1
|
Feng X, Liu Z, Mo Y, Zhang S, Ma XX. Role of nucleotide pair frequency and synonymous codon usage in the evolution of bovine viral diarrhea virus. Arch Virol 2025; 170:64. [PMID: 40011265 DOI: 10.1007/s00705-025-06250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/26/2024] [Indexed: 02/28/2025]
Abstract
Synonymous codon usage plays an important role in the adaptation of viruses to their hosts. Bovine viral diarrhea virus (BVDV) relies on a high mutation rate in its genome to achieve the necessary fitness in a particular host. However, the question of which selective forces influence nucleotide pair and synonymous codon usage patterns in different BVDV genotypes remains unresolved. Here, 169 BVDV strains isolated at different times in various countries were analyzed to compare their dinucleotide frequency and synonymous codon usage. Examination of the nucleotide usage pattern in the open reading frame (ORF) of BVDV revealed a significantly higher frequency of purine than pyrimidine, with the highest extent of nucleotide usage bias observed in the first codon position. Moreover, a nucleotide pair bias, especially favoring CpG dinucleotides, was observed in all of the genotypes. Together, the nucleotide composition constraints and nucleotide pair bias appear to have influenced the overall codon usage pattern. Nucleotide pair and synonymous codon usage biases were associated with individual genotypes to different degrees. Of particular note, BVDV-1 exhibited more variation in its nucleotide pair and synonymous codon usage than BVDV-2 and BVDV-3, suggesting that these patterns are shaped both by selection of mutations in the viral genome and translational selection in the host.
Collapse
Affiliation(s)
- Xili Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Zeyu Liu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Yongli Mo
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Shubin Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Xiao-Xia Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| |
Collapse
|
2
|
Song D, Huang K, Li S, Jiang J, Zhao L, Luan H. GmCYB5-4 inhibit SMV proliferation by targeting P3 protein. Virology 2024; 595:110069. [PMID: 38640788 DOI: 10.1016/j.virol.2024.110069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/21/2024]
Abstract
Soybean mosaic virus (SMV) is a potyvirus found worldwide in soybean (Glycine max). GmCYB5-4 is a strong candidate interactor of P3. In this study, we comprehensively analyzed the GmCYB5 family in soybeans, including its distribution on chromosomes, promoter analysis, conserved motifs, phylogenetic analysis, and expression patterns. We cloned the full-length GmCYB5-4 and examined its interaction with P3 in yeast, which was later confirmed using bimolecular fluorescence complementation (BiFc). We silenced GmCYB5-4 using a bean pottle mosaic viris (BPMV) based system to generate SilCYB5-4 tissues, which surprisingly knocked down four isoforms of GmCYB5s for functional characterization. SilCYB5-4 plants were challenged with the SC3 strain to determine its involvement in SMV infection. Silencing GmCYB5-4 increased SMV accumulation, indicating that GmCYB5-4 inhibited SMV proliferation. However, further experiments are needed to elucidate the mechanism underlying the involvement of GmCYB5-4 in SMV infection.
Collapse
Affiliation(s)
- Daiqiao Song
- Institute of Plant Genetic Engineering, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Kai Huang
- Institute of Plant Genetic Engineering, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Shuxin Li
- Institute of Plant Genetic Engineering, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Jia Jiang
- Hospital of Qingdao Agricultural University, Qingdao, 266109, China
| | - Longgang Zhao
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China; High-efficiency Agricultural Technology Industry Research Institute of Saline and alkaline Land of Dongying Qingdao Agricultural University, China.
| | - Hexiang Luan
- Institute of Plant Genetic Engineering, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, Shandong, China; High-efficiency Agricultural Technology Industry Research Institute of Saline and alkaline Land of Dongying Qingdao Agricultural University, China.
| |
Collapse
|
3
|
Moreno‐Pérez MG, Bera S, McLeish M, Fraile A, García‐Arenal F. Reversion of a resistance-breaking mutation shows reversion costs and high virus diversity at necrotic local lesions. MOLECULAR PLANT PATHOLOGY 2023; 24:142-153. [PMID: 36435959 PMCID: PMC9831284 DOI: 10.1111/mpp.13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/28/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
An instance of host range evolution relevant to plant virus disease control is resistance breaking. Resistance breaking can be hindered by across-host fitness trade-offs generated by negative effects of resistance-breaking mutations on the virus fitness in susceptible hosts. Different mutations in pepper mild mottle virus (PMMoV) coat protein result in the breaking in pepper plants of the resistance determined by the L3 resistance allele. Of these, mutation M138N is widespread in PMMoV populations, despite associated fitness penalties in within-host multiplication and survival. The stability of mutation M138N was analysed by serial passaging in L3 resistant plants. Appearance on passaging of necrotic local lesions (NLL), indicating an effective L3 resistance, showed reversion to nonresistance-breaking phenotypes was common. Most revertant genotypes had the mutation N138K, which affects the properties of the virus particle, introducing a penalty of reversion. Hence, the costs of reversion may determine the evolution of resistance-breaking in addition to resistance-breaking costs. The genetic diversity of the virus population in NLL was much higher than in systemically infected tissues, and included mutations reported to break L3 resistance other than M138N. Infectivity assays on pepper genotypes with different L alleles showed high phenotypic diversity in respect to L alleles in NLL, including phenotypes not reported in nature. Thus, high diversity at NLL may potentiate the appearance of genotypes that enable the colonization of new host genotypes or species. Collectively, the results of this study contribute to better understanding the evolutionary dynamics of resistance breaking and host-range expansions.
Collapse
Affiliation(s)
- Manuel G. Moreno‐Pérez
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA/CSICUniversidad Politécnica de MadridMadridSpain
- E.T.S.I. Agronómica, Alimentaria y de BiosistemasCampus de Montegancedo, UPMMadridSpain
| | - Sayanta Bera
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA/CSICUniversidad Politécnica de MadridMadridSpain
- E.T.S.I. Agronómica, Alimentaria y de BiosistemasCampus de Montegancedo, UPMMadridSpain
| | - Michael McLeish
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA/CSICUniversidad Politécnica de MadridMadridSpain
- E.T.S.I. Agronómica, Alimentaria y de BiosistemasCampus de Montegancedo, UPMMadridSpain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA/CSICUniversidad Politécnica de MadridMadridSpain
- E.T.S.I. Agronómica, Alimentaria y de BiosistemasCampus de Montegancedo, UPMMadridSpain
| | - Fernando García‐Arenal
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA/CSICUniversidad Politécnica de MadridMadridSpain
- E.T.S.I. Agronómica, Alimentaria y de BiosistemasCampus de Montegancedo, UPMMadridSpain
| |
Collapse
|
4
|
Miller J, Burch-Smith TM, Ganusov VV. Mathematical Modeling Suggests Cooperation of Plant-Infecting Viruses. Viruses 2022; 14:741. [PMID: 35458472 PMCID: PMC9029262 DOI: 10.3390/v14040741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/12/2022] [Accepted: 03/25/2022] [Indexed: 02/05/2023] Open
Abstract
Viruses are major pathogens of agricultural crops. Viral infections often start after the virus enters the outer layer of a tissue, and many successful viruses, after local replication in the infected tissue, are able to spread systemically. Quantitative details of virus dynamics in plants, however, are poorly understood, in part, because of the lack of experimental methods which allow the accurate measurement of the degree of infection in individual plant tissues. Recently, a group of researchers followed the kinetics of infection of individual cells in leaves of Nicotiana tabacum plants using Tobacco etch virus (TEV) expressing either Venus or blue fluorescent protein (BFP). Assuming that viral spread occurs from lower to upper leaves, the authors fitted a simple mathematical model to the frequency of cellular infection by the two viral variants found using flow cytometry. While the original model could accurately describe the kinetics of viral spread locally and systemically, we found that many alternative versions of the model, for example, if viral spread starts at upper leaves and progresses to lower leaves or when virus dissemination is stopped due to an immune response, fit the data with reasonable quality, and yet with different parameter estimates. These results strongly suggest that experimental measurements of the virus infection in individual leaves may not be sufficient to identify the pathways of viral dissemination between different leaves and reasons for viral control. We propose experiments that may allow discrimination between the alternatives. By analyzing the kinetics of coinfection of individual cells by Venus and BFP strains of TEV we found a strong deviation from the random infection model, suggesting cooperation between the two strains when infecting plant cells. Importantly, we showed that many mathematical models on the kinetics of coinfection of cells with two strains could not adequately describe the data, and the best fit model needed to assume (i) different susceptibility of uninfected cells to infection by two viruses locally in the leaf vs. systemically from other leaves, and (ii) decrease in the infection rate depending on the fraction of uninfected cells which could be due to a systemic immune response. Our results thus demonstrate the difficulty in reaching definite conclusions from extensive and yet limited experimental data and provide evidence of potential cooperation between different viral variants infecting individual cells in plants.
Collapse
Affiliation(s)
- Joshua Miller
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA;
| | | | - Vitaly V. Ganusov
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA;
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
5
|
Ishibashi K, Saruta M, Shimizu T, Shu M, Anai T, Komatsu K, Yamada N, Katayose Y, Ishikawa M, Ishimoto M, Kaga A. Soybean antiviral immunity conferred by dsRNase targets the viral replication complex. Nat Commun 2019; 10:4033. [PMID: 31562302 PMCID: PMC6764979 DOI: 10.1038/s41467-019-12052-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 08/13/2019] [Indexed: 11/08/2022] Open
Abstract
Eukaryotic positive-strand RNA viruses replicate their genomes in membranous compartments formed in a host cell, which sequesters the dsRNA replication intermediate from antiviral immune surveillance. Here, we find that soybean has developed a way to overcome this sequestration. We report the positional cloning of the broad-spectrum soybean mosaic virus resistance gene Rsv4, which encodes an RNase H family protein with dsRNA-degrading activity. An active-site mutant of Rsv4 is incapable of inhibiting virus multiplication and is associated with an active viral RNA polymerase complex in infected cells. These results suggest that Rsv4 enters the viral replication compartment and degrades viral dsRNA. Inspired by this model, we design three plant-gene-derived dsRNases that can inhibit the multiplication of the respective target viruses. These findings suggest a method for developing crops resistant to any target positive-strand RNA virus by fusion of endogenous host genes.
Collapse
Affiliation(s)
- Kazuhiro Ishibashi
- Plant and Microbial Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Masayasu Saruta
- Crop Breeding and Food Functional Components Division, Western Region Agricultural Research Center, National Agriculture and Food Research Organization, 1-3-1 Senyu-cho, Zentsuji-shi, Kagawa, 765-8508, Japan
- Soybean Breeding Unit, Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Takehiko Shimizu
- Soybean and Field Crop Applied Genomics Research Unit, Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
- Advanced Genomics Breeding Section, Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Miao Shu
- Plant and Microbial Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Toyoaki Anai
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, 840-8502, Japan
| | - Kunihiko Komatsu
- Research Team for Crop Cold Tolerance, Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Hitsujigaoka 1, Toyohira, Sapporo, Hokkaido, 062-8555, Japan
- Crop Breeding and Food Functional Components Division, Western Region Agricultural Research Center, National Agriculture and Food Research Organization, 1-3-1 Senyu-cho, Zentsuji-shi, Kagawa, 765-8508, Japan
| | - Naohiro Yamada
- Nagano Vegetable and Ornamental Crops Experiment Station, 1066-1, Soga, Shiojiri, Nagano, 399-6461, Japan
| | - Yuichi Katayose
- Advanced Genomics Breeding Section, Institute of Crop Science, National Agriculture and Food Research Organization, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
- Department of Planning and Coordination, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki, 305-8517, Japan
| | - Masayuki Ishikawa
- Plant and Microbial Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Masao Ishimoto
- Soybean and Field Crop Applied Genomics Research Unit, Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
- Division of Basic Research, Institute of Crop Science, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki, 305-8517, Japan
| | - Akito Kaga
- Soybean and Field Crop Applied Genomics Research Unit, Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan.
| |
Collapse
|
6
|
Zhang L, Shang J, Jia Q, Li K, Yang H, Liu H, Tang Z, Chang X, Zhang M, Wang W, Yang W. Genetic evolutionary analysis of soybean mosaic virus populations from three geographic locations in China based on the P1 and CP genes. Arch Virol 2019; 164:1037-1048. [PMID: 30747339 DOI: 10.1007/s00705-019-04165-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/11/2019] [Indexed: 01/14/2023]
Abstract
Soybean mosaic virus (SMV) is one of the major pathogens causing serious soybean losses. Little is known about the genetic structure and evolutionary biology of the SMV population in southwestern China. In this study, 29 SMV isolates were obtained from Sichuan Province, and the genomic regions encoding the first protein (P1) and coat protein (CP) were sequenced. Combined with SMV isolates from the southeastern and northeastern regions of China, the genetic and molecular evolution of SMV was studied. Recombination analysis revealed that intraspecific and interspecific recombination had occurred in the SMV population. A phylogenetic tree based on the P1 gene reflected the geographic origin of the non-interspecific recombinant SMV (SMV-NI), while a tree based on the CP gene did not. Though frequent gene flow of the SMV-NI populations was found between the southeastern and northeastern populations, the southwestern population was relatively independent. Genetic differentiation was significant between the SMV interspecific recombinant (SMV-RI) and the non-interspecific recombinant (SMV-NI) populations. It was interesting to note that there was an almost identical recombination breakpoint in SMV-RI and Watermelon mosaic virus (WMV). Population dynamics showed that SMV-RI might be in an expanding state, while the SMV-NI population is relatively stable.
Collapse
Affiliation(s)
- Lei Zhang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Shang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Qi Jia
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Li
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Hui Yang
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huanhuan Liu
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhongqin Tang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoli Chang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Min Zhang
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenming Wang
- College of Agronomy and Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenyu Yang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and Key Laboratory of Crop Eco‑physiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
7
|
Bera S, Fraile A, García-Arenal F. Analysis of Fitness Trade-Offs in the Host Range Expansion of an RNA Virus, Tobacco Mild Green Mosaic Virus. J Virol 2018; 92:e01268-18. [PMID: 30257999 PMCID: PMC6258955 DOI: 10.1128/jvi.01268-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/13/2018] [Indexed: 12/14/2022] Open
Abstract
The acquisition of new hosts provides a virus with more opportunities for transmission and survival but may be limited by across-host fitness trade-offs. Major causes of across-host trade-offs are antagonistic pleiotropy, that is, host differential phenotypic effects of mutations, a Genotype x Environment interaction, and epistasis, a Genotype x Genotype interaction. Here, we analyze if there are trade-offs, and what are the causes, associated with the acquisition by tobacco mild green mosaic virus (TMGMV) of a new host. For this, the multiplication of sympatric field isolates of TMGMV from its wild reservoir host Nicotiana glauca and from pepper crops was quantified in the original and the heterologous hosts. TMGMV isolates from N. glauca were adapted to their host, but pepper isolates were not adapted to pepper, and the acquisition of this new host was associated with a fitness penalty in the original host. Analyses of the collection of field isolates and of mutant genotypes derived from biologically active cDNA clones showed a role of mutations in the coat protein and the 3' untranslated region in determining within-host virus fitness. Fitness depended on host-specific effects of these mutations, on the genetic background in which they occurred, and on higher-order interactions of the type Genotype x Genotype x Environment. These types of effects had been reported to generate across-host fitness trade-offs under experimental evolution. Our results show they may also operate in heterogeneous natural environments and could explain why pepper isolates were not adapted to pepper and their lower fitness in N. glaucaIMPORTANCE The acquisition of new hosts conditions virus epidemiology and emergence; hence it is important to understand the mechanisms behind host range expansion. Experimental evolution studies have identified antagonistic pleiotropy and epistasis as genetic mechanisms that limit host range expansion, but studies from virus field populations are few. Here, we compare the performance of isolates of tobacco mild green mosaic virus from its reservoir host, Nicotiana glauca, and its new host, pepper, showing that acquisition of a new host was not followed by adaptation to it but was associated with a fitness loss in the original host. Analysis of mutations determining host-specific virus multiplication identified antagonistic pleiotropy, epistasis, and host-specific epistasis as mechanisms generating across-host fitness trade-offs that may prevent adaptation to pepper and cause a loss of fitness in N. glauca Thus, mechanisms determining trade-offs, identified under experimental evolution, could also operate in the heterogeneous environment in which natural plant virus populations occur.
Collapse
Affiliation(s)
- Sayanta Bera
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
8
|
Hajimorad MR, Domier LL, Tolin SA, Whitham SA, Saghai Maroof MA. Soybean mosaic virus: a successful potyvirus with a wide distribution but restricted natural host range. MOLECULAR PLANT PATHOLOGY 2018; 19:1563-1579. [PMID: 29134790 PMCID: PMC6638002 DOI: 10.1111/mpp.12644] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/18/2017] [Accepted: 11/07/2017] [Indexed: 05/12/2023]
Abstract
TAXONOMY Soybean mosaic virus (SMV) is a species within the genus Potyvirus, family Potyviridae, which includes almost one-quarter of all known plant RNA viruses affecting agriculturally important plants. The Potyvirus genus is the largest of all genera of plant RNA viruses with 160 species. PARTICLE The filamentous particles of SMV, typical of potyviruses, are about 7500 Å long and 120 Å in diameter with a central hole of about 15 Å in diameter. Coat protein residues are arranged in helices of about 34 Å pitch having slightly less than nine subunits per turn. GENOME The SMV genome consists of a single-stranded, positive-sense, polyadenylated RNA of approximately 9.6 kb with a virus-encoded protein (VPg) linked at the 5' terminus. The genomic RNA contains a single large open reading frame (ORF). The polypeptide produced from the large ORF is processed proteolytically by three viral-encoded proteinases to yield about 10 functional proteins. A small ORF, partially overlapping the P3 cistron, pipo, is encoded as a fusion protein in the N-terminus of P3 (P3N + PIPO). BIOLOGICAL PROPERTIES SMV's host range is restricted mostly to two plant species of a single genus: Glycine max (cultivated soybean) and G. soja (wild soybean). SMV is transmitted by aphids non-persistently and by seeds. The variability of SMV is recognized by reactions on cultivars with dominant resistance (R) genes. Recessive resistance genes are not known. GEOGRAPHICAL DISTRIBUTION AND ECONOMIC IMPORTANCE As a consequence of its seed transmissibility, SMV is present in all soybean-growing areas of the world. SMV infections can reduce significantly seed quantity and quality (e.g. mottled seed coats, reduced seed size and viability, and altered chemical composition). CONTROL The most effective means of managing losses from SMV are the planting of virus-free seeds and cultivars containing single or multiple R genes. KEY ATTRACTIONS The interactions of SMV with soybean genotypes containing different dominant R genes and an understanding of the functional role(s) of SMV-encoded proteins in virulence, transmission and pathogenicity have been investigated intensively. The SMV-soybean pathosystem has become an excellent model for the examination of the genetics and genomics of a uniquely complex gene-for-gene resistance model in a crop of worldwide importance.
Collapse
Affiliation(s)
- M. R. Hajimorad
- Department of Entomology and Plant PathologyThe University of TennesseeKnoxvilleTN 37996USA
| | - L. L. Domier
- United States Department of Agriculture‐Agricultural Research Service and Department of Crop SciencesUniversity of IllinoisUrbanaIL 61801USA
| | - S. A. Tolin
- Department of Plant Pathology, Physiology and Weed ScienceVirginia TechBlacksburgVA 24061USA
| | - S. A. Whitham
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA 50011USA
| | - M. A. Saghai Maroof
- Department of Crop and Soil Environmental SciencesVirginia TechBlacksburgVA 24061USA
| |
Collapse
|
9
|
McLeish MJ, Fraile A, García-Arenal F. Ecological Complexity in Plant Virus Host Range Evolution. Adv Virus Res 2018; 101:293-339. [PMID: 29908592 DOI: 10.1016/bs.aivir.2018.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The host range of a plant virus is the number of species in which it can reproduce. Most studies of plant virus host range evolution have focused on the genetics of host-pathogen interactions. However, the distribution and abundance of plant viruses and their hosts do not always overlap, and these spatial and temporal discontinuities in plant virus-host interactions can result in various ecological processes that shape host range evolution. Recent work shows that the distributions of pathogenic and resistant genotypes, vectors, and other resources supporting transmission vary widely in the environment, producing both expected and unanticipated patterns. The distributions of all of these factors are influenced further by competitive effects, natural enemies, anthropogenic disturbance, the abiotic environment, and herbivory to mention some. We suggest the need for further development of approaches that (i) explicitly consider resource use and the abiotic and biotic factors that affect the strategies by which viruses exploit resources; and (ii) are sensitive across scales. Host range and habitat specificity will largely determine which phyla are most likely to be new hosts, but predicting which host and when it is likely to be infected is enormously challenging because it is unclear how environmental heterogeneity affects the interactions of viruses and hosts.
Collapse
Affiliation(s)
- Michael J McLeish
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I. Agrícola, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I. Agrícola, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, and E.T.S.I. Agrícola, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
10
|
Bera S, Moreno-Pérez MG, García-Figuera S, Pagán I, Fraile A, Pacios LF, García-Arenal F. Pleiotropic Effects of Resistance-Breaking Mutations on Particle Stability Provide Insight into Life History Evolution of a Plant RNA Virus. J Virol 2017; 91:e00435-17. [PMID: 28679755 PMCID: PMC5571237 DOI: 10.1128/jvi.00435-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/27/2017] [Indexed: 11/20/2022] Open
Abstract
In gene-for-gene host-virus interactions, virus evolution to infect and multiply in previously resistant host genotypes, i.e., resistance breaking, is a case of host range expansion, which is predicted to be associated with fitness penalties. Negative effects of resistance-breaking mutations on within-host virus multiplication have been documented for several plant viruses. However, understanding virus evolution requires analyses of potential trade-offs between different fitness components. Here we analyzed whether coat protein (CP) mutations in Pepper mild mottle virus that break L-gene resistance in pepper affect particle stability and, thus, survival in the environment. For this purpose, CP mutations determining the overcoming of L 3 and L 4 resistance alleles were introduced in biologically active cDNA clones. The kinetics of the in vitro disassembly of parental and mutant particles were compared under different conditions. Resistance-breaking mutations variously affected particle stability. Structural analyses identified the number and type of axial and side interactions of adjacent CP subunits in virions, which explained differences in particle stability and contribute to understanding of tobamovirus disassembly. Resistance-breaking mutations also affected virus multiplication and virulence in the susceptible host, as well as infectivity. The sense and magnitude of the effects of resistance-breaking mutations on particle stability, multiplication, virulence, or infectivity depended on the specific mutation rather than on the ability to overcome the different resistance alleles, and effects on different traits were not correlated. Thus, the results do not provide evidence of links or trade-offs between particle stability, i.e., survival, and other components of virus fitness or virulence.IMPORTANCE The effect of survival on virus evolution remains underexplored, despite the fact that life history trade-offs may constrain virus evolution. We approached this topic by analyzing whether breaking of L-gene resistance in pepper by Pepper mild mottle virus, determined by coat protein (CP) mutations, is associated with reduced particle stability and survival. Resistance-breaking mutations affected particle stability by altering the interactions between CP subunits. However, the sense and magnitude of these effects were unrelated to the capacity to overcome different resistance alleles. Thus, resistance breaking was not traded with survival. Resistance-breaking mutations also affected virus fitness within the infected host, virulence, and infectivity in a mutation-specific manner. Comparison of the effects of CP mutations on these various traits indicates that there are neither trade-offs nor positive links between survival and other life history traits. These results demonstrate that trade-offs between life history traits may not be a general constraint in virus evolution.
Collapse
Affiliation(s)
- Sayanta Bera
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Manuel G Moreno-Pérez
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Sara García-Figuera
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Luis F Pacios
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingenieros de Montes, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
11
|
Liu JZ, Fang Y, Pang H. The Current Status of the Soybean- Soybean Mosaic Virus (SMV) Pathosystem. Front Microbiol 2016; 7:1906. [PMID: 27965641 PMCID: PMC5127794 DOI: 10.3389/fmicb.2016.01906] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/15/2016] [Indexed: 12/19/2022] Open
Abstract
Soybean mosaic virus (SMV) is one of the most devastating pathogens that cost huge economic losses in soybean production worldwide. Due to the duplicated genome, clustered and highly homologous nature of R genes, as well as recalcitrant to transformation, soybean disease resistance studies is largely lagging compared with other diploid crops. In this review, we focus on the major advances that have been made in identifying both the virulence/avirulence factors of SMV and mapping of SMV resistant genes in soybean. In addition, we review the progress in dissecting the SMV resistant signaling pathways in soybean, with a special focus on the studies using virus-induced gene silencing. The soybean genome has been fully sequenced, and the increasingly saturated SNP markers have been identified. With these resources available together with the newly developed genome editing tools, and more efficient soybean transformation system, cloning SMV resistant genes, and ultimately generating cultivars with a broader spectrum resistance to SMV are becoming more realistic than ever.
Collapse
Affiliation(s)
- Jian-Zhong Liu
- College of Chemistry and Life Sciences, Zhejiang Normal UniversityJinhua, China
| | - Yuan Fang
- College of Chemistry and Life Sciences, Zhejiang Normal UniversityJinhua, China
| | - Hongxi Pang
- College of Agronomy, Northwest A&F UniversityYangling, China
| |
Collapse
|
12
|
Atsumi G, Suzuki H, Miyashita Y, Choi SH, Hisa Y, Rihei S, Shimada R, Jeon EJ, Abe J, Nakahara KS, Uyeda I. P3N-PIPO, a Frameshift Product from the P3 Gene, Pleiotropically Determines the Virulence of Clover Yellow Vein Virus in both Resistant and Susceptible Peas. J Virol 2016; 90:7388-7404. [PMID: 27279605 PMCID: PMC4984661 DOI: 10.1128/jvi.00190-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/25/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Peas carrying the cyv1 recessive resistance gene are resistant to clover yellow vein virus (ClYVV) isolates No.30 (Cl-No.30) and 90-1 (Cl-90-1) but can be infected by a derivative of Cl-90-1 (Cl-90-1 Br2). The main determinant for the breaking of cyv1 resistance by Cl-90-1 Br2 is P3N-PIPO produced from the P3 gene via transcriptional slippage, and the higher level of P3N-PIPO produced by Cl-90-1 Br2 than by Cl-No.30 contributes to the breaking of resistance. Here we show that P3N-PIPO is also a major virulence determinant in susceptible peas that possess another resistance gene, Cyn1, which does not inhibit systemic infection with ClYVV but causes hypersensitive reaction-like lethal systemic cell death. We previously assumed that the susceptible pea cultivar PI 226564 has a weak allele of Cyn1 Cl-No.30 did not induce cell death, but Cl-90-1 Br2 killed the plants. Our results suggest that P3N-PIPO is recognized by Cyn1 and induces cell death. Unexpectedly, heterologously strongly expressed P3N-PIPO of Cl-No.30 appears to be recognized by Cyn1 in PI 226564. The level of P3N-PIPO accumulation from the P3 gene of Cl-No.30 was significantly lower than that of Cl-90-1 Br2 in a Nicotiana benthamiana transient assay. Therefore, Cyn1-mediated cell death also appears to be determined by the level of P3N-PIPO. The more efficiently a ClYVV isolate broke cyv1 resistance, the more it induced cell death systemically (resulting in a loss of the environment for virus accumulation) in susceptible peas carrying Cyn1, suggesting that antagonistic pleiotropy of P3N-PIPO controls the resistance breaking of ClYVV. IMPORTANCE Control of plant viral disease has relied on the use of resistant cultivars; however, emerging mutant viruses have broken many types of resistance. Recently, we revealed that Cl-90-1 Br2 breaks the recessive resistance conferred by cyv1, mainly by accumulating a higher level of P3N-PIPO than that of the nonbreaking isolate Cl-No.30. Here we show that a susceptible pea line recognized the increased amount of P3N-PIPO produced by Cl-90-1 Br2 and activated the salicylic acid-mediated defense pathway, inducing lethal systemic cell death. We found a gradation of virulence among ClYVV isolates in a cyv1-carrying pea line and two susceptible pea lines. This study suggests a trade-off between breaking of recessive resistance (cyv1) and host viability; the latter is presumably regulated by the dominant Cyn1 gene, which may impose evolutionary constraints upon P3N-PIPO for overcoming resistance. We propose a working model of the host strategy to sustain the durability of resistance and control fast-evolving viruses.
Collapse
Affiliation(s)
- Go Atsumi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- National Institute of Advanced Industrial Science and Technology, Sapporo, Hokkaido, Japan
| | - Haruka Suzuki
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuri Miyashita
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Sun Hee Choi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yusuke Hisa
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shunsuke Rihei
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryoko Shimada
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Eun Jin Jeon
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Junya Abe
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kenji S Nakahara
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ichiro Uyeda
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|