1
|
Sun T, Hazra A, Lui A, Zeng S, Wang X, Rao S, Owens LA, Fei Z, Zhao Y, Mazourek M, Giovannoni JG, Li L. GLKs directly regulate carotenoid biosynthesis via interacting with GBFs in plants. THE NEW PHYTOLOGIST 2025; 246:645-665. [PMID: 39953697 DOI: 10.1111/nph.20457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/18/2025] [Indexed: 02/17/2025]
Abstract
Carotenoids are vital photosynthetic pigments for plants. Golden2-like transcription factors (GLKs) are widely recognized as major regulators of Chl biosynthesis and chloroplast development. However, despite GLKs being subjected to intensive investigations, whether GLKs directly regulate carotenoid biosynthesis and the molecular mechanisms by which GLKs transcriptionally activate their target genes remain unclear. Here, we report that GLKs directly regulate carotenoid biosynthesis and activate their target genes in a G-box binding factor (GBF)-dependent manner in Arabidopsis. Both in vitro and in vivo studies reveal that GLKs physically interact with GBFs to activate transcription of phytoene synthase (PSY), the gene encoding a rate-limiting enzyme for carotenoid biosynthesis. While GLKs possess transactivation activity, they depend on GBFs to directly bind to the G-box motif to modulate PSY expression. Loss of GBFs impairs GLK function in regulating carotenoid and Chl biosynthesis. Since the G-box motif is an enriched motif in the promoters of GLK-regulated genes, the GLK-GBF regulatory module likely serves as a common mechanism underlying GLK-regulated photosynthetic pigment biosynthesis and chloroplast development. Our findings uncover a novel regulatory machinery of carotenoid biosynthesis, discover a molecular mechanism of transcriptional regulation by GLKs, and divulge GLKs as important regulators to coordinate photosynthetic pigment synthesis in plants.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Department of Biological Sciences, College of Arts and Sciences, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Abhijit Hazra
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Andy Lui
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Shaohua Zeng
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xin Wang
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Sombir Rao
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Lauren A Owens
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Michael Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - James G Giovannoni
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
2
|
Lian Y, Peng L, Shi X, Zheng Q, Fan D, Feng Z, Liu X, Ma H, Cao S, Chang W. Genome-Wide Identification of GLK Family Genes in Phoebe bournei and Their Transcriptional Analysis Under Abiotic Stresses. Int J Mol Sci 2025; 26:2387. [PMID: 40141031 PMCID: PMC11942458 DOI: 10.3390/ijms26062387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
GOLDEN2-LIKE (GLK) transcription factors are crucial regulators of chloroplast development and stress responses in plants. In this study, we investigated the GLK gene family in Phoebe bournei (Hemsl.) Yen C. Yang, a near-threatened species important for forestry and wood utilization in China. We identified 61 PbGLK genes which were classified into seven subfamilies. Our analyses of their phylogenetic relationships, gene structures, and chromosomal distribution revealed diverse characteristics. Expression profiling under different tissues and abiotic stresses showed that PbGLK25 and PbGLK30 were particularly responsive to drought, heat, light, and shade stresses, with significant upregulation. These findings highlight the potential role of PbGLK genes in stress adaptation and provide insights for the genetic improvement of P. bournei.
Collapse
Affiliation(s)
- Yiran Lian
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (X.S.)
| | - Liang Peng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.P.); (Q.Z.); (D.F.)
- Laboratory of Virtual Teaching and Research on Forest Therapy Speciality of Taiwan Strait, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinying Shi
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (X.S.)
| | - Qiumian Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.P.); (Q.Z.); (D.F.)
| | - Dunjin Fan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.P.); (Q.Z.); (D.F.)
| | - Zhiyi Feng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xiaomin Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (X.L.); (H.M.)
| | - Huanhuan Ma
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (X.L.); (H.M.)
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.P.); (Q.Z.); (D.F.)
| | - Weiyin Chang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.P.); (Q.Z.); (D.F.)
- Laboratory of Virtual Teaching and Research on Forest Therapy Speciality of Taiwan Strait, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Paul SK, Islam MSU, Akter N, Zohra FT, Rashid SB, Ahmed MS, Rahman SM, Sarkar MAR. Genome-wide identification and characterization of FORMIN gene family in cotton (Gossypium hirsutum L.) and their expression profiles in response to multiple abiotic stress treatments. PLoS One 2025; 20:e0319176. [PMID: 40029892 PMCID: PMC11875364 DOI: 10.1371/journal.pone.0319176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/29/2025] [Indexed: 03/06/2025] Open
Abstract
FORMIN proteins distinguished by FH2 domain, are conserved throughout evolution and widely distributed in eukaryotic organisms. These proteins interact with various signaling molecules and cytoskeletal proteins, playing crucial roles in both biotic and abiotic stress responses. However, the functions of FORMINs in cotton (Gossypium hirsutum L.) remain uncovered. In this study, 46 FORMIN genes in G. hirsutum (referred to as GhFH) were systematically identified. The gene structures, conserved domains, and motifs of these GhFH genes were thoroughly explored. Phylogenetic and structural analysis classified these 46 GhFH genes into five distinct groups. In silico subcellular localization, prediction suggested that GhFH genes are distributed across various cellular compartments, including the nucleus, extracellular space, cytoplasm, mitochondria, cytoskeleton, plasma membrane, endoplasmic reticulum, and chloroplasts. Evolutionary and functional diversification analyses, based on on-synonymous (Ka) and synonymous (Ks) ratios and gene duplication events, indicated that GhFH genes have evolved under purifying selection. The analysis of cis-acting elements suggested that GhFH genes may be involved in plant growth, hormone regulation, light response, and stress response. Results from transcriptional factors TFs and gene ontology analysis indicate that FORMIN proteins regulate cell wall structure and cytoskeleton dynamics by reacting to hormone signals associated with environmental stress. Additionally, 45 putative ghr-miRNAs were identified from 32 families targeting 33 GhFH genes. Expression analysis revealed that GhFH1, GhFH10, GhFH20, GhFH24, and GhFH30 exhibited the highest levels of expression under red, blue, and white light conditions. Further, GhFH9, GhFH20, and GhFH30 displayed higher expression levels under heat stress, while GhFH20 and GhFH30 showed increased expression under salt stress compared to controls. The result suggests that GhFH20 and GhFH30 genes could play significant roles in the development of G. hirsutum under heat and salt stresses. Overall these findings enhance our understanding of the biological functions of the cotton FORMIN family, offering prospects for developing stress-resistant cotton varieties through manipulation of GhFH gene expression.
Collapse
Affiliation(s)
- Suronjeet Kumar Paul
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Shohel Ul Islam
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Nasrin Akter
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Fatema Tuz Zohra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Shuraya Beente Rashid
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Shakil Ahmed
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, Bangladesh
| | - Shaikh Mizanur Rahman
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Abdur Rauf Sarkar
- Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
4
|
Bajaj Hengge I, Cortleven A, Schmülling T. Plastid- and photoreceptor-dependent signaling is required for the response to photoperiod stress. JOURNAL OF PLANT PHYSIOLOGY 2025; 306:154429. [PMID: 39892167 DOI: 10.1016/j.jplph.2025.154429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 02/03/2025]
Abstract
Prolongation of the light period causes photoperiod stress in plants. The response to photoperiod stress includes the induction of a distinct set of stress marker genes, of reactive oxygen species (ROS), and of stress hormones. In this study, the impact of light intensity and light quality on the photoperiod stress response was investigated. A threshold light intensity of circa 50 μmol m-2 s-1 is necessary for inducing photoperiod stress, indicating the involvement of chloroplasts. Lower photoperiod stress symptoms in retrograde signaling mutants (gun4, gun5) and mutants with constrained plastid function (glk1 glk2) corroborated the role of chloroplasts. Genetic analysis revealed that the photoreceptors phyB and particularly CRY2 are important to perceive photoperiod stress. Overall, these results showed that both plastid-dependent and photoreceptor-dependent signaling pathways are involved in sensing the light conditions causing photoperiod stress and governing the response to it.
Collapse
Affiliation(s)
- Ishita Bajaj Hengge
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany.
| | - Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany.
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany.
| |
Collapse
|
5
|
Fang X, Zhao L, Li J, Ma Z, Zhang F, Zheng P, Wang Z, Liu Y, Wang L. AcGLK1 promotes chloroplast division through regulating AcFtsZ1 in Actinidia chinensis. PLANTA 2024; 261:17. [PMID: 39690269 DOI: 10.1007/s00425-024-04592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024]
Abstract
MAIN CONCLUSION This study unravels a new regulatory member (AcGLK1) that regulates chloroplast division by affecting the expression levels of cytoskeletal filamenting temperature-sensitive Z (FtsZ) in Actinidia chinensis. GOLDEN 2-LIKE (GLK) transcription factor members of GARP subfamily play an irreplaceable role in regulating chloroplast biogenesis and development. Here we report the functional characterization of a novel GLK1 homolog (AcGLK1) isolated from kiwifruit (Actinidia chinensis cultivar 'Hongyang'). Transgenic lines overexpressing AcGLK1 (AcGLK1OE) resulted in an increase of chloroplast number, size and nutrients accumulation in a tomato variety Micro-Tom (Solanum lycopersicum). Transcriptomic data revealed a series of DEGs related to chloroplast division, in which a tomato FtsZ1 homolog (SlFtsZ1) was significantly upregulated in the transgenic lines and could be directly activated by AcGLK1. Furthermore, AcGLK1 was shown to transcriptionally activate expression of kiwifruit FtsZ1 homologous genes (Achv4p23g035689 and Achv4p19g029547) through Y1H and GUS assays. Taken together, we provide evidence showing that AcGLK1 promotes chloroplast division probably through positively regulation of the transcription of FtsZ1 homologs.
Collapse
Affiliation(s)
- Xue Fang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Lili Zhao
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Jian Li
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Zhiwen Ma
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Feng Zhang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Pengpeng Zheng
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Ziyu Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yongsheng Liu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, Sichuan, China.
| | - Lihuan Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
6
|
Zheng M, Wang X, Luo J, Ma B, Li D, Chen X. The pleiotropic functions of GOLDEN2-LIKE transcription factors in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1445875. [PMID: 39224848 PMCID: PMC11366661 DOI: 10.3389/fpls.2024.1445875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The regulation of gene expression is crucial for biological plant growth and development, with transcription factors (TFs) serving as key switches in this regulatory mechanism. GOLDEN2-LIKE (GLK) TFs are a class of functionally partially redundant nuclear TFs belonging to the GARP superfamily of MYB TFs that play a key role in regulating genes related to photosynthesis and chloroplast biogenesis. Here, we summarized the current knowledge of the pleiotropic roles of GLKs in plants. In addition to their primary functions of controlling chloroplast biogenesis and function maintenance, GLKs have been proven to regulate the photomorphogenesis of seedlings, metabolite synthesis, flowering time, leaf senescence, and response to biotic and abiotic stress, ultimately contributing to crop yield. This review will provide a comprehensive understanding of the biological functions of GLKs and serve as a reference for future theoretical and applied studies of GLKs.
Collapse
Affiliation(s)
- Mengyi Zheng
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Xinyu Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jie Luo
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Bojun Ma
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Dayong Li
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
| | - Xifeng Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
7
|
Cazares-Álvarez JE, Báez-Astorga PA, Arroyo-Becerra A, Maldonado-Mendoza IE. Genome-Wide Identification of a Maize Chitinase Gene Family and the Induction of Its Expression by Fusarium verticillioides (Sacc.) Nirenberg (1976) Infection. Genes (Basel) 2024; 15:1087. [PMID: 39202446 PMCID: PMC11353892 DOI: 10.3390/genes15081087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Maize chitinases are involved in chitin hydrolysis. Chitinases are distributed across various organisms including animals, plants, and fungi and are grouped into different glycosyl hydrolase families and classes, depending on protein structure. However, many chitinase functions and their interactions with other plant proteins remain unknown. The economic importance of maize (Zea mays L.) makes it relevant for studying the function of plant chitinases and their biological roles. This work aims to identify chitinase genes in the maize genome to study their gene structure, family/class classification, cis-related elements, and gene expression under biotic stress, such as Fusarium verticillioides infection. Thirty-nine chitinase genes were identified and found to be distributed in three glycosyl hydrolase (GH) families (18, 19 and 20). Likewise, the conserved domains and motifs were identified in each GH family member. The identified cis-regulatory elements are involved in plant development, hormone response, defense, and abiotic stress response. Chitinase protein-interaction network analysis predicted that they interact mainly with cell wall proteins. qRT-PCR analysis confirmed in silico data showing that ten different maize chitinase genes are induced in the presence of F. verticillioides, and that they could have several roles in pathogen infection depending on chitinase structure and cell wall localization.
Collapse
Affiliation(s)
- Jesús Eduardo Cazares-Álvarez
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81049, Sinaloa, Mexico;
| | - Paúl Alán Báez-Astorga
- CONAHCYT—Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81049, Sinaloa, Mexico;
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico;
| | - Ignacio Eduardo Maldonado-Mendoza
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81049, Sinaloa, Mexico;
| |
Collapse
|
8
|
Abbey L, Asiedu SK, Chada S, Ofoe R, Amoako PO, Owusu-Nketia S, Ajeethan N, Kumar AP, Nutsukpo EB. Photosynthetic Activities, Phytohormones, and Secondary Metabolites Induction in Plants by Prevailing Compost Residue. Metabolites 2024; 14:400. [PMID: 39195496 DOI: 10.3390/metabo14080400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
Compost residue enriches soil health with the potential to enhance plant metabolism and hormonal balance, but has not yet been studied. A study was performed to determine how prevailing compost residue induces tomato (Solanum lycopersicum 'Scotia') plant morpho-physiology, phytohormones, and secondary metabolites. Plants were grown in soils with a previous history of annual (AN) and biennial (BI) compost amendments. The controls were soil without compost (C) amendment and municipal solid waste compost (MSWC) alone. The MSWC- and AN-plants had similar and significantly (p < 0.05) highest growth and photosynthetic activities compared to the BI- or C-plants. Total phenolics and lipid peroxidase activity were significantly (p < 0.001) high in BI-plants, while hydrogen peroxide and antioxidant capacity were significantly (p < 0.001) high in AN-plants. MSWC-plants recorded the highest cis-abscisic acid, followed by AN-, and then BI- and C-plants. Cis-zeatin, trans-zeatin, and isopentenyladenine ribosides were detected in the MSWC- and AN-plants but not in the BI- or C-plants. Furthermore, gibberellins GA53, GA19, and GA8 were high in the MSWC-plants, but only GA8 was detected in the AN plants and none in the others. Besides, MSWC plants exhibited the highest content of 1-aminocyclopropane-1-carboxylic acid. Conjugated salicylic acid was highest in the BI-plants, while jasmonic acid-isoleucine was highest in MSWC-plants and C plants. In conclusion, prevailing compost chemical residues upregulate plant growth, phytohormones, and metabolic compounds that can potentially increase plant growth and abiotic stress defense. Future work should investigate the flow of these compounds in plants under abiotic stress.
Collapse
Affiliation(s)
- Lord Abbey
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Samuel Kwaku Asiedu
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Sparsha Chada
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Raphael Ofoe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Peter Ofori Amoako
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Stella Owusu-Nketia
- Biotechnology Centre, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 25 Legon, Ghana
| | - Nivethika Ajeethan
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Anagha Pradeep Kumar
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| | - Efoo Bawa Nutsukpo
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, Bible Hill, NS B2N 5E3, Canada
| |
Collapse
|
9
|
Cole-Osborn LF, McCallan SA, Prifti O, Abu R, Sjoelund V, Lee-Parsons CWT. The role of the Golden2-like (GLK) transcription factor in regulating terpenoid indole alkaloid biosynthesis in Catharanthus roseus. PLANT CELL REPORTS 2024; 43:141. [PMID: 38743349 PMCID: PMC11093837 DOI: 10.1007/s00299-024-03208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/27/2024] [Indexed: 05/16/2024]
Abstract
KEY MESSAGE A GLK homologue was identified and functionally characterized in Catharanthus roseus. Silencing CrGLK with VIGS or the chloroplast retrograde signaling inducer lincomycin increased terpenoid indole alkaloid biosynthesis. Catharanthus roseus is the sole source of the chemotherapeutic terpenoid indole alkaloids (TIAs) vinblastine and vincristine. TIA pathway genes, particularly genes in the vindoline pathway, are expressed at higher levels in immature versus mature leaves, but the molecular mechanisms responsible for this developmental regulation are unknown. We investigated the role of GOLDEN2-LIKE (GLK) transcription factors in contributing to this ontogenetic regulation since GLKs are active in seedlings upon light exposure and in the leaf's early development, but their activity is repressed as leaves age and senesce. We identified a GLK homologue in C. roseus and functionally characterized its role in regulating TIA biosynthesis, with a focus on the vindoline pathway, by transiently reducing its expression through two separate methods: virus-induced gene silencing (VIGS) and application of chloroplast retrograde signaling inducers, norflurazon and lincomycin. Reducing CrGLK levels with each method reduced chlorophyll accumulation and the expression of the light harvesting complex subunit (LHCB2.2), confirming its functional homology with GLKs in other plant species. In contrast, reducing CrGLK via VIGS or lincomycin increased TIA accumulation and TIA pathway gene expression, suggesting that CrGLK may repress TIA biosynthesis. However, norflurazon had no effect on TIA gene expression, indicating that reducing CrGLK alone is not sufficient to induce TIA biosynthesis. Future work is needed to clarify the specific molecular mechanisms leading to increased TIA biosynthesis with CrGLK silencing. This is the first identification and characterization of GLK in C. roseus and the first investigation of how chloroplast retrograde signaling might regulate TIA biosynthesis.
Collapse
Affiliation(s)
- Lauren F Cole-Osborn
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
- Department of Bioengineering, Northeastern University, Boston, USA
| | - Shannon A McCallan
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, USA
| | - Olga Prifti
- Department of Bioengineering, Northeastern University, Boston, USA
| | - Rafay Abu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, USA
| | - Virginie Sjoelund
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, USA
| | - Carolyn W T Lee-Parsons
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA.
- Department of Bioengineering, Northeastern University, Boston, USA.
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, USA.
| |
Collapse
|
10
|
Fortier CE, Musso AE, Evenden ML, Zaharia LI, Cooke JEK. Evidence that Ophiostomatoid Fungal Symbionts of Mountain Pine Beetle Do Not Play a Role in Overcoming Lodgepole Pine Defenses During Mass Attack. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:445-458. [PMID: 38240660 DOI: 10.1094/mpmi-06-23-0077-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins) is a devastating forest insect pest that has killed millions of hectares of pines in western North America over the past two decades. Like other bark beetles, MPB vectors ophiostomatoid fungal species, some of which are pathogenic to host pine species. The phytopathogenicity of these fungal symbionts has sparked considerable debate regarding their role in facilitating MPB attack success. We tested the hypothesis that MPB ophiostomatoid fungal associates like Grosmannia clavigera (Robinson-Jeffrey and Davidson) Zipfel, de Beer and Wingfield contribute to overwhelming host defenses during MPB mass attack. We compared responses of mature lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) trees growing in natural stands that were mass attacked by MPB with those inoculated with G. clavigera by examining host defense hormones, secondary metabolites, and gene expression profiles. The jasmonate and ethylene signatures of necrotrophic pathogen-triggered response were identified in G. clavigera-inoculated trees, but only the jasmonate signature of a herbivore-triggered response was measured in MPB-attacked trees. Several G. clavigera-induced changes in pine phenolic metabolite profiles and phenolic biosynthesis gene expression patterns were absent in MPB-attacked pines. These findings indicate that ophiostomatoid fungi like G. clavigera are not a major factor in overwhelming host defenses during MPB mass attack. Instead, fungal pathogenicity likely is more important in aiding MPB colonization and development within the host tree. Phenolics appear to play a larger role in the host response to G. clavigera than to MPB, although phenolics may also influence MPB feeding and behavior. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Colleen E Fortier
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Antonia E Musso
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Maya L Evenden
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - L Irina Zaharia
- National Research Council of Canada, Aquatic and Crop Resource Development Research Centre, Saskatoon, SK, S7N 0W9, Canada
| | - Janice E K Cooke
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| |
Collapse
|
11
|
Han Y, Li F, Wu Y, Wang D, Luo G, Wang X, Wang X, Kuang H, Larkin RM. PSEUDO-ETIOLATION IN LIGHT proteins reduce greening by binding GLK transcription factors. PLANT PHYSIOLOGY 2024; 194:1722-1744. [PMID: 38051979 DOI: 10.1093/plphys/kiad641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Knocking out genes encoding proteins that downregulate the accumulation of pigments may lead to increases in crop quality and yield. PSEUDO-ETIOLATION IN LIGHT 1 (PEL1) downregulates the accumulation of carotenoids in carrot and chlorophyll in Arabidopsis and rice and may inhibit GOLDEN 2-LIKE (GLK) transcription factors. PEL1 belongs to a previously unstudied gene family found only in plants. We used CRISPR/Cas9 technology to knock out each member of the 4-member PEL gene family and both GLK genes in Arabidopsis. In pel mutants, chlorophyll levels were elevated in seedlings; after flowering, chloroplasts increased in size, and anthocyanin levels increased. Although the chlorophyll-deficient phenotype of glk1 glk2 was epistatic to pel1 pel2 pel3 pel4 in most of our experiments, glk1 glk2 was not epistatic to pel1 pel2 pel3 pel4 for the accumulation of anthocyanins in most of our experiments. The pel alleles attenuated growth, altered the accumulation of nutrients in seeds, disrupted an abscisic acid-inducible inhibition of seedling growth response that promotes drought tolerance, and affected the expression of genes associated with diverse biological functions, such as stress responses, cell wall metabolism hormone responses, signaling, growth, and the accumulation of phenylpropanoids and pigments. We found that PEL proteins specifically bind 6 transcription factors that influence the accumulation of anthocyanins, GLK2, and the carboxy termini of GLK1 and Arabidopsis thaliana myeloblastosis oncogene homolog 4 (AtMYB4). Our data indicate that the PEL proteins influence the accumulation of chlorophyll and many other processes, possibly by inhibiting GLK transcription factors and via other mechanisms, and that multiple mechanisms downregulate chlorophyll content.
Collapse
Affiliation(s)
- Yuting Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Fengfei Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Ying Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Dong Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Guangbao Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xinning Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xin Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Hanhui Kuang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Robert M Larkin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
12
|
Li X, Li J, Wei S, Gao Y, Pei H, Geng R, Lu Z, Wang P, Zhou W. Maize GOLDEN2-LIKE proteins enhance drought tolerance in rice by promoting stomatal closure. PLANT PHYSIOLOGY 2024; 194:774-786. [PMID: 37850886 PMCID: PMC10828204 DOI: 10.1093/plphys/kiad561] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023]
Abstract
Drought has become one of the most severe abiotic stresses experienced in agricultural production across the world. Plants respond to water deficit via stomatal movements in the leaves, which are mainly regulated by abscisic acid (ABA). A previous study from our lab showed that constitutive expression of maize (Zea mays L.) GOLDEN2-LIKE (GLK) transcription factors in rice (Oryza sativa L.) can improve stomatal conductance and plant photosynthetic capacity under field conditions. In the present study, we uncovered a function of ZmGLK regulation of stomatal movement in rice during drought stress. We found that elevated drought tolerance in rice plants overexpressing ZmGLK1 or GOLDEN2 (ZmG2) was conferred by rapid ABA-mediated stomatal closure. Comparative analysis of RNA-sequencing (RNA-seq) data from the rice leaves and DNA affinity purification sequencing (DAP-seq) results obtained in vitro revealed that ZmGLKs played roles in regulating ABA-related and stress-responsive pathways. Four upregulated genes closely functioning in abiotic stress tolerance with strong binding peaks in the DAP-seq data were identified as putative target genes of ZmGLK1 and ZmG2 in rice. These results demonstrated that maize GLKs play an important role in regulating stomatal movements to coordinate photosynthesis and stress tolerance. This trait is a valuable target for breeding drought-tolerant crop plants without compromising photosynthetic capacity.
Collapse
Affiliation(s)
- Xia Li
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Jing Li
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Shaobo Wei
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Yuan Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Hongcui Pei
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Rudan Geng
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Zefu Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| | - Peng Wang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant
Physiology and Ecology, Chinese Academy of Sciences, Shanghai
200032, China
| | - Wenbin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural
Sciences, Beijing 100081, China
| |
Collapse
|
13
|
Jayasinghege CPA, Ozga JA, Manolii VP, Hwang SF, Strelkov SE. Impact of Susceptibility on Plant Hormonal Composition during Clubroot Disease Development in Canola ( Brassica napus). PLANTS (BASEL, SWITZERLAND) 2023; 12:2899. [PMID: 37631111 PMCID: PMC10459861 DOI: 10.3390/plants12162899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023]
Abstract
Clubroot, caused by Plasmodiophora brassicae, is a soilborne disease of crucifers associated with the formation of large root galls. This root enlargement suggests modulation of plant hormonal networks by the pathogen, stimulating cell division and elongation and influencing host defense. We studied physiological changes in two Brassica napus cultivars, including plant hormone profiles-salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), the auxin indole-3-acetic acid (IAA), and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC)-along with their selected derivatives following inoculation with virulent and avirulent P. brassicae pathotypes. In susceptible plants, water uptake declined from the initial appearance of root galls by 21 days after inoculation, but did not have a significant effect on photosynthetic rate, stomatal conductance, or leaf chlorophyll levels. Nonetheless, a strong increase in ABA levels indicated that hormonal mechanisms were triggered to cope with water stress due to the declining water uptake. The free SA level in the roots increased strongly in resistant interactions, compared with a relatively minor increase during susceptible interactions. The ratio of conjugated SA to free SA was higher in susceptible interactions, indicating that resistant interactions are linked to the plant's ability to maintain higher levels of bioactive free SA. In contrast, JA and its biologically active form JA-Ile declined up to 7-fold in susceptible interactions, while they were maintained during resistant interactions. The ACC level increased in the roots of inoculated plants by 21 days, irrespective of clubroot susceptibility, indicating a role of ethylene in response to pathogen interactions that is independent of disease severity. IAA levels at early and later infection stages were lower only in susceptible plants, suggesting a modulation of auxin homeostasis by the pathogen relative to the host defense system.
Collapse
Affiliation(s)
| | - Jocelyn A. Ozga
- Plant BioSystems, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (C.P.A.J.); (V.P.M.); (S.-F.H.)
| | | | | | - Stephen E. Strelkov
- Plant BioSystems, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (C.P.A.J.); (V.P.M.); (S.-F.H.)
| |
Collapse
|
14
|
Wu R, Guo L, Guo Y, Ma L, Xu K, Zhang B, Du L. The G2-Like gene family in Populus trichocarpa: identification, evolution and expression profiles. BMC Genom Data 2023; 24:37. [PMID: 37403017 PMCID: PMC10320924 DOI: 10.1186/s12863-023-01138-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
The Golden2-like (GLK) transcription factors are plant-specific transcription factors (TFs) that perform extensive and significant roles in regulating chloroplast development. Here, genome-wide identification, classification, conserved motifs, cis-elements, chromosomal locations, evolution and expression patterns of the PtGLK genes in the woody model plant Populus trichocarpa were analyzed in detail. In total, 55 putative PtGLKs (PtGLK1-PtGLK55) were identified and divided into 11 distinct subfamilies according to the gene structure, motif composition and phylogenetic analysis. Synteny analysis showed that 22 orthologous pairs and highly conservation between regions of GLK genes across P. trichocarpa and Arabidopsis were identified. Furthermore, analysis of the duplication events and divergence times provided insight into the evolutionary patterns of GLK genes. The previously published transcriptome data indicated that PtGLK genes exhibited distinct expression patterns in various tissues and different stages. Additionally, several PtGLKs were significantly upregulated under the responses of cold stress, osmotic stress, and methyl jasmonate (MeJA) and gibberellic acid (GA) treatments, implying that they might take part in abiotic stress and phytohormone responses. Overall, our results provide comprehensive information on the PtGLK gene family and elucidate the potential functional characterization of PtGLK genes in P. trichocarpa.
Collapse
Affiliation(s)
- Ruihua Wu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Lin Guo
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yueyang Guo
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Lehang Ma
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Kehang Xu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Boyu Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Liang Du
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
15
|
Li Y, Lei W, Zhou Z, Li Y, Zhang D, Lin H. Transcription factor GLK1 promotes anthocyanin biosynthesis via an MBW complex-dependent pathway in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36856341 DOI: 10.1111/jipb.13471] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Anthocyanins are important natural plant pigments and play diverse roles in plant growth and adaptation. Anthocyanins function as screens to protect photosynthetic tissues from photoinhibition. However, the regulatory mechanisms underlying the biosynthesis and spatial accumulation pattern of anthocyanins remain some unresolved issues. Here, we demonstrate that the GARP-type transcription factor GOLDEN2-LIKE 1 (GLK1) functions as a positive factor in anthocyanin accumulation. GLK1 enhances the transcriptional activation activities of MYB75, MYB90, and MYB113 via direct protein-protein interactions to increase the expression of anthocyanin-specific biosynthetic genes. Anthocyanins accumulate in an acropetal manner in Arabidopsis. We also found that the expression pattern of GLK1 overall mimicked the accumulation pattern of anthocyanin from the base of the main stem to the shoot apex. Based on these findings, we established a working model for the role of GLK1 in anthocyanin accumulation and propose that GLK1 mediates the spatial distribution pattern of anthocyanins by affecting the transcriptional activation activities of MYB75, MYB90, and MYB113.
Collapse
Affiliation(s)
- Yan Li
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Wei Lei
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Zuxu Zhou
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Yanlin Li
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
16
|
Liu L, Qin L, Safdar LB, Zhao C, Cheng X, Xie M, Zhang Y, Gao F, Bai Z, Huang J, Bhalerao RP, Liu S, Wei Y. The plant trans-Golgi network component ECHIDNA regulates defense, cell death, and endoplasmic reticulum stress. PLANT PHYSIOLOGY 2023; 191:558-574. [PMID: 36018261 PMCID: PMC9806577 DOI: 10.1093/plphys/kiac400] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The trans-Golgi network (TGN) acts as a central platform for sorting and secreting various cargoes to the cell surface, thus being essential for the full execution of plant immunity. However, the fine-tuned regulation of TGN components in plant defense and stress response has been not fully elucidated. Our study revealed that despite largely compromising penetration resistance, the loss-of-function mutation of the TGN component protein ECHIDNA (ECH) induced enhanced postinvasion resistance to powdery mildew in Arabidopsis thaliana. Genetic and transcriptome analyses and hormone profiling demonstrated that ECH loss resulted in salicylic acid (SA) hyperaccumulation via the ISOCHORISMATE SYNTHASE 1 biosynthesis pathway, thereby constitutively activating SA-dependent innate immunity that was largely responsible for the enhanced postinvasion resistance. Furthermore, the ech mutant displayed accelerated SA-independent spontaneous cell death and constitutive POWDERY MILDEW RESISTANCE 4-mediated callose depositions. In addition, ECH loss led to a chronically prolonged endoplasmic reticulum stress in the ech mutant. These results provide insights into understanding the role of TGN components in the regulation of plant immunity and stress responses.
Collapse
Affiliation(s)
- Lijiang Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2, Canada
| | - Li Qin
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2, Canada
| | - Luqman Bin Safdar
- School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond 5064, Australia
| | - Chuanji Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xiaohui Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Meili Xie
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Feng Gao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zetao Bai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Junyan Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Rishikesh P Bhalerao
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, S-901 83, Sweden
| | | | | |
Collapse
|
17
|
Wilkinson SW, Hannan Parker A, Muench A, Wilson RS, Hooshmand K, Henderson MA, Moffat EK, Rocha PSCF, Hipperson H, Stassen JHM, López Sánchez A, Fomsgaard IS, Krokene P, Mageroy MH, Ton J. Long-lasting memory of jasmonic acid-dependent immunity requires DNA demethylation and ARGONAUTE1. NATURE PLANTS 2023; 9:81-95. [PMID: 36604579 DOI: 10.1038/s41477-022-01313-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Stress can have long-lasting impacts on plants. Here we report the long-term effects of the stress hormone jasmonic acid (JA) on the defence phenotype, transcriptome and DNA methylome of Arabidopsis. Three weeks after transient JA signalling, 5-week-old plants retained induced resistance (IR) against herbivory but showed increased susceptibility to pathogens. Transcriptome analysis revealed long-term priming and/or upregulation of JA-dependent defence genes but repression of ethylene- and salicylic acid-dependent genes. Long-term JA-IR was associated with shifts in glucosinolate composition and required MYC2/3/4 transcription factors, RNA-directed DNA methylation, the DNA demethylase ROS1 and the small RNA (sRNA)-binding protein AGO1. Although methylome analysis did not reveal consistent changes in DNA methylation near MYC2/3/4-controlled genes, JA-treated plants were specifically enriched with hypomethylated ATREP2 transposable elements (TEs). Epigenomic characterization of mutants and transgenic lines revealed that ATREP2 TEs are regulated by RdDM and ROS1 and produce 21 nt sRNAs that bind to nuclear AGO1. Since ATREP2 TEs are enriched with sequences from IR-related defence genes, our results suggest that AGO1-associated sRNAs from hypomethylated ATREP2 TEs trans-regulate long-lasting memory of JA-dependent immunity.
Collapse
Affiliation(s)
- S W Wilkinson
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, UK.
| | - A Hannan Parker
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, UK
| | - A Muench
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, UK
| | - R S Wilson
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, UK
| | - K Hooshmand
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - M A Henderson
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, UK
| | - E K Moffat
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, UK
| | - P S C F Rocha
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, UK
| | - H Hipperson
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, UK
| | - J H M Stassen
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, UK
| | - A López Sánchez
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, UK
| | - I S Fomsgaard
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - P Krokene
- Division for Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - M H Mageroy
- Division for Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - J Ton
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, UK.
| |
Collapse
|
18
|
Li X, Lin F, Li C, Du L, Liu Z, Shi W, Lv J, Cao X, Lan Y, Fan Y, Zhou Y, Zhou T. Golden 2-like transcription factor contributes to the major QTL against rice black-streaked dwarf virus disease. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4233-4243. [PMID: 36100693 DOI: 10.1007/s00122-022-04214-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
A major resistance QTL was identified on chromosome 6 in rice variety Wuke; both overexpression and knockdown experiments confirmed that OsGLK1 is the candidate gene for association with Rice black-streaked dwarf virus disease. Rice black-streaked dwarf virus disease is one of the most destructive rice viral diseases in China and East Asia. Progress has been limited in RBSDVD resistance breeding due to inadequate knowledge on the underlying functional genes. In this study, a major QTL for RBSDV (rice black-streaked dwarf virus) independent of SBPH (small brown planthopper) resistance was mapped in a 1.8 Mb interval on chromosome 6 by using an F2:3 population originated from resistant rice variety Wuke. Representative transcripts within this region were analysed and three genes showing amino acid sequence variation in functional domains were selected for transformation. Overexpression experiments showed that one gene exhibited significant enhanced resistance compared to control lines, encoding protein involving Myb domain and probable transcription factor Golden 2-like1 (GLK1). Furthermore, OsGLK1 knockdown rice lines were investigated and the resistance ability was significantly declined without this gene compared to the wild type. Taken together, both overexpression and knockdown experiments strongly suggested that OsGLK1 plays an important role for RBSDV resistance and contributes to the major QTL. The study paves the way for elucidating the molecular mechanism underlying RBSDVD resistance and the molecular markers associated with OsGLK1 may be used for marker-assisted selection.
Collapse
Affiliation(s)
- Xuejuan Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Feng Lin
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
- International Rice Research Institute and Jiangsu Academy of Agricultural Sciences Joint Laboratory, NanjingJiangsu Province, 210014, China
| | - Chenyang Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Linlin Du
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Zhiyang Liu
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Wenjuan Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Jianying Lv
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xiaoyan Cao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Ying Lan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Yongjian Fan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Yijun Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Tong Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China.
- International Rice Research Institute and Jiangsu Academy of Agricultural Sciences Joint Laboratory, NanjingJiangsu Province, 210014, China.
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
19
|
Genome-Wide Identification and Characterization of G2-Like Transcription Factor Genes in Moso Bamboo (Phyllostachys edulis). Molecules 2022; 27:molecules27175491. [PMID: 36080259 PMCID: PMC9457811 DOI: 10.3390/molecules27175491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
G2-like (GLK) transcription factors contribute significantly and extensively in regulating chloroplast growth and development in plants. This study investigated the genome-wide identification, phylogenetic relationships, conserved motifs, promoter cis-elements, MCScanX, divergence times, and expression profile analysis of PeGLK genes in moso bamboo (Phyllostachys edulis). Overall, 78 putative PeGLKs (PeGLK1–PeGLK78) were identified and divided into 13 distinct subfamilies. Each subfamily contains members displaying similar gene structure and motif composition. By synteny analysis, 42 orthologous pairs and highly conserved microsynteny between regions of GLK genes across moso bamboo and maize were found. Furthermore, an analysis of the divergence times indicated that PeGLK genes had a duplication event around 15 million years ago (MYA) and a divergence happened around 38 MYA between PeGLK and ZmGLK. Tissue-specific expression analysis showed that PeGLK genes presented distinct expression profiles in various tissues, and many members were highly expressed in leaves. Additionally, several PeGLKs were significantly up-regulated under cold stress, osmotic stress, and MeJA and GA treatment, implying that they have a likelihood of affecting abiotic stress and phytohormone responses in plants. The results of this study provide a comprehensive understanding of the moso bamboo GLK gene family, as well as elucidating the potential functional characterization of PeGLK genes.
Collapse
|
20
|
Weeraddana CDS, Evenden ML. Oviposition by a Specialist Herbivore Increases Susceptibility of Canola to Herbivory by a Generalist Herbivore. ENVIRONMENTAL ENTOMOLOGY 2022; 51:605-612. [PMID: 35485203 DOI: 10.1093/ee/nvac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 06/14/2023]
Abstract
Oviposition by specialist herbivores can alter the suitability of the host plant to subsequent infestation by other herbivores. In this study, we tested the effect of previous oviposition on canola, Brassica napus L., by a Brassica specialist, the diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae), on subsequent herbivory by the generalist feeder, the bertha armyworm (BAW), Mamestra configurata Walker (Lepidoptera: Noctuidae). The effect of DBM oviposition on subsequent BAW oviposition and larval feeding was tested in no-choice and choice experiments. Oviposition of BAW was not altered by DBM eggs on canola plants, however, BAW had increased larval feeding on plants with DBM eggs. These results suggest that oviposition by a specialist herbivore increased the susceptibility of the host plant to generalist herbivory. In a preliminary experiment, salicylic acid, jasmonic acid, and its conjugates were not altered by DBM oviposition on canola, however, further experimentation is needed to determine if oviposition affects expression of plant defense pathways and other plant traits.
Collapse
Affiliation(s)
- Chaminda De Silva Weeraddana
- University of Alberta, Department of Biological Sciences, Edmonton, AB, Canada
- Department of Entomology, Winnipeg, MB, Canada
| | - Maya L Evenden
- University of Alberta, Department of Biological Sciences, Edmonton, AB, Canada
| |
Collapse
|
21
|
Alem AL, Ariel FD, Cho Y, Hong JC, Gonzalez DH, Viola IL. TCP15 interacts with GOLDEN2-LIKE 1 to control cotyledon opening in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:748-763. [PMID: 35132717 DOI: 10.1111/tpj.15701] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/23/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
After germination, exposure to light promotes the opening and expansion of the cotyledons and the development of the photosynthetic apparatus in a process called de-etiolation. This process is crucial for seedling establishment and photoautotrophic growth. TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTORS (TCP) transcription factors are important developmental regulators of plant responses to internal and external signals that are grouped into two main classes. In this study, we identified GOLDEN2-LIKE 1 (GLK1), a key transcriptional regulator of photomorphogenesis, as a protein partner of class I TCPs during light-induced cotyledon opening and expansion in Arabidopsis. The class I TCP TCP15 and GLK1 are mutually required for cotyledon opening and the induction of SAUR and EXPANSIN genes, involved in cell expansion. TCP15 also participates in the expression of photosynthesis-associated genes regulated by GLK1, like LHCB1.4 and LHCB2.2. Furthermore, GLK1 and TCP15 bind to the same promoter regions of different target genes containing either GLK or TCP binding motifs and binding of TCP15 is affected in a GLK1-deficient background, suggesting that a complex between TCP15 and GLK1 participates in the induction of these genes. We postulate that GLK1 helps to recruit TCP15 for the modulation of cell expansion genes in cotyledons and that the functional interaction between these transcription factors may serve to coordinate the expression of cell expansion genes with that of genes involved in the development of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Antonela L Alem
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Federico D Ariel
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Yuhan Cho
- Division of Life Science and Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Jong Chan Hong
- Division of Life Science and Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Daniel H Gonzalez
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Ivana L Viola
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| |
Collapse
|
22
|
Li M, Lee KP, Liu T, Dogra V, Duan J, Li M, Xing W, Kim C. Antagonistic modules regulate photosynthesis-associated nuclear genes via GOLDEN2-LIKE transcription factors. PLANT PHYSIOLOGY 2022; 188:2308-2324. [PMID: 34951648 PMCID: PMC8968271 DOI: 10.1093/plphys/kiab600] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 05/19/2023]
Abstract
GOLDEN2-LIKE (GLK) transcription factors drive the expression of photosynthesis-associated nuclear genes (PhANGs) indispensable for chloroplast biogenesis. Salicylic acid (SA)-induced SIGMA FACTOR-BINDING PROTEIN 1 (SIB1), a transcription coregulator and positive regulator of cell death, interacts with GLK1 and GLK2 to reinforce the expression of PhANGs, leading to photoinhibition of photosystem II and singlet oxygen (1O2) burst in chloroplasts. 1O2 then contributes to SA-induced cell death via EXECUTER 1 (EX1; 1O2 sensor protein)-mediated retrograde signaling upon reaching a critical level. This earlier finding has initiated research on the potential role of GLK1/2 and EX1 in SA signaling. Consistent with this view, we reveal that LESION-SIMULATING DISEASE 1 (LSD1), a transcription coregulator and negative regulator of SA-primed cell death, interacts with GLK1/2 to repress their activities in Arabidopsis (Arabidopsis thaliana). Overexpression of LSD1 repressed GLK target genes, including PhANGs, whereas loss of LSD1 enhanced their expression. Remarkably, LSD1 overexpression inhibited chloroplast biogenesis, resembling the characteristic glk1glk2 double mutant phenotype. Subsequent chromatin immunoprecipitation coupled with expression analyses further revealed that LSD1 inhibits the DNA-binding activity of GLK1 toward its target promoters. SA-induced nuclear-targeted SIB1 proteins appeared to interrupt the LSD1-GLK interaction, and the subsequent SIB1-GLK interaction activated EX1-mediated 1O2 signaling, elucidating antagonistic modules SIB1 and LSD1 in the regulation of GLK activity. Taken together, we provide a working model that SIB1 and LSD1, mutually exclusive SA-signaling components, antagonistically regulate GLK1/2 to fine-tune the expression of PhANGs, thereby modulating 1O2 homeostasis and related stress responses.
Collapse
Affiliation(s)
| | | | - Tong Liu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Jianli Duan
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Mengshuang Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiman Xing
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | | |
Collapse
|
23
|
Comprehensive Genomic Analysis of G2-like Transcription Factor Genes and Their Role in Development and Abiotic Stresses in Arabidopsis. DIVERSITY 2022. [DOI: 10.3390/d14030228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
GOLDEN2-LIKE (GLK) transcription factors are a subfamily of GARP family transcription factors, which play an essential function in plant growth and development as well as stress response during abiotic and biotic stress conditions. This study reports GLK genes in the Arabidopsis thaliana genome in-depth and identified 55 AtGLK genes in the Arabidopsis genome. Phylogenetic analyses resolved these GLK gene clusters into seven groups. A Ka/Ks ratios analysis indicated that they had experienced purifying selection. Many essential cis elements are present in the promoter regions of AtGLK genes associated with plant hormones, light, and stress. The expression profile from RNA-Seq data revealed that 29.1% of them had relatively high expression in all tested tissues or organs, indicating their crucial housekeeping function in plant growth and development. However, many other GLK members were selectively expressed in particular tissues or organs. In silico study of the transcriptional regulation of AtGLKs indicated that it is strongly regulated by cold, drought, osmotic, salt, and metal ion stressors. Our research provides essential information for the functional studies of each GLK gene in different species in the future.
Collapse
|
24
|
Wang ZY, Zhao S, Liu JF, Zhao HY, Sun XY, Wu TR, Pei T, Wang Y, Liu QF, Yang HH, Zhang H, Jiang JB, Li JF, Zhao TT, Xu XY. Genome-wide identification of Tomato Golden 2-Like transcription factors and abiotic stress related members screening. BMC PLANT BIOLOGY 2022; 22:82. [PMID: 35196981 PMCID: PMC8864820 DOI: 10.1186/s12870-022-03460-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/10/2022] [Indexed: 05/18/2023]
Abstract
BACKGROUND Golden 2-Like (G2-like) transcription factors play an important role in plant development. However, the roles of these G2-like regulatory genes in response to abiotic stresses in tomato are not well understood. RESULTS In this study, we identified 66 putative G2-like genes in tomato (Solanum lycopersicum) and classified them into 5 groups (I to V) according to gene structure, motif composition and phylogenetic analysis. The G2-like genes were unevenly distributed across all 12 chromosomes. There were nine pairs of duplicated gene segments and four tandem duplicated SlGlk genes. Analysis of the cis-regulatory elements (CREs) showed that the promoter regions of SlGlks contain many kinds of stress- and hormone-related CREs. Based on RNA-seq, SlGlks were expressed in response to three abiotic stresses. Thirty-six differentially expressed SlGlks were identified; these genes have multiple functions according to Gene Ontology (GO) analysis and are enriched mainly in the zeatin biosynthesis pathway. Further studies exhibited that silencing SlGlk16 in tomato would reduce drought stress tolerance by earlier wilted, lower superoxide dismutase (SOD), peroxidase (POD) activities, less Pro contents and more MDA contents. CONCLUSIONS Overall, the results of this study provide comprehensive information on G2-like transcription factors and G2-like genes that may be expressed in response to abiotic stresses.
Collapse
Affiliation(s)
- Zi-yu Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| | - Shuang Zhao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| | - Jun-fang Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| | - Hai-yan Zhao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| | - Xu-ying Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| | - Tai-ru Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| | - Tong Pei
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| | - Yue Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| | - Qi-feng Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| | - Huan-huan Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| | - He Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| | - Jing-bin Jiang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| | - Jing-fu Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| | - Ting-ting Zhao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| | - Xiang-yang Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture and Landscape Architecture, Northeast Agricultural University, No. 600, Changjiang Road, Heilongjiang Province 150030 Harbin, P.R. China
| |
Collapse
|
25
|
Yeh SY, Lin HH, Chang YM, Chang YL, Chang CK, Huang YC, Ho YW, Lin CY, Zheng JZ, Jane WN, Ng CY, Lu MY, Lai IL, To KY, Li WH, Ku MSB. Maize Golden2-like transcription factors boost rice chloroplast development, photosynthesis, and grain yield. PLANT PHYSIOLOGY 2022; 188:442-459. [PMID: 34747472 PMCID: PMC9049120 DOI: 10.1093/plphys/kiab511] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/10/2021] [Indexed: 05/03/2023]
Abstract
Chloroplasts are the sites for photosynthesis, and two Golden2-like factors act as transcriptional activators of chloroplast development in rice (Oryza sativa L.) and maize (Zea mays L.). Rice OsGLK1 and OsGLK2 are orthologous to maize ZmGLK1 (ZmG1) and ZmGLK2 (ZmG2), respectively. However, while rice OsGLK1 and OsGLK2 act redundantly to regulate chloroplast development in mesophyll cells, maize ZmG1 and ZmG2 are functionally specialized and expressed in different cell-specific manners. To boost rice chloroplast development and photosynthesis, we generated transgenic rice plants overexpressing ZmG1 and ZmG2, individually or simultaneously, with constitutive promoters (pZmUbi::ZmG1 and p35S::ZmG2) or maize promoters (pZmG1::ZmG1, pZmG2::ZmG2, and pZmG1::ZmG1/pZmG2::ZmG2). Both ZmG1 and ZmG2 genes were highly expressed in transgenic rice leaves. Moreover, ZmG1 and ZmG2 showed coordinated expression in pZmG1::ZmG1/pZmG2::ZmG2 plants. All Golden2-like (GLK) transgenic plants had higher chlorophyll and protein contents, Rubisco activities and photosynthetic rates per unit leaf area in flag leaves. However, the highest grain yields occurred when maize promoters were used; pZmG1::ZmG1, pZmG2::ZmG2, and pZmG1::ZmG1/pZmG2::ZmG2 transgenic plants showed increases in grain yield by 51%, 47%, and 70%, respectively. In contrast, the pZmUbi::ZmG1 plant produced smaller seeds without yield increases. Transcriptome analysis indicated that maize GLKs act as master regulators promoting the expression of both photosynthesis-related and stress-responsive regulatory genes in both rice shoot and root. Thus, by promoting these important functions under the control of their own promoters, maize GLK1 and GLK2 genes together dramatically improved rice photosynthetic performance and productivity. A similar approach can potentially improve the productivity of many other crops.
Collapse
Affiliation(s)
- Su-Ying Yeh
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
| | - Hsin-Hung Lin
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
- Department of Horticulture and Biotechnology,
Chinese Culture University, Taipei 11114, Taiwan
| | - Yao-Ming Chang
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
- Institute of Biomedical Sciences, Academia
Sinica, Taipei 11529, Taiwan
| | - Yu-Lun Chang
- Department of Bioagricultural Science, National
Chiayi University, Chiayi 600, Taiwan
| | - Chao-Kang Chang
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
| | - Yi-Cin Huang
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
| | - Yi-Wen Ho
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
| | - Chu-Yin Lin
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
| | - Jun-Ze Zheng
- Department of Bioagricultural Science, National
Chiayi University, Chiayi 600, Taiwan
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia
Sinica, Taipei 11529, Taiwan
| | - Chun-Yeung Ng
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
| | - Mei-Yeh Lu
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
| | - I-Ling Lai
- Graduate Institute of Bioresources, National
Pingtung University of Science and Technology, Pingtung 912,
Taiwan
| | - Kin-Ying To
- Agricultural Biotechnology Research Center, Academia
Sinica, Taipei 11529, Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia
Sinica, Taipei 11529, Taiwan
- Department of Ecology and Evolution, University of
Chicago, Chicago, Illinois 60637, USA
| | - Maurice S B Ku
- Department of Bioagricultural Science, National
Chiayi University, Chiayi 600, Taiwan
- School of Biological Sciences, Washington State
University, Pullman, Washington 99164, USA
| |
Collapse
|
26
|
Liu J, Mehari TG, Xu Y, Umer MJ, Hou Y, Wang Y, Peng R, Wang K, Cai X, Zhou Z, Liu F. GhGLK1 a Key Candidate Gene From GARP Family Enhances Cold and Drought Stress Tolerance in Cotton. FRONTIERS IN PLANT SCIENCE 2021; 12:759312. [PMID: 34992618 PMCID: PMC8725998 DOI: 10.3389/fpls.2021.759312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Drought and low-temperature stresses are the most prominent abiotic stresses affecting cotton. Wild cotton being exposed to harsh environments has more potential to cope with both biotic and abiotic stresses. Exploiting wild cotton material to induce resistant germplasm would be of greater interest. The candidate gene was identified in the BC2F2 population among Gossypium tomentosum and Gossypium hirsutum as wild male donor parent noted for its drought tolerance and the recurrent parent and a high yielding but drought susceptible species by genotyping by sequencing (GBS) mapping. Golden2-like (GLK) gene, which belongs to the GARP family, is a kind of plant-specific transcription factor (TF) that was silenced by virus-induced gene silencing (VIGS). Silencing of GhGLK1 in cotton results in more damage to plants under drought and cold stress as compared with wild type (WT). The overexpression of GhGLK1 in Arabidopsis thaliana showed that the overexpressing plants showed more adaptability than the WT after drought and cold treatments. The results of trypan blue and 3,3'-diaminobenzidine (DAB) staining showed that after drought and cold treatment, the leaf damage in GhGLK1 overexpressed plants was less as compared with the WT, and the ion permeability was also lower. This study suggested that the GhGLK1 gene may be involved in the regulation of drought and cold stress response in cotton. Our current research findings add significantly to the existing knowledge of cold and drought stress tolerance in cotton.
Collapse
Affiliation(s)
- Jiangna Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Teame Gereziher Mehari
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuhong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Renhai Peng
- Anyang Institute of Technology, Anyang, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Hirosawa Y, Tada A, Matsuura T, Mori IC, Ogura Y, Hayashi T, Uehara S, Ito-Inaba Y, Inaba T. Salicylic Acid Acts Antagonistically to Plastid Retrograde Signaling by Promoting the Accumulation of Photosynthesis-associated Proteins in Arabidopsis. PLANT & CELL PHYSIOLOGY 2021; 62:1728-1744. [PMID: 34410430 DOI: 10.1093/pcp/pcab128] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Plastids are involved in phytohormone metabolism as well as photosynthesis. However, the mechanism by which plastid retrograde signals and phytohormones cooperatively regulate plastid biogenesis remains elusive. Here, we investigated the effects of an inhibitor and a mutation that generate biogenic plastid signals on phytohormones and vice versa. Inhibition of plastid biogenesis by norflurazon (NF) treatment and the plastid protein import2 (ppi2) mutation caused a decrease in salicylic acid (SA) and jasmonic acid (JA). This effect can be attributed in part to the altered expression of genes involved in the biosynthesis and the metabolism of SA and JA. However, SA-dependent induction of the PATHOGENESIS-RELATED1 gene was virtually unaffected in NF-treated plants and the ppi2 mutant. Instead, the level of chlorophyll in these plants was partially restored by the exogenous application of SA. Consistent with this observation, the levels of some photosynthesis-associated proteins increased in the ppi2 and NF-treated plants in response to SA treatment. This regulation in true leaves seems to occur at the posttranscriptional level since SA treatment did not induce the expression of photosynthesis-associated genes. In salicylic acid induction deficient 2 and lesions simulating disease resistance 1 mutants, endogenous SA regulates the accumulation of photosynthesis-associated proteins through transcriptional and posttranscriptional mechanisms. These data indicate that SA acts antagonistically to the inhibition of plastid biogenesis by promoting the accumulation of photosynthesis-associated proteins in Arabidopsis, suggesting a possible link between SA and biogenic plastid signaling.
Collapse
Affiliation(s)
- Yoshihiro Hirosawa
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Akari Tada
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1 Chuo, Kurashiki 710-0046, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Susumu Uehara
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | - Yasuko Ito-Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Takehito Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| |
Collapse
|
28
|
Zhao Z, Shuang J, Li Z, Xiao H, Liu Y, Wang T, Wei Y, Hu S, Wan S, Peng R. Identification of the Golden-2-like transcription factors gene family in Gossypium hirsutum. PeerJ 2021; 9:e12484. [PMID: 34820202 PMCID: PMC8603818 DOI: 10.7717/peerj.12484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/22/2021] [Indexed: 01/19/2023] Open
Abstract
Background Golden2-Like (GLK) transcription factors are a type of transcriptional regulator in plants. They play a pivotal role in the plant physiological activity process and abiotic stress response. Methods In this study, the potential function of GLK family genes in Gossypium hirsutum was studied based on genomic identification, phylogenetic analysis, chromosome mapping and cis-regulatory elements prediction. Gene expression of nine key genes were analyzed by qRT-PCR experiments. Results Herein, we identified a total of 146 GhGLK genes in Gossypium hirsutum, which were unevenly distributed on each of the chromosomes. There were significant differences in the number and location of genes between the At sub-genome and the Dt sub-genome. According to the phylogenetic analysis, they were divided into ten subgroups, each of which had very similar number and structure of exons and introns. Some cis-regulatory elements were identified through promoter analysis, including five types of elements related to abiotic stress response, five types of elements related to phytohormone and five types of elements involved in growth and development. Based on public transcriptome data analysis, we identified nine key GhGLKs involved in salt, cold, and drought stress. The qRT-PCR results showed that these genes had different expression patterns under these stress conditions, suggesting that GhGLK genes played an important role in abiotic stress response. This study laid a theoretical foundation for the screening and functional verification of genes related to stress resistance of GLK gene family in cotton.
Collapse
Affiliation(s)
- Zilin Zhao
- College of Plant Science, Tarim University, Alar, Xinjiang, China.,Anyang Institute of Technology, Anyang, Henan, China
| | - Jiaran Shuang
- Anyang Institute of Technology, Anyang, Henan, China
| | - Zhaoguo Li
- Anyang Institute of Technology, Anyang, Henan, China
| | - Huimin Xiao
- Anyang Institute of Technology, Anyang, Henan, China
| | - Yuling Liu
- Anyang Institute of Technology, Anyang, Henan, China
| | - Tao Wang
- Anyang Institute of Technology, Anyang, Henan, China
| | - Yangyang Wei
- Anyang Institute of Technology, Anyang, Henan, China
| | - Shoulin Hu
- College of Plant Science, Tarim University, Alar, Xinjiang, China
| | - Sumei Wan
- College of Plant Science, Tarim University, Alar, Xinjiang, China
| | - Renhai Peng
- College of Plant Science, Tarim University, Alar, Xinjiang, China.,Anyang Institute of Technology, Anyang, Henan, China
| |
Collapse
|
29
|
O’Rourke JA, Morrisey MJ, Merry R, Espina MJ, Lorenz AJ, Stupar RM, Graham MA. Mining Fiskeby III and Mandarin (Ottawa) Expression Profiles to Understand Iron Stress Tolerant Responses in Soybean. Int J Mol Sci 2021; 22:11032. [PMID: 34681702 PMCID: PMC8537376 DOI: 10.3390/ijms222011032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022] Open
Abstract
The soybean (Glycine max L. merr) genotype Fiskeby III is highly resistant to a multitude of abiotic stresses, including iron deficiency, incurring only mild yield loss during stress conditions. Conversely, Mandarin (Ottawa) is highly susceptible to disease and suffers severe phenotypic damage and yield loss when exposed to abiotic stresses such as iron deficiency, a major challenge to soybean production in the northern Midwestern United States. Using RNA-seq, we characterize the transcriptional response to iron deficiency in both Fiskeby III and Mandarin (Ottawa) to better understand abiotic stress tolerance. Previous work by our group identified a quantitative trait locus (QTL) on chromosome 5 associated with Fiskeby III iron efficiency, indicating Fiskeby III utilizes iron deficiency stress mechanisms not previously characterized in soybean. We targeted 10 of the potential candidate genes in the Williams 82 genome sequence associated with the QTL using virus-induced gene silencing. Coupling virus-induced gene silencing with RNA-seq, we identified a single high priority candidate gene with a significant impact on iron deficiency response pathways. Characterization of the Fiskeby III responses to iron stress and the genes underlying the chromosome 5 QTL provides novel targets for improved abiotic stress tolerance in soybean.
Collapse
Affiliation(s)
| | | | - Ryan Merry
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | - Mary Jane Espina
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | - Aaron J. Lorenz
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | - Robert M. Stupar
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | | |
Collapse
|
30
|
Wang Y, Duan G, Li C, Ma X, Yang J. Application of jasmonic acid at the stage of visible brown necrotic spots in Magnaporthe oryzae infection as a novel and environment-friendly control strategy for rice blast disease. PROTOPLASMA 2021; 258:743-752. [PMID: 33417037 DOI: 10.1007/s00709-020-01591-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Rice blast disease is one of the most common rice diseases worldwide. It is essential to improve disease resistance through environment-friendly methods, while maintaining yield and quality parameters. In this study, jasmonic acid (JA), a plant hormone with anti-fungal activity, was obtained, at both low (100 μmol/L) and high (400 μmol/L) concentrations in rice leaves, before, during, and after infection, respectively. JA could inhibit germination and appressorium formation of rice blast spores in a dose-dependent manner. A total of 400-μmol/L JA treatment significantly enhanced cell viability and endogenous JA level in rice leaves. Furthermore, rice leaves inoculated with Magnaporthe oryzae and sprayed with JA 72 h post-inoculation showed the maximum symptom relief and the highest endogenous JA production among all treatment approaches. The expressions of defense-related genes, OsPR10a and OsAOS2, were highly up-regulated in response to JA, whereas OsEDS1 was down-regulated. Hence, we revealed that exogenous JA could activate JA signaling to effectively control the symptoms of rice blast.
Collapse
Affiliation(s)
- Yunfeng Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Heilongtan, Northern suburb, Kunming, 650201, Yunnan, People's Republic of China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Guihua Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Heilongtan, Northern suburb, Kunming, 650201, Yunnan, People's Republic of China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Chunqin Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Heilongtan, Northern suburb, Kunming, 650201, Yunnan, People's Republic of China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Xiaoqing Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Heilongtan, Northern suburb, Kunming, 650201, Yunnan, People's Republic of China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China
| | - Jing Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Heilongtan, Northern suburb, Kunming, 650201, Yunnan, People's Republic of China.
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming, 650201, Yunnan, People's Republic of China.
| |
Collapse
|
31
|
Qin M, Zhang B, Gu G, Yuan J, Yang X, Yang J, Xie X. Genome-Wide Analysis of the G2-Like Transcription Factor Genes and Their Expression in Different Senescence Stages of Tobacco ( Nicotiana tabacum L.). Front Genet 2021; 12:626352. [PMID: 34135936 PMCID: PMC8202009 DOI: 10.3389/fgene.2021.626352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
The Golden2-like (GLK) transcription factors play important roles in regulating chloroplast growth, development, and senescence in plants. In this study, a total of 89 NtGLK genes (NtGLK1-NtGLK89) were identified in the tobacco genome and were classified into 10 subfamilies with variable numbers of exons and similar structural organizations based on the gene structure and protein motif analyses. Twelve segmental duplication pairs of NtGLK genes were identified in the genome. These NtGLK genes contain two conserved helix regions related to the HLH structure, and the sequences of the first helix region are less conserved than that of the second helix motif. Cis-regulatory elements of the NtGLK promoters were widely involved in light responsiveness, hormone treatment, and physiological stress. Moreover, a total of 206 GLK genes from tomato, tobacco, maize, rice, and Arabidopsis were retrieved and clustered into eight subgroups. Our gene expression analysis indicated that NtGLK genes showed differential expression patterns in tobacco leaves at five senescence stages. The expression levels of six NtGLK genes in group C were reduced, coinciding precisely with the increment of the degree of senescence, which might be associated with the function of leaf senescence of tobacco. Our results have revealed valuable information for further functional characterization of the GLK gene family in tobacco.
Collapse
Affiliation(s)
- Mingyue Qin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Binghui Zhang
- Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, China
| | - Gang Gu
- Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, China
| | - Jiazheng Yuan
- Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC, United States
| | - Xuanshong Yang
- Fujian Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiahan Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaofang Xie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
32
|
Zhao D, Zheng Y, Yang L, Yao Z, Cheng J, Zhang F, Jiang H, Liu D. The transcription factor AtGLK1 acts upstream of MYBL2 to genetically regulate sucrose-induced anthocyanin biosynthesis in Arabidopsis. BMC PLANT BIOLOGY 2021; 21:242. [PMID: 34049482 PMCID: PMC8162001 DOI: 10.1186/s12870-021-03033-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/11/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND The regulation of anthocyanin biosynthesis by various factors including sugars, light and abiotic stresses is mediated by numerous regulatory factors acting at the transcriptional level. Here experimental evidence was provided in order to demonstrate that the nuclear GARP transcription factor AtGLK1 plays an important role in regulating sucrose-induced anthocyanin biosynthesis in Arabidopsis. RESULTS The results obtained using real-time quantitative PCR and GUS staining assays revealed that AtGLK1 was mainly expressed in the green tissues of Arabidopsis seedlings and could be induced by sucrose. The loss-of-function glk1 glk2 double mutant has lower anthocyanin levels than the glk2 single mutant, although it has been determined that loss of AtGLK1 alone does not affect anthocyanin accumulation. Overexpression of AtGLK1 enhances the accumulation of anthocyanin in transgenic Arabidopsis seedlings accompanied by increased expression of anthocyanin biosynthetic and regulatory genes. Moreover, we found that AtGLK1 also participates in plastid-signaling mediated anthocyanin accumulations. Genetic, physiological, and molecular biological approaches demonstrated that AtGLK1 acts upstream of MYBL2, which is a key negative regulator of anthocyanin biosynthesis, to genetically regulate sucrose-induced anthocyanin biosynthesis. CONCLUSION Our results indicated that AtGLK1 positively regulates sucrose-induced anthocyanin biosynthesis in Arabidopsis via MYBL2.
Collapse
Affiliation(s)
- Dongming Zhao
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yuxuan Zheng
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lingjun Yang
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ziyu Yao
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jianfeng Cheng
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Fang Zhang
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Haiyan Jiang
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dong Liu
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
33
|
Ross BT, Zidack NK, Flenniken ML. Extreme Resistance to Viruses in Potato and Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:658981. [PMID: 33889169 PMCID: PMC8056081 DOI: 10.3389/fpls.2021.658981] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 05/31/2023]
Abstract
Plant pathogens, including viruses, negatively impact global crop production. Plants have evolved complex immune responses to pathogens. These responses are often controlled by nucleotide-binding leucine-rich repeat proteins (NLRs), which recognize intracellular, pathogen-derived proteins. Genetic resistance to plant viruses is often phenotypically characterized by programmed cell death at or near the infection site; a reaction termed the hypersensitive response. Although visualization of the hypersensitive response is often used as a hallmark of resistance, the molecular mechanisms leading to the hypersensitive response and associated cell death vary. Plants with extreme resistance to viruses rarely exhibit symptoms and have little to no detectable virus replication or spread beyond the infection site. Both extreme resistance and the hypersensitive response can be activated by the same NLR genes. In many cases, genes that normally provide an extreme resistance phenotype can be stimulated to cause a hypersensitive response by experimentally increasing cellular levels of pathogen-derived elicitor protein(s). The molecular mechanisms of extreme resistance and its relationship to the hypersensitive response are largely uncharacterized. Studies on potato and soybean cultivars that are resistant to strains of Potato virus Y (PVY), Potato virus X (PVX), and Soybean mosaic virus (SMV) indicate that abscisic acid (ABA)-mediated signaling and NLR nuclear translocation are important for the extreme resistance response. Recent research also indicates that some of the same proteins are involved in both extreme resistance and the hypersensitive response. Herein, we review and synthesize published studies on extreme resistance in potato and soybean, and describe studies in additional species, including model plant species, to highlight future research avenues that may bridge the gaps in our knowledge of plant antiviral defense mechanisms.
Collapse
Affiliation(s)
- Brian T. Ross
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Nina K. Zidack
- Montana State Seed Potato Certification Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
- Montana State Seed Potato Certification Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
34
|
Li Y, Gu C, Gang H, Zheng Y, Liu G, Jiang J. Generation of a Golden Leaf Triploid Poplar by Repressing the Expression of GLK Genes. FORESTRY RESEARCH 2021; 1:3. [PMID: 39524506 PMCID: PMC11524304 DOI: 10.48130/fr-2021-0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/07/2021] [Indexed: 11/16/2024]
Abstract
Poplar trees are excellent varieties widely used for gardening and greening. However, their single color and floating fluffy seeds are major disadvantages. Plant species or varieties with variegated leaves are desperately needed to meet various demands for gardens, urban greening and landscape decoration, as they produce rich foliage colors that are aesthetically pleasing and functional. In this study, we generated a golden leaf triploid poplar (P. alba × P. berlinensis) by repressing the expression of GLK (Golden2-like) genes in leaves. The triploid golden leaf poplar had reduced chlorophyll content but almost no change in the growth rate. It has great potential in landscaping once it passes safety assessments.
Collapse
Affiliation(s)
- Yidi Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chenrui Gu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Huixin Gang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yu Zheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
35
|
A BIN2-GLK1 Signaling Module Integrates Brassinosteroid and Light Signaling to Repress Chloroplast Development in the Dark. Dev Cell 2020; 56:310-324.e7. [PMID: 33357403 DOI: 10.1016/j.devcel.2020.12.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/05/2020] [Accepted: 11/25/2020] [Indexed: 11/22/2022]
Abstract
Arabidopsis GLYCOGEN SYNTHASE KINASE 3 (GSK3)-like kinases play various roles in plant development, including chloroplast development, but the underlying molecular mechanism is not well defined. Here, we demonstrate that transcription factors GLK1 and GLK2 interact with and are phosphorylated by the BRASSINOSTEROID insensitive2 (BIN2). The loss-of-function mutant of BIN2 and its homologs, bin2-3 bil1 bil2, displays abnormal chloroplast development, whereas the gain-of-function mutant, bin2-1, exhibits insensitivity to BR-induced de-greening and reduced numbers of thylakoids per granum, suggesting that BIN2 positively regulates chloroplast development. Furthermore, BIN2 phosphorylates GLK1 at T175, T238, T248, and T256, and mutations of these phosphorylation sites alter GLK1 protein stability and DNA binding and impair plant responses to BRs/darkness. On the other hand, BRs and darkness repress the BIN2-GLK module to enhance BR/dark-mediated de-greening and impair the formation of the photosynthetic apparatus. Our results thus provide a mechanism by which BRs modulate photomorphogenesis and chloroplast development.
Collapse
|
36
|
Ghareeb H, El-Sayed M, Pound M, Tetyuk O, Hanika K, Herrfurth C, Feussner I, Lipka V. Quantitative Hormone Signaling Output Analyses of Arabidopsis thaliana Interactions With Virulent and Avirulent Hyaloperonospora arabidopsidis Isolates at Single-Cell Resolution. FRONTIERS IN PLANT SCIENCE 2020; 11:603693. [PMID: 33240308 PMCID: PMC7677359 DOI: 10.3389/fpls.2020.603693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
The phytohormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) are central regulators of biotic and abiotic stress responses in Arabidopsis thaliana. Here, we generated modular fluorescent protein-based reporter lines termed COLORFUL-PR1pro, -VSP2pro, and -PDF1.2apro. These feature hormone-controlled nucleus-targeted transcriptional output sensors and the simultaneous constitutive expression of spectrally separated nuclear reference and plasma membrane-localized reporters. This set-up allowed the study of cell-type specific hormone activities, cellular viability and microbial invasion. Moreover, we developed a software-supported high-throughput confocal microscopy imaging protocol for output quantification to resolve the spatio-temporal dynamics of respective hormonal signaling activities at single-cell resolution. Proof-of-principle analyses in A. thaliana leaves revealed distinguished hormone sensitivities in mesophyll, epidermal pavement and stomatal guard cells, suggesting cell type-specific regulatory protein activities. In plant-microbe interaction studies, we found that virulent and avirulent Hyaloperonospora arabidopsidis (Hpa) isolates exhibit different invasion dynamics and induce spatio-temporally distinct hormonal activity signatures. On the cellular level, these hormone-controlled reporter signatures demarcate the nascent sites of Hpa entry and progression, and highlight initiation, transduction and local containment of immune signals.
Collapse
Affiliation(s)
- Hassan Ghareeb
- Department of Plant Cell Biology, Albrecht-von-Haller Institute of Plant Sciences, University of Göttingen, Göttingen, Germany
- Department of Plant Biotechnology, National Research Centre, Cairo, Egypt
| | - Mohamed El-Sayed
- Department of Plant Cell Biology, Albrecht-von-Haller Institute of Plant Sciences, University of Göttingen, Göttingen, Germany
- Department of Plant Biotechnology, National Research Centre, Cairo, Egypt
| | - Michael Pound
- School of Computer Science, University of Nottingham, Nottingham, United Kingdom
| | - Olena Tetyuk
- Department of Plant Cell Biology, Albrecht-von-Haller Institute of Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Katharina Hanika
- Department of Plant Cell Biology, Albrecht-von-Haller Institute of Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller Institute of Plant Sciences, University of Göttingen, Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller Institute of Plant Sciences, University of Göttingen, Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller Institute of Plant Sciences, University of Göttingen, Göttingen, Germany
- Central Microscopy Facility of the Faculty of Biology and Psychology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
37
|
Weeraddana CDS, Manolii VP, Strelkov SE, de la Mata AP, Harynuk JJ, Evenden ML. Infection of canola by the root pathogen Plasmodiophora brassicae increases resistance to aboveground herbivory by bertha armyworm, Mamestra configurata Walker (Lepidoptera: Noctuidae). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110625. [PMID: 33180705 DOI: 10.1016/j.plantsci.2020.110625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/09/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Infection of plants by pathogens can result in the upregulation of induced defenses; plants may be more or less susceptible to attack by insect herbivores following infection. We investigated the interaction between canola, Brassica napus L., plants infected with clubroot, Plasmodiophora brassicae Woronin, and a generalist herbivore the bertha armyworm (BAW) Mamestra configurata Walker using two canola cultivars that varied in susceptibility to clubroot disease. Volatile organic compounds released from experimental plants differed with infection and female adult BAW could discriminate between canola plants inoculated with P. brassicae and disease-free plants. Adult female moths preferentially laid eggs on disease-free plants of the susceptible cultivar to P. brassicae. Inoculation of resistant canola with P. brassicae, however, did not influence oviposition by female BAW. The fitness of BAW larvae was reduced when they were reared on susceptible canola inoculated with P. brassicae. Salicylic acid and its conjugates in susceptible canola plants were induced following P. brassicae inoculation as compared to disease-free susceptible plants. We conclude that suppression of BAW oviposition and offspring fitness may result in part from a change in the volatile profile of the plant as a result of inoculation and the induction of defenses in inoculated susceptible canola.
Collapse
Affiliation(s)
| | - Victor P Manolii
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Canada
| | - Stephen E Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Canada
| | | | | | - Maya L Evenden
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
38
|
Sukarta OC, Townsend PD, Llewelyn A, Dixon CH, Slootweg EJ, Pålsson LO, Takken FL, Goverse A, Cann MJ. A DNA-Binding Bromodomain-Containing Protein Interacts with and Reduces Rx1-Mediated Immune Response to Potato Virus X. PLANT COMMUNICATIONS 2020; 1:100086. [PMID: 32715296 PMCID: PMC7371201 DOI: 10.1016/j.xplc.2020.100086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 06/01/2023]
Abstract
Plant NLR proteins enable the immune system to recognize and respond to pathogen attack. An early consequence of immune activation is transcriptional reprogramming. Some NLRs have been shown to act in the nucleus and interact with transcription factors. The Rx1 NLR protein of potato binds and distorts double-stranded DNA. However, the components of the chromatin-localized Rx1 complex are largely unknown. Here, we report a physical and functional interaction between Rx1 and NbDBCP, a bromodomain-containing chromatin-interacting protein. NbDBCP accumulates in the nucleoplasm and nucleolus, interacts with chromatin, and redistributes Rx1 to the nucleolus in a subpopulation of imaged cells. Rx1 overexpression reduces the interaction between NbDBCP and chromatin. NbDBCP is a negative regulator of Rx1-mediated immune responses to potato virus X (PVX), and this activity requires an intact bromodomain. Previously, Rx1 has been shown to regulate the DNA-binding activity of a Golden2-like transcription factor, NbGlk1. Rx1 and NbDBCP act synergistically to reduce NbGlk1 DNA binding, suggesting a mode of action for NbDBCP's inhibitory effect on immunity. This study provides new mechanistic insight into the mechanism by which a chromatin-localized NLR complex co-ordinates immune signaling after pathogen perception.
Collapse
Affiliation(s)
- Octavina C.A. Sukarta
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Philip D. Townsend
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
- Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK
| | - Alexander Llewelyn
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
- Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK
| | - Christopher H. Dixon
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
- Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK
| | - Erik J. Slootweg
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Lars-Olof Pålsson
- Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK
| | - Frank L.W. Takken
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Martin J. Cann
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
- Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
39
|
Ectopic Expression of AhGLK1b (GOLDEN2-like Transcription Factor) in Arabidopsis Confers Dual Resistance to Fungal and Bacterial Pathogens. Genes (Basel) 2020; 11:genes11030343. [PMID: 32213970 PMCID: PMC7141132 DOI: 10.3390/genes11030343] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 11/17/2022] Open
Abstract
GOLDEN2-LIKE (GLK) is a member of the myeloblastosis (MYB) family transcription factor and it plays an important role in the regulation of plastid development and stress tolerance. In this study, a gene named AhGLK1b was identified from a cultivated peanut showing down-regulation in response to low calcium with a complete open reading frame (ORF) of 1212 bp. The AhGLK1b has 99.26% and 96.28% sequence similarities with its orthologs in Arachis ipaensis and A. duranensis, respectively. In the peanut, the AhGLK1b was localized in the nucleus and demonstrated the highest expression in the leaf, followed by the embryo. Furthermore, the expression of AhGLK1b was induced significantly in response to a bacterial pathogen, Ralstonia solanacearum infection. Ectopic expression of AhGLK1b in Arabidopsis showed stronger resistance against important phytopathogenic fungi S. sclerotiorum. It also exhibited high resistance to infection of the bacterial pathogen Pst DC3000. AhGLK1b-expressing Arabidopsis induced defense-related genes including PR10 and Phox/Bem 1 (PBI), which are involved in multiple disease resistance. Taken together, the results suggest that AhGLK1b might be useful in providing dual resistance to fungal and bacterial pathogens as well as tolerance to abiotic stresses.
Collapse
|
40
|
Gang H, Li R, Zhao Y, Liu G, Chen S, Jiang J. Loss of GLK1 transcription factor function reveals new insights in chlorophyll biosynthesis and chloroplast development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3125-3138. [PMID: 30921458 DOI: 10.1093/jxb/erz128] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/06/2019] [Indexed: 05/14/2023]
Abstract
Birch (Betula platyphylla × B. pendula) is an important tree for landscaping due to its attractive white bark and straight trunk. In this study, we characterized a T-DNA yellow-green leaf mutant, yl. We identified six insertion sites (ISs) in the mutant by genome resequencing and found a 40-kb deletion containing BpGLK1 around IS2 on chromosome 2. Complementation experiments with the yl mutant and repression of BpGLK1 in wild-type plants confirmed that BpGLK1 was responsible for the mutated phenotype. Physiological and ultrastructural analyses showed that the leaves of the yl mutant and BpGLK1-repression lines had decreased chlorophyll content and defective chloroplast development compared to the wild-type. Furthermore, the loss function of BpGLK1 also affected photosynthesis in leaves. Transcriptomics, proteomics, and ChIP-PCR analysis revealed that BpGLK1 directly interacted with the promoter of genes related to antenna proteins, chlorophyll biosynthesis, and photosystem subunit synthesis, and regulated their expression. Overall, our research not only provides new insights into the mechanism of chloroplast development and chlorophyll biosynthesis regulated by BpGLK1, but also provides new transgenic birch varieties with various levels of yellowing leaves by repressing BpGLK1 expression.
Collapse
Affiliation(s)
- Huixin Gang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Ranhong Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yuming Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
41
|
Ahmad R, Liu Y, Wang TJ, Meng Q, Yin H, Wang X, Wu Y, Nan N, Liu B, Xu ZY. GOLDEN2-LIKE Transcription Factors Regulate WRKY40 Expression in Response to Abscisic Acid. PLANT PHYSIOLOGY 2019; 179:1844-1860. [PMID: 30723180 PMCID: PMC6446771 DOI: 10.1104/pp.18.01466] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/29/2019] [Indexed: 05/20/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) GARP (Golden2, ARR-B, Psr1) family transcription factors, GOLDEN2-LIKE1 and -2 (GLK1/2), function in different biological processes; however, whether and how these transcription factors modulate the response to abscisic acid (ABA) remain unknown. In this study, we used a glk1 glk2 double mutant to examine the role of GLK1/2 in the ABA response. The glk1 glk2 double mutant displayed ABA-hypersensitive phenotypes during seed germination and seedling development and an osmotic stress-resistant phenotype during seedling development. Genome-wide RNA sequencing analysis of the glk1 glk2 double mutant revealed that GLK1/2 regulate several ABA-responsive genes, including WRKY40, in the presence of ABA. Chromatin immunoprecipitation and gel retardation assays showed that GLK1/2 directly associate with the WRKY40 promoter via the recognition of a consensus sequence. Additionally, RNA sequencing analysis of the glk1 glk2 double mutant and wrky40 single mutant revealed that GLK1/2 and WRKY40 control a common set of downstream target genes in response to ABA. Furthermore, results of a genetic interaction test showed that the glk1 glk2 wrky40 triple mutant displayed similar ABA hypersensitivity to the wrky40 single mutant and the glk1 glk2 double mutant, while the glk1 glk2 wrky40 abi5-c (ABI5 CRISPR/Cas9 mutant) quadruple mutant displayed similar ABA hyposensitivity to the abi5-7 single mutant. Based on these results, we propose that the GLK1/2-WRKY40 transcription module plays a negative regulatory role in the ABA response.
Collapse
Affiliation(s)
- Rafiq Ahmad
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Tian-Jing Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Qingxiang Meng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Hao Yin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Xiao Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Yifan Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Nan Nan
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, People's Republic of China
| |
Collapse
|
42
|
Djavaheri M, Ma L, Klessig DF, Mithöfer A, Gropp G, Borhan H. Mimicking the Host Regulation of Salicylic Acid: A Virulence Strategy by the Clubroot Pathogen Plasmodiophora brassicae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:296-305. [PMID: 30199341 DOI: 10.1094/mpmi-07-18-0192-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The plant hormone salicylic acid (SA) plays a critical role in defense against biotrophic pathogens such as Plasmodiophora brassicae, which is an obligate pathogen of crucifer species and the causal agent of clubroot disease of canola (Brassica napus). P. brassicae encodes a protein, predicted to be secreted, with very limited homology to benzoic acid (BA)/SA-methyltransferase, designated PbBSMT. PbBSMT has a SA- and an indole-3-acetic acid-binding domain, which are also present in Arabidopsis thaliana BSMT1 (AtBSMT1) and, like AtBSMT1, has been shown to methylate BA and SA. In support of the hypothesis that P. brassicae uses PbBSMT to overcome SA-mediated defenses by converting SA into inactive methyl salicylate (MeSA), here, we show that PbBSMT suppresses local defense and provide evidence that PbBSMT is much more effective than AtBSMT1 at suppressing the levels of SA and its associated effects. Basal SA levels in Arabidopsis plants that constitutively overexpress PbBSMT compared with those in Arabidopsis wild-type Col-0 (WT) were reduced approximately 80% versus only a 50% reduction in plants overexpressing AtBSMT1. PbBSMT-overexpressing plants were more susceptible to P. brassicae than WT plants; they also were partially compromised in nonhost resistance to Albugo candida. In contrast, AtBSMT1-overexpressing plants were not more susceptible than WT to either P. brassicae or A. candida. Furthermore, transgenic Arabidopsis and tobacco plants overexpressing PbBSMT exhibited increased susceptibility to virulent Pseudomonas syringae pv. tomato DC3000 (DC3000) and virulent Pseudomonas syringae pv. tabaci, respectively. Gene-mediated resistance to DC3000/AvrRpt2 and tobacco mosaic virus (TMV) was also compromised in Arabidopsis and Nicotiana tabacum 'Xanthi-nc' plants overexpressing PbBSMT, respectively. Transient expression of PbBSMT or AtBSMT1 in lower leaves of N. tabacum Xanthi-nc resulted in systemic acquired resistance (SAR)-like enhanced resistance to TMV in the distal systemic leaves. Chimeric grafting experiments revealed that, similar to SAR, the development of a PbBSMT-mediated SAR-like phenotype was also dependent on the MeSA esterase activity of NtSABP2 in the systemic leaves. Collectively, these results strongly suggest that PbBSMT is a novel effector, which is secreted by P. brassicae into its host plant to deplete pathogen-induced SA accumulation.
Collapse
Affiliation(s)
- Mohammad Djavaheri
- 1 Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK., S7N 0X2, Canada
| | - Lisong Ma
- 1 Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK., S7N 0X2, Canada
| | - Daniel F Klessig
- 2 Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY 14853, U.S.A.; and
| | - Axel Mithöfer
- 3 Max-Planck-Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Gordon Gropp
- 1 Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK., S7N 0X2, Canada
| | - Hossein Borhan
- 1 Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK., S7N 0X2, Canada
| |
Collapse
|
43
|
Lv R, Li Z, Li M, Dogra V, Lv S, Liu R, Lee KP, Kim C. Uncoupled Expression of Nuclear and Plastid Photosynthesis-Associated Genes Contributes to Cell Death in a Lesion Mimic Mutant. THE PLANT CELL 2019; 31:210-230. [PMID: 30606779 PMCID: PMC6391704 DOI: 10.1105/tpc.18.00813] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/18/2018] [Accepted: 12/27/2018] [Indexed: 05/23/2023]
Abstract
Chloroplast-to-nucleus retrograde signaling is essential for the coupled expression of photosynthesis-associated nuclear genes (PhANGs) and plastid genes (PhAPGs) to ensure the functional status of chloroplasts (Cp) in plants. Although various signaling components involved in the process have been identified in Arabidopsis (Arabidopsis thaliana), the biological relevance of such coordination remains an enigma. Here, we show that the uncoupled expression of PhANGs and PhAPGs contributes to the cell death in the lesion simulating disease1 (lsd1) mutant of Arabidopsis. A daylength-dependent increase of salicylic acid (SA) appears to rapidly up-regulate a gene encoding SIGMA FACTOR BINDING PROTEIN1 (SIB1), a transcriptional coregulator, in lsd1 before the onset of cell death. The dual targeting of SIB1 to the nucleus and the Cps leads to a simultaneous up-regulation of PhANGs and down-regulation of PhAPGs. Consequently, this disrupts the stoichiometry of photosynthetic proteins, especially in PSII, resulting in the generation of the highly reactive species singlet oxygen (1O2) in Cps. Accordingly, inactivation of the nuclear-encoded Cp protein EXECUTER1, a putative 1O2 sensor, significantly attenuates the lsd1-conferred cell death. Together, these results provide a pathway from the SA- to the 1O2-signaling pathway, which are intertwined via the uncoupled expression of PhANGs and PhAPGs, contributing to the lesion-mimicking cell death in lsd1.
Collapse
Affiliation(s)
- Ruiqing Lv
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zihao Li
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Mengping Li
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Vivek Dogra
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shanshan Lv
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Renyi Liu
- College of Horticulture and FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Keun Pyo Lee
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
44
|
Townsend PD, Dixon CH, Slootweg EJ, Sukarta OCA, Yang AWH, Hughes TR, Sharples GJ, Pålsson LO, Takken FLW, Goverse A, Cann MJ. The intracellular immune receptor Rx1 regulates the DNA-binding activity of a Golden2-like transcription factor. J Biol Chem 2018; 293:3218-3233. [PMID: 29217772 PMCID: PMC5836133 DOI: 10.1074/jbc.ra117.000485] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/14/2017] [Indexed: 12/22/2022] Open
Abstract
Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable the immune system to recognize and respond to pathogen attack. An early consequence of immune activation is transcriptional reprogramming, and some NLRs have been shown to act in the nucleus and interact with transcription factors. The Rx1 NLR protein of potato is further able to bind and distort double-stranded DNA. However, Rx1 host targets that support a role for Rx1 in transcriptional reprogramming at DNA are unknown. Here, we report a functional interaction between Rx1 and NbGlk1, a Golden2-like transcription factor. Rx1 binds to NbGlk1 in vitro and in planta. NbGlk1 binds to known Golden2-like consensus DNA sequences. Rx1 reduces the binding affinity of NbGlk1 for DNA in vitro. NbGlk1 activates cellular responses to potato virus X, whereas Rx1 associates with NbGlk1 and prevents its assembly on DNA in planta unless activated by PVX. This study provides new mechanistic insight into how an NLR can coordinate an immune signaling response at DNA following pathogen perceptions.
Collapse
Affiliation(s)
- Philip D Townsend
- From the Department of Biosciences
- Biophysical Sciences Institute, and
| | | | - Erik J Slootweg
- the Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Octavina C A Sukarta
- the Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Ally W H Yang
- the Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada, and
| | - Timothy R Hughes
- the Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada, and
| | - Gary J Sharples
- From the Department of Biosciences
- Biophysical Sciences Institute, and
| | - Lars-Olof Pålsson
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Frank L W Takken
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Aska Goverse
- the Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Martin J Cann
- From the Department of Biosciences,
- Biophysical Sciences Institute, and
| |
Collapse
|
45
|
Safi A, Medici A, Szponarski W, Ruffel S, Lacombe B, Krouk G. The world according to GARP transcription factors. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:159-167. [PMID: 28802165 DOI: 10.1016/j.pbi.2017.07.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/10/2017] [Accepted: 07/15/2017] [Indexed: 05/26/2023]
Abstract
Plant specific GARP transcription factor family (made of ARR-B and G2-like) contains genes with very diverse in planta functions: nutrient sensing, root and shoot development, floral transition, chloroplast development, circadian clock oscillation maintenance, hormonal transport and signaling. In this work we review: first, their structural but distant relationships with MYB transcription factors, second, their role in planta, third, the diversity of their Cis-regulatory elements, fourth, their potential protein partners. We conclude that the GARP family may hold keys to understand the interactions between nutritional signaling pathways (nitrogen and phosphate at least) and development. Understanding how plant nutrition and development are coordinated is central to understand how to adapt plants to an ever-changing environment. Consequently GARPs are likely to attract increasing research attentions, as they are likely at the crossroads of these fundamental processes.
Collapse
Affiliation(s)
- Alaeddine Safi
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR5004 CNRS/INRA/SupAgro/UM, Institut de Biologie Intégrative des Plantes 'Claude Grignon', Place Pierre Viala, 34060 Montpellier, France
| | - Anna Medici
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR5004 CNRS/INRA/SupAgro/UM, Institut de Biologie Intégrative des Plantes 'Claude Grignon', Place Pierre Viala, 34060 Montpellier, France
| | - Wojciech Szponarski
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR5004 CNRS/INRA/SupAgro/UM, Institut de Biologie Intégrative des Plantes 'Claude Grignon', Place Pierre Viala, 34060 Montpellier, France
| | - Sandrine Ruffel
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR5004 CNRS/INRA/SupAgro/UM, Institut de Biologie Intégrative des Plantes 'Claude Grignon', Place Pierre Viala, 34060 Montpellier, France
| | - Benoît Lacombe
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR5004 CNRS/INRA/SupAgro/UM, Institut de Biologie Intégrative des Plantes 'Claude Grignon', Place Pierre Viala, 34060 Montpellier, France
| | - Gabriel Krouk
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR5004 CNRS/INRA/SupAgro/UM, Institut de Biologie Intégrative des Plantes 'Claude Grignon', Place Pierre Viala, 34060 Montpellier, France.
| |
Collapse
|
46
|
Wang H, Seo JK, Gao S, Cui X, Jin H. Silencing of AtRAP, a target gene of a bacteria-induced small RNA, triggers antibacterial defense responses through activation of LSU2 and down-regulation of GLK1. THE NEW PHYTOLOGIST 2017; 215:1144-1155. [PMID: 28656601 PMCID: PMC5730055 DOI: 10.1111/nph.14654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 04/28/2017] [Indexed: 05/29/2023]
Abstract
Plants fine-tune their sophisticated immunity systems in response to pathogen infections. We previously showed that AtlsiRNA-1, a bacteria-induced plant endogenous small interfering RNA, silences the AtRAP gene, which encodes a putative RNA binding protein. In this study, we demonstrate that AtRAP functions as a negative regulator in plant immunity by characterizing molecular and biological responses of the knockout mutant and overexpression lines of AtRAP upon bacterial infection. AtRAP is localized in chloroplasts and physically interacts with Low Sulfur Upregulated 2 (LSU2), which positively regulates plant defense. Our results suggest that AtRAP negatively regulates defense responses by suppressing LSU2 through physical interaction. We also detected downregulation of the transcription factor GOLDEN2-LIKE 1 (GLK1) in atrap-1 using microarray analysis. The glk1 glk2 double mutant showed enhanced resistance to Pseudomonas syringae pv. tomato, which is consistent with a previous study showing enhanced resistance of a glk1 glk2 double mutant to Hyaloperonospora arabidopsidis. Taken together, our data suggest that silencing of AtRAP by AtlsiRNA-1 upon bacterial infection triggers defense responses through regulation of LSU2 and GLK1.
Collapse
Affiliation(s)
- Huan Wang
- Department of Plant Pathology & Microbiology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521-0122, USA
| | - Jang-Kyun Seo
- Graduate School of International Agricultural Technology, Seoul National University, Gangwon-do 25354, Korea
| | - Shang Gao
- Department of Plant Pathology & Microbiology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521-0122, USA
| | - Xinping Cui
- Department of Statistics, University of California, Riverside, CA 92521-0122, USA
| | - Hailing Jin
- Department of Plant Pathology & Microbiology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521-0122, USA
| |
Collapse
|
47
|
Cheval C, Perez M, Leba LJ, Ranty B, Perochon A, Reichelt M, Mithöfer A, Robe E, Mazars C, Galaud JP, Aldon D. PRR2, a pseudo-response regulator, promotes salicylic acid and camalexin accumulation during plant immunity. Sci Rep 2017; 7:6979. [PMID: 28765536 PMCID: PMC5539105 DOI: 10.1038/s41598-017-07535-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/26/2017] [Indexed: 11/25/2022] Open
Abstract
Calcium signalling mediated by Calmodulin (CaM) and calmodulin-like (CML) proteins is critical to plant immunity. CaM and CML regulate a wide range of target proteins and cellular responses. While many CaM-binding proteins have been identified, few have been characterized for their specific role in plant immunity. Here, we report new data on the biological function of a CML-interacting partner, PRR2 (PSEUDO-RESPONSE REGULATOR 2), a plant specific transcription factor. Until now, the physiological relevance of PRR2 remained largely unknown. Using a reverse genetic strategy in A. thaliana, we identified PRR2 as a positive regulator of plant immunity. We propose that PRR2 contributes to salicylic acid (SA)-dependent responses when challenged with the phytopathogenic bacterium Pseudomonas syringae. PRR2 is transcriptionally upregulated by SA and P. syringae, enhances SA biosynthesis and SA signalling responses; e.g. in response to P. syringae, PRR2 induces the production of SA and the accumulation of the defence-related protein PR1. Moreover, PRR2 overexpressing lines exhibit an enhanced production of camalexin, a phytoalexin that confers enhanced resistance against pathogens. Together, these data reveal the importance of PRR2 in plant immune responses against P. syringae and suggest a novel function for this particular plant specific transcription factor in plant physiology.
Collapse
Affiliation(s)
- C Cheval
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - M Perez
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
| | - L J Leba
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
- UMR QualiSud, Université de Guyane, Campus Universitaire de Troubiran, P.O. Box 792, 97337, Cayenne Cedex, French Guiana, France
| | - B Ranty
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
| | - A Perochon
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
- University College Dublin Earth Institute and School of Biology and Environmental Science, College of Science, University College Dublin, Belfield, Dublin, Ireland
| | - M Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans Knöll Strasse 8, 07745, Jena, Germany
| | - A Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans Knöll Strasse 8, 07745, Jena, Germany
| | - E Robe
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
| | - C Mazars
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
| | - J P Galaud
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
| | - D Aldon
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France.
| |
Collapse
|
48
|
Yarullina LG, Kasimova RI, Maksimov IV. Signal molecules involved in the regulation of the wheat defense response to Septoria nodorum infection. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816050173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Han XY, Li PX, Zou LJ, Tan WR, Zheng T, Zhang DW, Lin HH. GOLDEN2-LIKE transcription factors coordinate the tolerance to Cucumber mosaic virus in Arabidopsis. Biochem Biophys Res Commun 2016; 477:626-632. [DOI: 10.1016/j.bbrc.2016.06.110] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 12/30/2022]
|
50
|
Liu F, Xu Y, Han G, Zhou L, Ali A, Zhu S, Li X. Molecular Evolution and Genetic Variation of G2-Like Transcription Factor Genes in Maize. PLoS One 2016; 11:e0161763. [PMID: 27560803 PMCID: PMC4999087 DOI: 10.1371/journal.pone.0161763] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/11/2016] [Indexed: 12/29/2022] Open
Abstract
The productivity of maize (Zea mays L.) depends on the development of chloroplasts, and G2-like transcription factors play a central role in regulating chloroplast development. In this study, we identified 59 G2-like genes in the B73 maize genome and systematically analyzed these genes at the molecular and evolutionary levels. Based on gene structure character, motif compositions and phylogenetic analysis, maize G2-like genes (ZmG1- ZmG59) were divided into seven groups (I-VII). By synteny analysis, 18 collinear gene pairs and strongly conserved microsyntny among regions hosting G2-like genes across maize and sorghum were found. Here, we showed that the vast majority of ZmG gene duplications resulted from whole genome duplication events rather than tandem duplications. After gene duplication events, some ZmG genes were silenced. The functions of G2-like genes were multifarious and most genes that are expressed in green tissues may relate to maize photosynthesis. The qRT-PCR showed that the expression of these genes was sensitive to low temperature and drought. Furthermore, we analyzed differences of ZmGs specific to cultivars in temperate and tropical regions at the population level. Interestingly, the single nucleotide polymorphism (SNP) analysis revealed that nucleotide polymorphism associated with different temperature zones. Above all, G2-like genes were highly conserved during evolution, but polymorphism could be caused due to a different geographical location. Moreover, G2-like genes might be related to cold and drought stresses.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Yunjian Xu
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Guomin Han
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Lingyan Zhou
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Asif Ali
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Suwen Zhu
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Xiaoyu Li
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei, China
- * E-mail:
| |
Collapse
|