1
|
Liao H, Chen Y, He Y, Zou M, Zheng L, Liao J, Rana K, Qian W, Ding Y. Stress responsive glycosylphosphatidylinositol-anchored protein SsGSP1 contributes to Sclerotinia sclerotiorum virulence. Virulence 2025; 16:2503434. [PMID: 40353429 PMCID: PMC12091936 DOI: 10.1080/21505594.2025.2503434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 04/23/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025] Open
Abstract
Fungal cell wall acts as a defense barrier, shielding the cell from varying environmental stresses. Cell wall proteins, such as glycosylphosphatidylinositol (GPI)-anchored proteins, are involved in swift and appropriate responses to minor environmental changes in fungi. However, the roles of these proteins in the pathogenic Sclerotinia sclerotiorum remain largely unexplored. Here, we identified a novel GPI-anchored protein in S. sclerotiorum, SsGSP1, comprising a Kre9_KNH domain. SsGSP1 was upregulated during infection, and the loss-of-function mutants of SsGSP1 exhibited the compromised cell wall integrity and reduced β-glucan content. During inoculation on Arabidopsis thaliana, Nicotiana benthamiana, and Brassica napus, the SsGSP1-deletion strains demonstrated the decreased virulence. The transgenic A. thaliana line carrying the sRNA targeting SsGSP1 enhanced resistance to S. sclerotiorum via Host-Induced Gene Silencing (HIGS). The SsGSP1-deficient strains displayed the heightened sensitivity to various stresses, including osmotic pressure, oxidative stress, and heat shock. The yeast two-hybrid and BiFC assays confirmed that SsGSP1 interacted with the key stress-related proteins catalase SsCat2, heat shock protein Sshsp60, and ABC transporter SsBMR1. Accordingly, transcriptome analysis revealed that the disruption of SsGSP1 downregulated the expression of genes involved in oxidative stress response, heat shock response, and chemical agent resistance. These results collectively delineate the intricate role of GPI-anchored protein SsGSP1 in β-glucan, cell wall integrity, and virulence and may act as a potential surface sensor to elicit signal transduction in response to environmental stresses in S. sclerotiorum.
Collapse
Affiliation(s)
- Hongmei Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yangui Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yujia He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Minghong Zou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Lintao Zheng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Jinghang Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kusum Rana
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Wei Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yijuan Ding
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
2
|
Singh J, Yadav P, Budhlakoti N, Mishra DC, Bhardwaj NR, Rao M, Sharma P, Gupta NC. Exploration of the Sclerotinia sclerotiorum-Brassica pathosystem: advances and perspectives in omics studies. Mol Biol Rep 2024; 51:1097. [PMID: 39460825 DOI: 10.1007/s11033-024-10043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
The polyphagous phytopathogen Sclerotinia sclerotiorum causing Stem rot disease is a major biotic stress in Brassica, and affects the yield and quality in various crops of agricultural significance. It affects the crop at pre-maturity which causes a reduction in the seed yield and deteriorates the oil quality in rapeseeds and Indian mustard globally. The hemibiotrophic nature and long persistence in the soil as sclerotia have made this pathogen difficult to manage through conventional agronomical practices. Hence, for alternative strategies, it is important to understand the basic aspects of the pathogen and the pathogenesis processes in the host. The current developments in technologies for omics studies including whole-genomes, transcriptomes, proteomes, and metabolomes have deciphered various genes, transcription factors, effectors and their target molecules involved in interaction, disease establishment and pathogen progress in the host tissues. The current review encompasses the studies that were conducted to decipher the Brassica-S. sclerotiorum pathosystem and the molecular factors identified through multi-omics studies for their application in building resistance to Sclerotinia stem rot disease in the susceptible cultivars of oilseed Brassica.
Collapse
Affiliation(s)
- Joshi Singh
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India
| | - Prashant Yadav
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India
| | - Neeraj Budhlakoti
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | | | - Mahesh Rao
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Pankaj Sharma
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India.
- ICAR- National Institute of Biotic Stress Management, Raipur, Chhattisgarh, India.
| | | |
Collapse
|
3
|
Moon H, Min K, Winarto J, Shin S, Jeon H, Song DG, Son H. Proteomic Analysis of Cell Wall Proteins with Various Linkages in Fusarium graminearum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6028-6039. [PMID: 38457781 DOI: 10.1021/acs.jafc.3c07746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
The fungal cell wall, primarily comprising a glucan-chitin matrix and cell wall proteins (CWPs), serves as a key mediator for fungal interactions with the environment and plays a pivotal role in virulence. In this study, we employed a comprehensive proteomics approach to analyze the CWPs in the plant pathogenic fungus Fusarium graminearum. Our methodology successfully extracted and identified 1373 CWPs, highlighting their complex linkages, including noncovalent bonds, disulfide bridges, alkali-sensitive linkages, and glycosylphosphatidylinositol (GPI) anchors. A significant subset of these proteins, enriched in Gene Ontology terms, suggest multifunctional roles of CWPs. Through the integration of transcriptomic and proteomic data, we observed differential expression patterns of CWPs across developmental stages. Specifically, we focused on two genes, Fca7 and Cpd1, which were upregulated in planta, and confirmed their localization predominantly outside the plasma membrane, primarily in the cell wall and periplasmic space. The disruption of FCA7 reduced virulence on wheat, aligning with previous findings and underscoring its significance. Overall, our findings offer a comprehensive proteomic profile of CWPs in F. graminearum, laying the groundwork for a deeper understanding of their roles in the development and interactions with host plants.
Collapse
Affiliation(s)
- Heeji Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyunghun Min
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Jessica Winarto
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Soobin Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Hosung Jeon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Geun Song
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Canto-Canché B, Burgos-Canul YY, Chi-Chuc D, Tzec-Simá M, Ku-González A, Brito-Argáez L, Carrillo-Pech M, De Los Santos-Briones C, Canseco-Pérez MÁ, Luna-Moreno D, Beltrán-García MJ, Islas-Flores I. Moonlight-like proteins are actually cell wall components in Pseudocercospora fijiensis. World J Microbiol Biotechnol 2023; 39:232. [PMID: 37349471 DOI: 10.1007/s11274-023-03676-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
The fungal cell wall protects fungi against threats, both biotic and abiotic, and plays a role in pathogenicity by facilitating host adhesion, among other functions. Although carbohydrates (e.g. glucans, chitin) are the most abundant components, the fungal cell wall also harbors ionic proteins, proteins bound by disulfide bridges, alkali-extractable, SDS-extractable, and GPI-anchored proteins, among others; the latter consisting of suitable targets which can be used for fungal pathogen control. Pseudocercospora fijiensis is the causal agent of black Sigatoka disease, the principal threat to banana and plantain worldwide. Here, we report the isolation of the cell wall of this pathogen, followed by extensive washing to eliminate all loosely associated proteins and conserve those integrated to its cell wall. In the HF-pyridine protein fraction, one of the most abundant protein bands was recovered from SDS-PAGE gels, electro-eluted and sequenced. Seven proteins were identified from this band, none of which were GPI-anchored proteins. Instead, atypical (moonlight-like) cell wall proteins were identified, suggesting a new class of atypical proteins, bound to the cell wall by unknown linkages. Western blot and histological analyses of the cell wall fractions support that these proteins are true cell wall proteins, most likely involved in fungal pathogenesis/virulence, since they were found conserved in many fungal pathogens.
Collapse
Affiliation(s)
- Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 No. 130 x 32 y 34, Mérida, A.C., Yucatán, C.P. 97205, México
| | - Yamily Yazmin Burgos-Canul
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 No. 130 x 32 y 34, Mérida, A.C., Yucatán, C.P. 97205, México
| | - Deysi Chi-Chuc
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 No. 130 x 32 y 34, Mérida, A.C., Yucatán, C.P. 97205, México
- Escuela Telebachillerato Comunitario de Xcunya, Calle 20, Mérida, México
| | - Miguel Tzec-Simá
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 No. 130 x 32 y 34, Mérida, A.C., Yucatán, C.P. 97205, México
| | - Angela Ku-González
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 No. 130 x 32 y 34, Mérida, A.C., Yucatán, C.P. 97205, México
| | - Ligia Brito-Argáez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 No. 130 x 32 y 34, Mérida, A.C., Yucatán, C.P. 97205, México
| | - Mildred Carrillo-Pech
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 No. 130 x 32 y 34, Mérida, A.C., Yucatán, C.P. 97205, México
| | - César De Los Santos-Briones
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 No. 130 x 32 y 34, Mérida, A.C., Yucatán, C.P. 97205, México
| | - Miguel Ángel Canseco-Pérez
- Dirección de Investigación, Evaluación y Posgrado, Universidad Tecnológica de Tlaxcala, Carretera a el Carmen Xalplatlahuaya s/n. El Carmen Xalplatlahuaya, Tlaxcala, Huamantla, C.P. 90500, Mexico
| | - Donato Luna-Moreno
- Centro de Investigaciones en Óptica AC, División de Fotónica, Loma del Bosque 115, Col. Lomas del Campestre, León, Gto, C.P. 37150, México
| | | | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Colonia Chuburná de Hidalgo, Calle 43 No. 130 x 32 y 34, Mérida, A.C., Yucatán, C.P. 97205, México.
| |
Collapse
|
5
|
Hu Y, Gong H, Lu Z, Zhang P, Zheng S, Wang J, Tian B, Fang A, Yang Y, Bi C, Cheng J, Yu Y. Variable Tandem Glycine-Rich Repeats Contribute to Cell Death-Inducing Activity of a Glycosylphosphatidylinositol-Anchored Cell Wall Protein That Is Associated with the Pathogenicity of Sclerotinia sclerotiorum. Microbiol Spectr 2023; 11:e0098623. [PMID: 37140432 PMCID: PMC10269696 DOI: 10.1128/spectrum.00986-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/07/2023] [Indexed: 05/05/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved posttranslational modification in eukaryotes. GPI-anchored proteins are widely distributed in fungal plant pathogens, but the specific roles of the GPI-anchored proteins in the pathogenicity of Sclerotinia sclerotiorum, a devastating necrotrophic plant pathogen with a worldwide distribution, remain largely unknown. This research addresses SsGSR1, which encodes an S. sclerotiorum glycine- and serine-rich protein named SsGsr1 with an N-terminal secretory signal and a C-terminal GPI-anchor signal. SsGsr1 is located at the cell wall of hyphae, and deletion of SsGSR1 leads to abnormal cell wall architecture and impaired cell wall integrity of hyphae. The transcription levels of SsGSR1 were maximal in the initial stage of infection, and SsGSR1-deletion strains showed impaired virulence in multiple hosts, indicating that SsGSR1 is critical for the pathogenicity. Interestingly, SsGsr1 targeted the apoplast of host plants to induce cell death that relies on the glycine-rich 11-amino-acid repeats arranged in tandem. The homologs of SsGsr1 in Sclerotinia, Botrytis, and Monilinia species contain fewer repeat units and have lost their cell death activity. Moreover, allelic variants of SsGSR1 exist in field isolates of S. sclerotiorum from rapeseed, and one of the variants lacking one repeat unit results in a protein that exhibits loss of function relative to the cell death-inducing activity and the virulence of S. sclerotiorum. Taken together, our results demonstrate that a variation in tandem repeats provides the functional diversity of GPI-anchored cell wall protein that, in S. sclerotiorum and other necrotrophic pathogens, allows successful colonization of the host plants. IMPORTANCE Sclerotinia sclerotiorum is an economically important necrotrophic plant pathogen and mainly applies cell wall-degrading enzymes and oxalic acid to kill plant cells before colonization. In this research, we characterized a glycosylphosphatidylinositol (GPI)-anchored cell wall protein named SsGsr1, which is critical for the cell wall architecture and the pathogenicity of S. sclerotiorum. Additionally, SsGsr1 induces rapid cell death of host plants that is dependent on glycine-rich tandem repeats. Interestingly, the number of repeat units varies among homologs and alleles of SsGsr1, and such a variation creates alterations in the cell death-inducing activity and the role in pathogenicity. This work advances our understanding of the variation of tandem repeats in accelerating the evolution of a GPI-anchored cell wall protein associated with the pathogenicity of necrotrophic fungal pathogens and prepares the way toward a fuller understanding of the interaction between S. sclerotiorum and host plants.
Collapse
Affiliation(s)
- Yawen Hu
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Hang Gong
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Ziyang Lu
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Pengpeng Zhang
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Sinian Zheng
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Jing Wang
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Binnian Tian
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan City, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| |
Collapse
|
6
|
Gupta NC, Yadav S, Arora S, Mishra DC, Budhlakoti N, Gaikwad K, Rao M, Prasad L, Rai PK, Sharma P. Draft genome sequencing and secretome profiling of Sclerotinia sclerotiorum revealed effector repertoire diversity and allied broad-host range necrotrophy. Sci Rep 2022; 12:21855. [PMID: 36528657 PMCID: PMC9759525 DOI: 10.1038/s41598-022-22028-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 10/07/2022] [Indexed: 12/23/2022] Open
Abstract
White mold commonly known as Sclerotinia sclerotiorum causes stem rot disease and has emerged as one of the major fungal pathogens of oilseed Brassica across the world. In the present study, consistently virulent S. sclerotiorum isolate "ESR-01" was sequenced and an assembly size of ~ 41 Mb with 328 scaffolds having N50 of 447,128 was obtained. Additionally, 27,450 single nucleotide polymorphisms (SNPs) were identified from 155 scaffolds against S. sclerotiorum 1980 isolate, with an average SNP density of ~ 1.5 per kb genome. 667 repetitive elements were identified and approximately comprised 7% of the total annotated genes. The DDE_1 with 454 in numbers was found to be the most abundant and accounts for 68% of the total predicted repetitive elements. In total, 3844 simple sequence repeats are identified in the 328 scaffolds. A total of 9469 protein-coding genes were predicted from the whole genome assembly with an average gene length of 1587 bp and their distribution as 230.95 genes per Mb in the genome. Out of 9469 predicted protein-coding genes, 529 genes were observed encoding the CAZymes (Carbohydrate-Active enzymes) capable of degradation of the complex polysaccharides. Glycosyltransferase (GT) families were most abundant (49.71%) among the predicted CAZymes and GT2 (23%), GT4 (20%), and glycoside hydrolase (GH) 23% with GH18 (11%) were the prominent cell wall degrading enzyme families in the ESR-01 secretome. Besides this, 156 genes essential for the pathogen-host interactions were also identified. The effector analysis in the whole genome proteomics dataset revealed a total of 57 effector candidates (ECs) and 27 of them were having their analogs whereas the remaining 30 were novel ones. Eleven selected ECs were validated experimentally by analyzing the expression profile of the ESR-01 isolate of S. sclerotiorum. Together, the present investigation offers a better understanding of the S. sclerotiorum genome, secretome, and its effector repertoire which will help in refining the present knowledge on S. sclerotiorum-Brassica interactions and necrotrophic lifestyle of the phytopathogen in general.
Collapse
Affiliation(s)
- Navin C Gupta
- ICAR-National Institute for Plant Biotechnology, New Delhi, India.
| | - Sunita Yadav
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Shaweta Arora
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Dwijesh C Mishra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Neeraj Budhlakoti
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Kishore Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Mahesh Rao
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Lakshman Prasad
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Pramod K Rai
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India
| | - Pankaj Sharma
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, Rajasthan, India.
| |
Collapse
|
7
|
Presley GN, Zhang J, Purvine SO, Schilling JS. Functional Genomics, Transcriptomics, and Proteomics Reveal Distinct Combat Strategies Between Lineages of Wood-Degrading Fungi With Redundant Wood Decay Mechanisms. Front Microbiol 2020; 11:1646. [PMID: 32849338 PMCID: PMC7399148 DOI: 10.3389/fmicb.2020.01646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/24/2020] [Indexed: 01/06/2023] Open
Abstract
Wood-degrading fungi vary in their strategies for deconstructing wood, and their competitive successes shape the rate and fate of carbon released from wood, Earth’s largest pool of aboveground terrestrial carbon. In this study, one-on-one interspecific interactions between two model brown rot (carbohydrate-selective) fungi, Gloeophyllum trabeum and Rhodonia (Postia) placenta, were studied on wood wafers where a clearly resolved interaction zone (IZ) could be generated, reproducibly. Comparative RNAseq and proteomics between the IZ and non-interacting hyphae of each species identified combative strategies for each fungus. Glycoside hydrolases were a relatively smaller portion of the interaction secretome compared to non-interacting hyphae. The interaction zone showed higher pectinase specific activity than all other sampling locations, and higher laminarinase specific activity (branched β-glucan proxy) was seen in the IZ secretome relative to equivalent hyphae in single-species cultures. Our efforts also identified two distinct competitive strategies in these two fungi with a shared nutritional mode (brown rot) but polyphyletic ancestral lineages. Gloeophyllum trabeum (Gloeophyllum clade) upregulated more secondary metabolite (SM) synthesis genes in response to a competitor than did R. placenta. R. placenta (Antrodia clade) upregulated a larger variety of uncharacterized oxidoreductases in interacting hyphae, suggesting that these may play a role in mediating competitor response in this fungus. Both species produced several hypothetical proteins exclusively in the interaction zone, leaving questions as to the function of these proteins. This work supports the existence of multiple interaction strategies among brown rot fungi and highlights the functional diversity among wood decay fungi.
Collapse
Affiliation(s)
- Gerald N Presley
- Department of Wood Science and Engineering, Oregon State University, Corvallis, OR, United States
| | - Jiwei Zhang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN, United States
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Jonathan S Schilling
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
8
|
Differential Alternative Splicing Genes and Isoform Regulation Networks of Rapeseed ( Brassica napus L.) Infected with Sclerotinia sclerotiorum. Genes (Basel) 2020; 11:genes11070784. [PMID: 32668742 PMCID: PMC7397149 DOI: 10.3390/genes11070784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 11/17/2022] Open
Abstract
Alternative splicing (AS) is a post-transcriptional level of gene expression regulation that increases transcriptome and proteome diversity. How the AS landscape of rapeseed (Brassica napus L.) changes in response to the fungal pathogen Sclerotinia sclerotiorum is unknown. Here, we analyzed 18 RNA-seq libraries of mock-inoculated and S. sclerotiorum-inoculated susceptible and tolerant B. napus plants. We found that infection increased AS, with intron retention being the main AS event. To determine the key genes functioning in the AS response, we performed a differential AS (DAS) analysis. We identified 79 DAS genes, including those encoding splicing factors, defense response proteins, crucial transcription factors and enzymes. We generated coexpression networks based on the splicing isoforms, rather than the genes, to explore the genes’ diverse functions. Using this weighted gene coexpression network analysis alongside a gene ontology enrichment analysis, we identified 11 modules putatively involved in the pathogen defense response. Within these regulatory modules, six DAS genes (ascorbate peroxidase 1, ser/arg-rich protein 34a, unknown function 1138, nitrilase 2, v-atpase f, and amino acid transporter 1) were considered to encode key isoforms involved in the defense response. This study provides insight into the post-transcriptional response of B. napus to S. sclerotiorum infection.
Collapse
|
9
|
Rodríguez-Pires S, Melgarejo P, De Cal A, Espeso EA. Proteomic Studies to Understand the Mechanisms of Peach Tissue Degradation by Monilinia laxa. FRONTIERS IN PLANT SCIENCE 2020; 11:1286. [PMID: 32973845 PMCID: PMC7468393 DOI: 10.3389/fpls.2020.01286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/06/2020] [Indexed: 05/03/2023]
Abstract
Monilinia laxa is a necrotrophic plant pathogen able to infect and produce substantial losses on stone fruit. Three different isolates of M. laxa were characterized according to their aggressiveness on nectarines. M. laxa 8L isolate was the most aggressive on fruit, 33L isolate displayed intermediated virulence level, and 5L was classified as a weak aggressive isolate. Nectarine colonization process by the weak isolate 5L was strongly delayed. nLC-MS/MS proteomic studies using in vitro peach cultures provided data on exoproteomes of the three isolates at equivalent stages of brown rot colonization; 3 days for 8L and 33L, and 7 days for 5L. A total of 181 proteins were identified from 8L exoproteome and 289 proteins from 33L at 3 dpi, and 206 proteins were identified in 5L exoproteome at 7 dpi. Although an elevated number of proteins lacked a predicted function, the vast majority of proteins belong to OG group "metabolism", composed of categories such as "carbohydrate transport and metabolism" in 5L, and "energy production and conversion" most represented in 8L and 33L. Among identified proteins, 157 that carried a signal peptide were further examined and classified. Carbohydrate-active enzymes and peptidases were the main groups revealing different protein alternatives with the same function among isolates. Our data suggested a subset of secreted proteins as possible markers of differential virulence in more aggressive isolates, MlPG1 MlPME3, NEP-like, or endoglucanase proteins. A core-exoproteome among isolates independently of their virulence but time-dependent was also described. This core included several well-known virulence factors involved in host-tissue factors like cutinase, pectin lyases, and acid proteases. The secretion patterns supported the assumption that M. laxa deploys an extensive repertoire of proteins to facilitate the host infection and colonization and provided information for further characterization of M. laxa pathogenesis.
Collapse
Affiliation(s)
- Silvia Rodríguez-Pires
- Department of Plant Protection, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Paloma Melgarejo
- Department of Plant Protection, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Antonieta De Cal
- Department of Plant Protection, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- *Correspondence: Antonieta De Cal,
| | - Eduardo A. Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CIB)-Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
10
|
Cell surface display of proteins on filamentous fungi. Appl Microbiol Biotechnol 2019; 103:6949-6972. [PMID: 31359105 DOI: 10.1007/s00253-019-10026-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
Protein display approaches have been useful to endow the cell surface of yeasts with new catalytic activities so that they can act as enhanced whole-cell biocatalysts. Despite their biotechnological potential, protein display technologies remain poorly developed for filamentous fungi. The lignocellulolytic character of some of them coupled to the cell surface biosynthesis of valuable molecules by a single or a cascade of several displayed enzymes is an appealing prospect. Cell surface protein display consists in the co-translational fusion of a functional protein (passenger) to an anchor one, usually a cell-wall-resident protein. The abundance, spacing, and local environment of the displayed enzymes-determined by the relationship of the anchor protein with the structure and dynamics of the engineered cell wall-are factors that influence the performance of display-based biocatalysts. The development of protein display strategies in filamentous fungi could be based on the field advances in yeasts; however, the unique composition, structure, and biology of filamentous fungi cell walls require the customization of the approach to those microorganisms. In this prospective review, the cellular bases, the design principles, and the available tools to foster the development of cell surface protein display technologies in filamentous fungi are discussed.
Collapse
|
11
|
Burgos-Canul YY, Canto-Canché B, Berezovski MV, Mironov G, Loyola-Vargas VM, Barba de Rosa AP, Tzec-Simá M, Brito-Argáez L, Carrillo-Pech M, Grijalva-Arango R, Muñoz-Pérez G, Islas-Flores I. The cell wall proteome from two strains of Pseudocercospora fijiensis with differences in virulence. World J Microbiol Biotechnol 2019; 35:105. [PMID: 31267317 DOI: 10.1007/s11274-019-2681-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/20/2019] [Indexed: 11/25/2022]
Abstract
Pseudocercospora fijiensis causes black Sigatoka disease, the most important threat to banana. The cell wall is crucial for fungal biological processes, including pathogenesis. Here, we performed cell wall proteomics analyses of two P. fijiensis strains, the highly virulent Oz2b, and the less virulent C1233 strains. Strains were starved from nitrogen to mimic the host environment. Interestingly, in vitro cultures of the C1233 strain grew faster than Oz2b in PDB medium, suggesting that C1233 survives outside the host better than the highly virulent Oz2b strain. Both strains were submitted to nitrogen starvation and the cell wall proteins were isolated and subjected to nano-HPLC-MS/MS. A total of 2686 proteins were obtained from which only 240 had a known function and thus, bioinformatics analyses were performed on this group. We found that 90 cell wall proteins were shared by both strains, 21 were unique for Oz2b and 39 for C1233. Shared proteins comprised 24 pathogenicity factors, including Avr4 and Ecp6, two effectors from P. fijiensis, while the unique proteins comprised 16 virulence factors in C1233 and 11 in Oz2b. The P. fijiensis cell wall proteome comprised canonical proteins, but thirty percent were atypical, a feature which in other phytopathogens has been interpreted as contamination. However, a comparison with the identities of atypical proteins in other reports suggests that the P. fijiensis proteins we detected were not contaminants. This is the first proteomics analysis of the P. fijiensis cell wall and our results expands the understanding of the fundamental biology of fungal phytopathogens and will help to decipher the molecular mechanisms of pathogenesis and virulence in P. fijiensis.
Collapse
Affiliation(s)
- Yamily Y Burgos-Canul
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON, K1N 6N5, Canada
| | - Gleb Mironov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, ON, K1N 6N5, Canada
| | - Víctor M Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Ana Paulina Barba de Rosa
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, S.L.P., Mexico
| | - Miguel Tzec-Simá
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Ligia Brito-Argáez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Mildred Carrillo-Pech
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Rosa Grijalva-Arango
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Gilberto Muñoz-Pérez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, Mexico.
| |
Collapse
|
12
|
Fan H, Yu G, Liu Y, Zhang X, Liu J, Zhang Y, Rollins JA, Sun F, Pan H. An atypical forkhead-containing transcription factor SsFKH1 is involved in sclerotial formation and is essential for pathogenicity in Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2017; 18:963-975. [PMID: 27353472 PMCID: PMC6638265 DOI: 10.1111/mpp.12453] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/24/2016] [Indexed: 05/15/2023]
Abstract
Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic plant pathogen with a worldwide distribution. The sclerotia of S. sclerotiorum are pigmented multicellular structures formed from the aggregation of vegetative hyphae. These survival structures play a central role in the life and infection cycles of this pathogen. Here, we characterized an atypical forkhead (FKH)-box-containing protein, SsFKH1, involved in sclerotial development and virulence. To investigate the role of SsFkh1 in S. sclerotiorum, the partial sequence of SsFkh1 was cloned and RNA interference (RNAi)-based gene silencing was employed to alter the expression of SsFkh1. RNA-silenced mutants with significantly reduced SsFkh1 RNA levels exhibited slow hyphal growth and sclerotial developmental defects. In addition, the expression levels of a set of putative melanin biosynthesis-related laccase genes and a polyketide synthase-encoding gene were significantly down-regulated in silenced strains. Disease assays demonstrated that pathogenicity in RNAi-silenced strains was significantly compromised with the development of a smaller infection lesion on tomato leaves. Collectively, the results suggest that SsFkh1 is involved in hyphal growth, virulence and sclerotial formation in S. sclerotiorum.
Collapse
Affiliation(s)
- Huidong Fan
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Gang Yu
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Yanzhi Liu
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Xianghui Zhang
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Jinliang Liu
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Yanhua Zhang
- College of Plant SciencesJilin UniversityChangchun130062China
| | | | - Fengjie Sun
- School of Science and TechnologyGeorgia Gwinnett CollegeLawrencevilleGA30024USA
| | - Hongyu Pan
- College of Plant SciencesJilin UniversityChangchun130062China
| |
Collapse
|
13
|
Ao J, Aldabbous M, Notaro MJ, Lojacono M, Free SJ. A proteomic and genetic analysis of the Neurospora crassa conidia cell wall proteins identifies two glycosyl hydrolases involved in cell wall remodeling. Fungal Genet Biol 2016; 94:47-53. [PMID: 27381444 DOI: 10.1016/j.fgb.2016.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 01/22/2023]
Abstract
A proteomic analysis of the conidial cell wall identified 35 cell wall proteins. A comparison with the proteome of the vegetative hyphae showed that 16 cell wall proteins were shared, and that these shared cell wall proteins were cell wall biosynthetic proteins or cell wall structural proteins. Deletion mutants for 34 of the genes were analyzed for phenotypes indicative of conidial cell wall defects. Mutants for two cell wall glycosyl hydrolases, the CGL-1 β-1,3-glucanase (NCU07523) and the NAG-1 exochitinase (NCU10852), were found to have a conidial separation phenotype. These two enzymes function in remodeling the cell wall between adjacent conidia to facilitate conidia formation and dissemination. Using promoter::RFP and promoter::GFP constructs, we demonstrated that the promoters for 15 of the conidia-specific cell wall genes, including cgl-1 and nag-1, provided for conidia-specific gene expression or for a significant increase in their expression during conidiation.
Collapse
Affiliation(s)
- Jie Ao
- Department of Biological Sciences, SUNY, University at Buffalo, Buffalo, NY 14260, United States
| | - Mash'el Aldabbous
- Department of Biological Sciences, Faculty of Science, Khaldiya, Kuwait University, Safat 13060, Kuwait
| | - Marysa J Notaro
- Department of Biological Sciences, SUNY, University at Buffalo, Buffalo, NY 14260, United States
| | - Mark Lojacono
- Department of Biological Sciences, SUNY, University at Buffalo, Buffalo, NY 14260, United States
| | - Stephen J Free
- Department of Biological Sciences, SUNY, University at Buffalo, Buffalo, NY 14260, United States.
| |
Collapse
|