are two of the most important bacterial pathogens on rice, which cause leaf blight and leaf streak diseases, respectively. To identify potential anti-virulence drugs against these two pathogens, we screened a library of plant phenolic compounds and derivatives for their effects on the Xoo T3SS. Ten of 56 compounds significantly inhibited the promoter activity of a harpin gene, hpa1. These inhibitors were further tested for their impact on the hypersensitive response (HR) caused by Xoo on non-host tobacco plants. The results showed that pretreatment of Xoo with TS006 (o-coumaric acid, OCA), TS010, TS015 and TS018 resulted in significantly attenuated HR without affecting bacterial growth or survival. In addition, Cya translocation assays demonstrated that the translocation of two T3 effectors was suppressed by the four inhibitors. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis showed that mRNA levels of representative genes in the hrp (hypersensitive response and pathogenicity) cluster, as well as the regulatory genes hrpG and hrpX, were reduced by treatment with the four inhibitors, suggesting that expression of the Xoo T3SS was suppressed. The expression of other virulence factors was not suppressed, which indicated possible T3SS-specific inhibition. Finally, we demonstrated that these inhibitors reduced the disease symptoms of Xoo and Xoc on the rice cultivar (Oryza sativa) IR24 to varying extents.
Collapse
Affiliation(s)
- Susu Fan
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing100193China
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing100193China
| | - Jianyu Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing100193China
| | - William Hutchins
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWI 53211USA
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing100193China
| | - Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing100193China
| | - Xiaochen Yuan
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWI 53211USA
| | - Zining Cui
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Ching‐Hong Yang
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWI 53211USA
| | - Chenyang He
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing100193China
| |
Collapse
|
32
|
Patel RR, Sundin GW, Yang CH, Wang J, Huntley RB, Yuan X, Zeng Q. Exploration of Using Antisense Peptide Nucleic Acid (PNA)-cell Penetrating Peptide (CPP) as a Novel Bactericide against Fire Blight Pathogen Erwinia amylovora. Front Microbiol 2017; 8:687. [PMID: 28469617 PMCID: PMC5395615 DOI: 10.3389/fmicb.2017.00687] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 04/04/2017] [Indexed: 01/08/2023] Open
Abstract
Erwinia amylovora is a Gram-negative bacterial plant pathogen in the family Enterobacteriaceae and is the causal agent of fire blight, a devastating disease of apple and pear. Fire blight is traditionally managed by the application of the antibiotic streptomycin during bloom, but this strategy has been challenged by the development and spread of streptomycin resistance. Thus, there is an urgent need for effective, specific, and sustainable control alternatives for fire blight. Antisense antimicrobials are oligomers of nucleic acid homologs with antisense sequence of essential genes in bacteria. The binding of these molecules to the mRNA of essential genes can result in translational repression and antimicrobial effect. Here, we explored the possibility of developing antisense antimicrobials against E. amylovora and using these compounds in fire blight control. We determined that a 10-nucleotide oligomer of peptide nucleic acid (PNA) targeting the start codon region of an essential gene acpP is able to cause complete growth inhibition of E. amylovora. We found that conjugation of cell penetrating peptide (CPP) to PNA is essential for the antimicrobial effect, with CPP1 [(KFF)3K] being the most effective against E. amylovora. The minimal inhibitory concentration (MIC) of anti-acpP-CPP1 (2.5 μM) is comparable to the MIC of streptomycin (2 μM). Examination of the antimicrobial mechanisms demonstrated that anti-acpP-CPP1 caused dose-dependent reduction of acpP mRNA in E. amylovora upon treatment and resulted in cell death (bactericidal effect). Anti-acpP-CPP1 (100 μM) is able to effectively limit the pathogen growth on stigmas of apple flowers, although less effective than streptomycin. Finally, unlike streptomycin that does not display any specificity in inhibiting pathogen growth, anti-acpP-CPP1 has more specific antimicrobial effect against E. amylovora. In summary, we demonstrated that PNA-CPP can cause an effective, specific antimicrobial effect against E. amylovora and may provide the basis for a novel approach for fire blight control.
Collapse
Affiliation(s)
- Ravi R. Patel
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New HavenCT, USA
| | - George W. Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East LansingMI, USA
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin–Milwaukee, MilwaukeeWI, USA
| | - Jie Wang
- Department of Plant Biology, Michigan State University, East LansingMI, USA
| | - Regan B. Huntley
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New HavenCT, USA
| | - Xiaochen Yuan
- Department of Biological Sciences, University of Wisconsin–Milwaukee, MilwaukeeWI, USA
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New HavenCT, USA
| |
Collapse
|
33
|
Zhang Y, Li J, Zhang W, Wang R, Qiu Q, Luo F, Hikichi Y, Ohnishi K, Ding W. Ferulic Acid, But Not All Hydroxycinnamic Acids, Is a Novel T3SS Inducer of Ralstonia solanacearum and Promotes Its Infection Process in Host Plants under Hydroponic Condition. FRONTIERS IN PLANT SCIENCE 2017; 8:1595. [PMID: 28955375 PMCID: PMC5601421 DOI: 10.3389/fpls.2017.01595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/30/2017] [Indexed: 05/20/2023]
Abstract
Hydroxycinnamic acids (HCAs) are typical monocyclic phenylpropanoids, including cinnamic acid (Cin), coumaric acid (Cou), caffeic acid (Caf), ferulic acid (FA) and their isomers, and involved in the interactions between pathogens and host plants. Here, we focused on the impact of HCAs on expression of type III secretion system (T3SS) in Ralstonia solanacearum. FA significantly induced the expression of the T3SS and some type III effectors (T3Es) genes in hrp-inducing medium, while did not the other HCAs. However, exogenously supplemented FA did not affect the T3SS expression in planta and the elicitation of the hypersensitive response (HR) in tobacco leaves. Consistent with its central roles in pathogenicity, the FA-induced expression of the T3SS led to significant promotion on infection process of R. solanacearum in tomato plants under hydroponics cultivation. Moreover, the FA-induced expression of the T3SS was specifically mediated by the well-characterized signaling cascade PrhA-prhI/R-PrhJ-HrpG-HrpB, independent of the other known regulatory pathways. In summary, our results demonstrated that FA, a novel inducer of the T3SS in R. solanacearum, was able to promote its infection process in host plants under hydroponics condition.
Collapse
Affiliation(s)
- Yong Zhang
- College of Resources and Environment, Southwest UniversityChongqing, China
| | - Jing Li
- College of Resources and Environment, Southwest UniversityChongqing, China
- The Ninth Peoples Hospital of ChongqingChongqing, China
| | - Weiqi Zhang
- College of Resources and Environment, Southwest UniversityChongqing, China
| | - Rongsheng Wang
- College of Plant Protection, Southwest UniversityChongqing, China
| | - Qiaoqing Qiu
- College of Resources and Environment, Southwest UniversityChongqing, China
| | - Feng Luo
- College of Resources and Environment, Southwest UniversityChongqing, China
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Kochi UniversityKochi, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi UniversityKochi, Japan
- *Correspondence: Kouhei Ohnishi, Wei Ding,
| | - Wei Ding
- College of Plant Protection, Southwest UniversityChongqing, China
- *Correspondence: Kouhei Ohnishi, Wei Ding,
| |
Collapse
|
34
|
Sundin GW, Castiblanco LF, Yuan X, Zeng Q, Yang C. Bacterial disease management: challenges, experience, innovation and future prospects: Challenges in Bacterial Molecular Plant Pathology. MOLECULAR PLANT PATHOLOGY 2016; 17:1506-1518. [PMID: 27238249 PMCID: PMC6638406 DOI: 10.1111/mpp.12436] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant diseases caused by bacterial pathogens place major constraints on crop production and cause significant annual losses on a global scale. The attainment of consistent effective management of these diseases can be extremely difficult, and management potential is often affected by grower reliance on highly disease-susceptible cultivars because of consumer preferences, and by environmental conditions favouring pathogen development. New and emerging bacterial disease problems (e.g. zebra chip of potato) and established problems in new geographical regions (e.g. bacterial canker of kiwifruit in New Zealand) grab the headlines, but the list of bacterial disease problems with few effective management options is long. The ever-increasing global human population requires the continued stable production of a safe food supply with greater yields because of the shrinking areas of arable land. One major facet in the maintenance of the sustainability of crop production systems with predictable yields involves the identification and deployment of sustainable disease management solutions for bacterial diseases. In addition, the identification of novel management tactics has also come to the fore because of the increasing evolution of resistance to existing bactericides. A number of central research foci, involving basic research to identify critical pathogen targets for control, novel methodologies and methods of delivery, are emerging that will provide a strong basis for bacterial disease management into the future. Near-term solutions are desperately needed. Are there replacement materials for existing bactericides that can provide effective disease management under field conditions? Experience should inform the future. With prior knowledge of bactericide resistance issues evolving in pathogens, how will this affect the deployment of newer compounds and biological controls? Knowledge is critical. A comprehensive understanding of bacterial pathosystems is required to not only identify optimal targets in the pathogens, but also optimal seasonal timings for deployment. Host resistance to effectors must be exploited, carefully and correctly. Are there other candidate genes that could be targeted in transgenic approaches? How can new technologies (CRISPR, TALEN, etc.) be most effectively used to add sustainable disease resistance to existing commercially desirable plant cultivars? We need an insider's perspective on the management of systemic pathogens. In addition to host resistance or reduced sensitivity, are there other methods that can be used to target these pathogen groups? Biological systems are variable. Can biological control strategies be improved for bacterial disease management and be made more predictable in function? The answers to the research foci outlined above are not all available, as will become apparent in this article, but we are heading in the right direction. In this article, we summarize the contributions from past experiences in bacterial disease management, and also describe how advances in bacterial genetics, genomics and host-pathogen interactions are informing novel strategies in virulence inhibition and in host resistance. We also outline potential innovations that could be exploited as the pressures to maximize a safe and productive food supply continue to become more numerous and more complex.
Collapse
Affiliation(s)
- George W. Sundin
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMI48824USA
| | - Luisa F. Castiblanco
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMI48824USA
| | - Xiaochen Yuan
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWI53211USA
| | - Quan Zeng
- Department of Plant Pathology and Ecology, Connecticut Agricultural Experiment StationNew HavenCT06504USA
| | - Ching‐Hong Yang
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWI53211USA
| |
Collapse
|
35
|
Ancona V, Lee JH, Zhao Y. The RNA-binding protein CsrA plays a central role in positively regulating virulence factors in Erwinia amylovora. Sci Rep 2016; 6:37195. [PMID: 27845410 PMCID: PMC5109040 DOI: 10.1038/srep37195] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/25/2016] [Indexed: 11/09/2022] Open
Abstract
The GacS/GacA two-component system (also called GrrS/GrrA) is a global regulatory system which is highly conserved among gamma-proteobacteria. This system positively regulates non-coding small regulatory RNA csrB, which in turn binds to the RNA-binding protein CsrA. However, how GacS/GacA-Csr system regulates virulence traits in E. amylovora remains unknown. Results from mutant characterization showed that the csrB mutant was hypermotile, produced higher amount of exopolysaccharide amylovoran, and had increased expression of type III secretion (T3SS) genes in vitro. In contrast, the csrA mutant exhibited complete opposite phenotypes, including non-motile, reduced amylovoran production and expression of T3SS genes. Furthermore, the csrA mutant did not induce hypersensitive response on tobacco or cause disease on immature pear fruits, indicating that CsrA is a positive regulator of virulence factors. These findings demonstrated that CsrA plays a critical role in E. amylovora virulence and suggested that negative regulation of virulence by GacS/GacA acts through csrB sRNA, which binds to CsrA and neutralizes its positive effect on T3SS gene expression, flagellar formation and amylovoran production. Future research will be focused on determining the molecular mechanism underlying the positive regulation of virulence traits by CsrA.
Collapse
Affiliation(s)
- Veronica Ancona
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urban 61801, USA
| | - Jae Hoon Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urban 61801, USA
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urban 61801, USA
| |
Collapse
|
36
|
Sundin GW, Wang N, Charkowski AO, Castiblanco LF, Jia H, Zhao Y. Perspectives on the Transition From Bacterial Phytopathogen Genomics Studies to Applications Enhancing Disease Management: From Promise to Practice. PHYTOPATHOLOGY 2016; 106:1071-1082. [PMID: 27183301 DOI: 10.1094/phyto-03-16-0117-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The advent of genomics has advanced science into a new era, providing a plethora of "toys" for researchers in many related and disparate fields. Genomics has also spawned many new fields, including proteomics and metabolomics, furthering our ability to gain a more comprehensive view of individual organisms and of interacting organisms. Genomic information of both bacterial pathogens and their hosts has provided the critical starting point in understanding the molecular bases of how pathogens disrupt host cells to cause disease. In addition, knowledge of the complete genome sequence of the pathogen provides a potentially broad slate of targets for the development of novel virulence inhibitors that are desperately needed for disease management. Regarding plant bacterial pathogens and disease management, the potential for utilizing genomics resources in the development of durable resistance is enhanced because of developing technologies that enable targeted modification of the host. Here, we summarize the role of genomics studies in furthering efforts to manage bacterial plant diseases and highlight novel genomics-enabled strategies heading down this path.
Collapse
Affiliation(s)
- George W Sundin
- First and fourth authors: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing; second and fifth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Lake Alfred; third author: Department of Plant Pathology, University of Wisconsin-Madison; sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign
| | - Nian Wang
- First and fourth authors: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing; second and fifth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Lake Alfred; third author: Department of Plant Pathology, University of Wisconsin-Madison; sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign
| | - Amy O Charkowski
- First and fourth authors: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing; second and fifth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Lake Alfred; third author: Department of Plant Pathology, University of Wisconsin-Madison; sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign
| | - Luisa F Castiblanco
- First and fourth authors: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing; second and fifth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Lake Alfred; third author: Department of Plant Pathology, University of Wisconsin-Madison; sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign
| | - Hongge Jia
- First and fourth authors: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing; second and fifth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Lake Alfred; third author: Department of Plant Pathology, University of Wisconsin-Madison; sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign
| | - Youfu Zhao
- First and fourth authors: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing; second and fifth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Lake Alfred; third author: Department of Plant Pathology, University of Wisconsin-Madison; sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign
| |
Collapse
|
37
|
Global Analysis of Type Three Secretion System and Quorum Sensing Inhibition of Pseudomonas savastanoi by Polyphenols Extracts from Vegetable Residues. PLoS One 2016; 11:e0163357. [PMID: 27668874 PMCID: PMC5036890 DOI: 10.1371/journal.pone.0163357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/06/2016] [Indexed: 11/30/2022] Open
Abstract
Protection of plants against bacterial diseases still mainly relies on the use of chemical pesticides, which in Europe correspond essentially to copper-based compounds. However, recently plant diseases control is oriented towards a rational use of molecules and extracts, generally with natural origin, with lower intrinsic toxicity and a reduced negative environmental impact. In this work, polyphenolic extracts from vegetable no food/feed residues of typical Mediterranean crops, as Olea europaea, Cynara scolymus, and Vitis vinifera were obtained and their inhibitory activity on the Type Three Secretion System (TTSS) and the Quorum Sensing (QS) of the Gram-negative phytopathogenic bacterium Pseudomonas savastanoi pv. nerii strain Psn23 was assessed. Extract from green tea (Camellia sinensis) was used as a positive control. Collectively, the data obtained through gfp-promoter fusion system and real-time PCR show that all the polyphenolic extracts here studied have a high inhibitory activity on both the TTSS and QS of Psn23, without any depressing effect on bacterial viability. Extracts from green tea and grape seeds were shown to be the most active. Such activity was confirmed in planta by a strong reduction in the ability of Psn23 to develop hyperplastic galls on explants from adult oleander plants, as well as to elicit hypersensitive response on tobacco. By using a newly developed Congo red assay and an ELISA test, we demonstrated that the TTSS-targeted activity of these polyphenolic extracts also affects the TTSS pilus assembly. In consideration of the potential application of polyphenolic extracts in plant protection, the absence of any toxicity of these polyphenolic compounds was also assessed. A widely and evolutionary conserved molecular target such as Ca2+-ATPase, essential for the survival of any living organism, was used for the toxicity assessment.
Collapse
|
38
|
Lee JH, Sundin GW, Zhao Y. Identification of the HrpS binding site in the hrpL promoter and effect of the RpoN binding site of HrpS on the regulation of the type III secretion system in Erwinia amylovora. MOLECULAR PLANT PATHOLOGY 2016; 17:691-702. [PMID: 26440313 PMCID: PMC6638409 DOI: 10.1111/mpp.12324] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The type III secretion system (T3SS) is a key pathogenicity factor in Erwinia amylovora. Previous studies have demonstrated that the T3SS in E. amylovora is transcriptionally regulated by an RpoN-HrpL sigma factor cascade, which is activated by the bacterial alarmone (p)ppGpp. In this study, the binding site of HrpS, an enhancer binding protein, was identified for the first time in plant-pathogenic bacteria. Complementation of the hrpL mutant with promoter deletion constructs of the hrpL gene and promoter activity analyses using various lengths of the hrpL promoter fused to a promoter-less green fluorescent protein (gfp) reporter gene delineated the upstream region for HrpS binding. Sequence analysis revealed a dyad symmetry sequence between -138 and -125 nucleotides (TGCAA-N4-TTGCA) as the potential HrpS binding site, which is conserved in the promoter of the hrpL gene among plant enterobacterial pathogens. Results of quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) and electrophoresis mobility shift assay coupled with site-directed mutagenesis (SDM) analysis showed that the intact dyad symmetry sequence was essential for HrpS binding, full activation of T3SS gene expression and virulence. In addition, the role of the GAYTGA motif (RpoN binding site) of HrpS in the regulation of T3SS gene expression in E. amylovora was characterized by complementation of the hrpS mutant using mutant variants generated by SDM. Results showed that a Y100F substitution of HrpS complemented the hrpS mutant, whereas Y100A and Y101A substitutions did not. These results suggest that tyrosine (Y) and phenylalanine (F) function interchangeably in the conserved GAYTGA motif of HrpS in E. amylovora.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - George W Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
39
|
Lee JH, Zhao Y. Integration Host Factor Is Required for RpoN-Dependent hrpL Gene Expression and Controls Motility by Positively Regulating rsmB sRNA in Erwinia amylovora. PHYTOPATHOLOGY 2016; 106:29-36. [PMID: 26368515 DOI: 10.1094/phyto-07-15-0170-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Erwinia amylovora requires an hrp-type III secretion system (T3SS) to cause disease. It has been reported that HrpL, the master regulator of T3SS, is transcriptionally regulated by sigma factor 54 (RpoN), YhbH, and HrpS. In this study, the role of integration host factor (IHF) in regulating hrpL and T3SS gene expression was investigated. IHF is a nucleoid-associated protein that regulates gene expression by influencing nucleoid structure and DNA bending. Our results showed that both ihfA and ihfB mutants of E. amylovora did not induce necrotic lesions on pear fruits. Growth of both mutants was greatly reduced, and expression of the hrpL and T3SS genes was significantly down-regulated as compared with those of the wild type. In addition, expression of the ihfA, but not the ihfB gene, was under auto-suppression by IHF. Furthermore, both ihfA and ihfB mutants were hypermotile, due to significantly reduced expression of small RNA (sRNA) rsmB. Electrophoresis mobility shift assay further confirmed that IHF binds to the promoters of the hrpL and ihfA genes, as well as the rsmB sRNA gene. These results indicate that IHF is required for RpoN-dependent hrpL gene expression and virulence, and controls motility by positively regulating the rsmB sRNA in E. amylovora.
Collapse
Affiliation(s)
- Jae Hoon Lee
- First and second authors: Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Youfu Zhao
- First and second authors: Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
40
|
Wu D, Ding W, Zhang Y, Liu X, Yang L. Oleanolic Acid Induces the Type III Secretion System of Ralstonia solanacearum. Front Microbiol 2015; 6:1466. [PMID: 26732647 PMCID: PMC4686671 DOI: 10.3389/fmicb.2015.01466] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/07/2015] [Indexed: 12/18/2022] Open
Abstract
Ralstonia solanacearum, the causal agent of bacterial wilt, can naturally infect a wide range of host plants. The type III secretion system (T3SS) is a major virulence determinant in this bacterium. Studies have shown that plant-derived compounds are able to inhibit or induce the T3SS in some plant pathogenic bacteria, though no specific T3SS inhibitor or inducer has yet been identified in R. solanacearum. In this study, a total of 50 different compounds were screened and almost half of them (22 of 50) significantly inhibited or induced the T3SS expression of R. solanacearum. Based on the strong induction activity on T3SS, the T3SS inducer oleanolic acid (OA) was chosen for further study. We found that OA induced the expression of T3SS through the HrpG-HrpB pathway. Some type III effector genes were induced in T3SS inducing medium supplemented with OA. In addition, OA targeted only the T3SS and did not affect other virulence determinants. Finally, we observed that induction of T3SS by OA accelerated disease progress on tobacco. Overall our results suggest that plant-derived compounds are an abundant source of R. solanacearum T3SS regulators, which could prove useful as tools to interrogate the regulation of this key virulence pathway.
Collapse
Affiliation(s)
- Dousheng Wu
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University Chongqing, China
| | - Wei Ding
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University Chongqing, China
| | - Yong Zhang
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University Chongqing, China
| | - Xuejiao Liu
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University Chongqing, China
| | - Liang Yang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University Chongqing, China
| |
Collapse
|
41
|
Charro N, Mota LJ. Approaches targeting the type III secretion system to treat or prevent bacterial infections. Expert Opin Drug Discov 2015; 10:373-87. [DOI: 10.1517/17460441.2015.1019860] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nuno Charro
- 1UCIBIO, REQUIMTE, Departmento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - Luís Jaime Mota
- 2UCIBIO, REQUIMTE, Departmento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal ;
| |
Collapse
|
42
|
The bacterial alarmone (p)ppGpp activates the type III secretion system in Erwinia amylovora. J Bacteriol 2015; 197:1433-43. [PMID: 25666138 DOI: 10.1128/jb.02551-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED The hypersensitive response and pathogenicity (hrp) type III secretion system (T3SS) is a key pathogenicity factor in Erwinia amylovora. Previous studies have demonstrated that the T3SS in E. amylovora is transcriptionally regulated by a sigma factor cascade. In this study, the role of the bacterial alarmone ppGpp in activating the T3SS and virulence of E. amylovora was investigated using ppGpp mutants generated by Red recombinase cloning. The virulence of a ppGpp-deficient mutant (ppGpp(0)) as well as a dksA mutant of E. amylovora was completely impaired, and bacterial growth was significantly reduced, suggesting that ppGpp is required for full virulence of E. amylovora. Expression of T3SS genes was greatly downregulated in the ppGpp(0) and dksA mutants. Western blotting showed that accumulations of the HrpA protein in the ppGpp(0) and dksA mutants were about 10 and 4%, respectively, of that in the wild-type strain. Furthermore, higher levels of ppGpp resulted in a reduced cell size of E. amylovora. Moreover, serine hydroxamate and α-methylglucoside, which induce amino acid and carbon starvation, respectively, activated hrpA and hrpL promoter activities in hrp-inducing minimal medium. These results demonstrated that ppGpp and DksA play central roles in E. amylovora virulence and indicated that E. amylovora utilizes ppGpp as an internal messenger to sense environmental/nutritional stimuli for regulation of the T3SS and virulence. IMPORTANCE The type III secretion system (T3SS) is a key pathogenicity factor in Gram-negative bacteria. Fully elucidating how the T3SS is activated is crucial for comprehensively understanding the function of the T3SS, bacterial pathogenesis, and survival under stress conditions. In this study, we present the first evidence that the bacterial alarmone ppGpp-mediated stringent response activates the T3SS through a sigma factor cascade, indicating that ppGpp acts as an internal messenger to sense environmental/nutritional stimuli for the regulation of the T3SS and virulence in plant-pathogenic bacteria. Furthermore, the recovery of an spoT null mutant, which displayed very unique phenotypes, suggested that small proteins containing a single ppGpp hydrolase domain are functional.
Collapse
|
43
|
Ramos LS, Lehman BL, Peter KA, McNellis TW. Mutation of the Erwinia amylovora argD gene causes arginine auxotrophy, nonpathogenicity in apples, and reduced virulence in pears. Appl Environ Microbiol 2014; 80:6739-49. [PMID: 25172854 PMCID: PMC4249043 DOI: 10.1128/aem.02404-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/20/2014] [Indexed: 11/20/2022] Open
Abstract
Fire blight is caused by Erwinia amylovora and is the most destructive bacterial disease of apples and pears worldwide. In this study, we found that E. amylovora argD(1000)::Tn5, an argD Tn5 transposon mutant that has the Tn5 transposon inserted after nucleotide 999 in the argD gene-coding region, was an arginine auxotroph that did not cause fire blight in apple and had reduced virulence in immature pear fruits. The E. amylovora argD gene encodes a predicted N-acetylornithine aminotransferase enzyme, which is involved in the production of the amino acid arginine. A plasmid-borne copy of the wild-type argD gene complemented both the nonpathogenic and the arginine auxotrophic phenotypes of the argD(1000)::Tn5 mutant. However, even when mixed with virulent E. amylovora cells and inoculated onto immature apple fruit, the argD(1000)::Tn5 mutant still failed to grow, while the virulent strain grew and caused disease. Furthermore, the pCR2.1-argD complementation plasmid was stably maintained in the argD(1000)::Tn5 mutant growing in host tissues without any antibiotic selection. Therefore, the pCR2.1-argD complementation plasmid could be useful for the expression of genes, markers, and reporters in E. amylovora growing in planta, without concern about losing the plasmid over time. The ArgD protein cannot be considered an E. amylovora virulence factor because the argD(1000)::Tn5 mutant was auxotrophic and had a primary metabolism defect. Nevertheless, these results are informative about the parasitic nature of the fire blight disease interaction, since they indicate that E. amylovora cannot obtain sufficient arginine from apple and pear fruit tissues or from apple vegetative tissues, either at the beginning of the infection process or after the infection has progressed to an advanced state.
Collapse
Affiliation(s)
- Laura S Ramos
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA Graduate Degree Program in Plant Pathology, Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brian L Lehman
- The Pennsylvania State University Fruit Research and Extension Center, Biglerville, Pennsylvania, USA
| | - Kari A Peter
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA The Pennsylvania State University Fruit Research and Extension Center, Biglerville, Pennsylvania, USA
| | - Timothy W McNellis
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
44
|
The resveratrol tetramer (-)-hopeaphenol inhibits type III secretion in the gram-negative pathogens Yersinia pseudotuberculosis and Pseudomonas aeruginosa. PLoS One 2013; 8:e81969. [PMID: 24324737 PMCID: PMC3853165 DOI: 10.1371/journal.pone.0081969] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/18/2013] [Indexed: 11/19/2022] Open
Abstract
Society faces huge challenges, as a large number of bacteria have developed resistance towards many or all of the antibiotics currently available. Novel strategies that can help solve this problem are urgently needed. One such strategy is to target bacterial virulence, the ability to cause disease e.g., by inhibition of type III secretion systems (T3SSs) utilized by many clinically relevant gram-negative pathogens. Many of the antibiotics used today originate from natural sources. In contrast, most virulence-blocking compounds towards the T3SS identified so far are small organic molecules. A recent high-throughput screening of a prefractionated natural product library identified the resveratrol tetramer (-)-hopeaphenol as an inhibitor of the T3SS in Yersinia pseudotuberculosis. In this study we have investigated the virulence blocking properties of (-)-hopeaphenol in three different gram-negative bacteria. (-)-Hopeaphenol was found to have micromolar activity towards the T3SSs in Yersinia pseudotuberculosis and Pseudomonas aeruginosa in cell-based infection models. In addition (-)-hopeaphenol reduced cell entry and subsequent intracellular growth of Chlamydia trachomatis.
Collapse
|
45
|
Li W, Ancona V, Zhao Y. Co-regulation of polysaccharide production, motility, and expression of type III secretion genes by EnvZ/OmpR and GrrS/GrrA systems in Erwinia amylovora. Mol Genet Genomics 2013; 289:63-75. [PMID: 24218204 DOI: 10.1007/s00438-013-0790-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/31/2013] [Indexed: 11/29/2022]
Abstract
The EnvZ/OmpR and GrrS/GrrA systems, two widely distributed two-component systems in gamma-Proteobacteria, negatively control amylovoran biosynthesis in Erwinia amylovora, and the two systems regulate motility in an opposing manner. In this study, we examined the interplay of EnvZ/OmpR and GrrS/GrrA systems in controlling various virulence traits in E. amylovora. Results showed that amylovoran production was significantly higher when both systems were inactivated, indicating that the two systems act as negative regulators and their combined effect on amylovoran production appears to be enhanced. In contrast, reduced motility was observed when both systems were deleted as compared to that of grrA/grrS mutants and WT strain, indicating that the two systems antagonistically regulate motility in E. amylovora. In addition, glycogen accumulation was much higher in envZ/ompR and two triple mutants than that of grrS/grrA mutants and WT strain, suggesting that EnvZ/OmpR plays a dominant role in regulating glycogen accumulation, whereas levan production was significantly lower in the grrS/grrA and two triple mutants as compared with that of WT and envZ/ompR mutants, indicating that GrrS/GrrA system dominantly controls levan production. Furthermore, both systems negatively regulated expression of three type III secretion (T3SS) genes and their combined negative effect on hrp-T3SS gene expression increased when both systems were deleted. These results demonstrated that EnvZ/OmpR and GrrS/GrrA systems co-regulate various virulence factors in E. amylovora by still unknown mechanisms or through different target genes, sRNAs, or proteins, indicating that a complex regulatory network may be involved, which needs to be further explored.
Collapse
Affiliation(s)
- Wenting Li
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201W. Gregory Dr., Urbana, IL, 61801, USA
| | | | | |
Collapse
|