1
|
Wu F, Sun Q, Huang L, Liu S, Chen Y, Zhang X, Li C, Guo S, Tan X. Molecular Insights into the Role of the MET30 Protein and Its WD40 Domain in Colletotrichum gloeosporioides Growth and Virulence. J Fungi (Basel) 2025; 11:84. [PMID: 39997378 PMCID: PMC11855936 DOI: 10.3390/jof11020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/04/2025] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
Colletotrichum gloeosporioides is a major phytopathogen responsible for anthracnose in Capsicum annuum (pepper) which leads to significant yield losses. At present, the molecular mechanism of C. gloeosporioides pathogenesis is not very clear. In this study, we focused on the MET30 protein and its key WD40 domain, with an emphasis on its role in the biological functions of C. gloeosporioides. Bioinformatics analysis revealed that the MET30 protein contains a conserved F-box domain and multiple WD40 repeats, which interact with other proteins to participate in various cellular processes, including nutrient acquisition, stress responses, and pathogenicity. Gene knockout and complementation experiments demonstrated that deleting the MET30 protein or its WD40 domain significantly reduced the rates of spore production and hyphal growth while increasing tolerance to environmental stresses such as high salinity and oxidative stress. Furthermore, pathogenicity assays revealed that the WD40 domain of the MET30 protein is crucial for regulating fungal pathogenicity, as mutants lacking WD40 domains presented increased virulence on pepper leaves. These findings suggest that the WD40 domain, in synergy with the MET30 protein, regulates the pathogenicity and stress response of C. gloeosporioides, provides new insights into the molecular mechanisms of anthracnose, and offers potential strategies for effective disease control.
Collapse
Affiliation(s)
- Fei Wu
- LongPing Branch, College of Biology, Hunan University, Changsha 410125, China; (F.W.); (L.H.); (S.L.); (Y.C.); (S.G.)
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Q.S.); (X.Z.); (C.L.)
| | - Qianlong Sun
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Q.S.); (X.Z.); (C.L.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Longhui Huang
- LongPing Branch, College of Biology, Hunan University, Changsha 410125, China; (F.W.); (L.H.); (S.L.); (Y.C.); (S.G.)
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Q.S.); (X.Z.); (C.L.)
| | - Sizhen Liu
- LongPing Branch, College of Biology, Hunan University, Changsha 410125, China; (F.W.); (L.H.); (S.L.); (Y.C.); (S.G.)
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Q.S.); (X.Z.); (C.L.)
| | - Yue Chen
- LongPing Branch, College of Biology, Hunan University, Changsha 410125, China; (F.W.); (L.H.); (S.L.); (Y.C.); (S.G.)
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Q.S.); (X.Z.); (C.L.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Xin Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Q.S.); (X.Z.); (C.L.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Chenggang Li
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Q.S.); (X.Z.); (C.L.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Sheng Guo
- LongPing Branch, College of Biology, Hunan University, Changsha 410125, China; (F.W.); (L.H.); (S.L.); (Y.C.); (S.G.)
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Q.S.); (X.Z.); (C.L.)
| | - Xinqiu Tan
- LongPing Branch, College of Biology, Hunan University, Changsha 410125, China; (F.W.); (L.H.); (S.L.); (Y.C.); (S.G.)
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Q.S.); (X.Z.); (C.L.)
- Yuelushan Laboratory, Changsha 410128, China
| |
Collapse
|
2
|
Zhang X, Li K, Wang P, Ma M, Tang T, Fu W, Wu H, Sun Y, Liu S, Liu D, Tan X. Harnessing Lecanicillium attenuatum: A novel strategy for combatting Nilaparvata lugens in rice fields. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106078. [PMID: 39277391 DOI: 10.1016/j.pestbp.2024.106078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 09/17/2024]
Abstract
Nilaparvata lugens is a notorious rice pest causing significant annual yield and economic losses. The use of entomopathogenic fungi offers a promising and eco-friendly approach to sustainable pest management programs. However, research in this area is currently limited to a few specific types of insects and other arthropods. This study aimed to analyze the biocontrol potential of Lecanicillium attenuatum against N. lugens. Bioassays showed that L. attenuatum 3166 induced >80% mortality in N. lugens following 7 d exposure. Greenhouse and field investigations demonstrated that L. attenuatum 3166 application leads to a substantial reduction in N. lugens populations. Under greenhouse conditions, fluorescence was detected in GFP-labeled L. attenuatum 3166 hyphae enveloping the bodies of N. lugens. In field trials, L. attenuatum 3166 treatment exhibited a control efficacy of up to 68.94% at 14 d post-application, which was comparable to that of the commercial entomopathogenic fungal agent. Genomic sequencing of L. attenuatum 3166 revealed a comprehensive array of genes implicated in its infestation and lethality. Further, the transcriptome sequencing analysis highlighted the elevated expression levels of genes encoding proteases, chitinases, cutinases, and phospholipases. Our findings highlight the potential of L. attenuatum 3166 as an effective biological control agent against N. lugens.
Collapse
Affiliation(s)
- Xin Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Yuelushan Laboratory, Changsha 410125, China
| | - Kui Li
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Pei Wang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mingyong Ma
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Tao Tang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Wei Fu
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Hongtao Wu
- Jiangsu Tsingda Smart Biotech Co., Ltd, Suzhou 215400, China
| | - Yan Sun
- Jiangsu Tsingda Smart Biotech Co., Ltd, Suzhou 215400, China
| | - Sizhen Liu
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Dehua Liu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| | - Xinqiu Tan
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Yuelushan Laboratory, Changsha 410125, China.
| |
Collapse
|
3
|
Sun Q, Zhang X, Ouyang Y, Yu P, Man Y, Guo S, Liu S, Chen Y, Wang Y, Tan X. Appressoria Formation in Phytopathogenic Fungi Suppressed by Antimicrobial Peptides and Hybrid Peptides from Black Soldier Flies. Genes (Basel) 2023; 14:genes14051096. [PMID: 37239456 DOI: 10.3390/genes14051096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Antimicrobial peptides (AMPs) from black solider flies (Hermetia illucens, BSF) exhibiting broad-spectrum antimicrobial activity are the most promising green substitutes for preventing the infection of phytopathogenic fungi; therefore, AMPs have been a focal topic of research. Recently, many studies have focused on the antibacterial activities of BSF AMPs against animal pathogens; however, currently, their antifungal activities against phytopathogenic fungi remain unclear. In this study, 7 AMPs selected from 34 predicted AMPs based on BSF metagenomics were artificially synthesized. When conidia from the hemibiotrophic phytopathogenic fungi Magnaporthe oryzae and Colletotrichum acutatum were treated with the selected AMPs, three selected AMPs-CAD1, CAD5, and CAD7-showed high appressorium formation inhibited by lengthened germ tubes. Additionally, the MIC50 concentrations of the inhibited appressorium formations were 40 μM, 43 μM, and 43 μM for M. oryzae, while 51 μM, 49 μM, and 44 μM were observed for C. acutatum, respectively. A tandem hybrid AMP named CAD-Con comprising CAD1, CAD5, and CAD7 significantly enhanced antifungal activities, and the MIC50 concentrations against M. oryzae and C. acutatum were 15 μM and 22 μM, respectively. In comparison with the wild type, they were both significantly reduced in terms of virulence when infection assays were performed using the treated conidia of M. oryzae or C. acutatum by CAD1, CAD5, CAD7, or CAD-Con. Meanwhile, their expression levels of CAD1, CAD5, and CAD7 could also be activated and significantly increased after the BSF larvae were treated with the conidia of M. oryzae or C. acutatum, respectively. To our knowledge, the antifungal activities of BSF AMPs against plant pathogenic fungi, which help us to seek potential AMPs with antifungal activities, provide proof of the effectiveness of green control strategies for crop production.
Collapse
Affiliation(s)
- Qianlong Sun
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xin Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Ying Ouyang
- College of Plant Science, Hunan Biological and Electromechanical Polytechnic, Changsha 410127, China
| | - Pingzhong Yu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Yilong Man
- Agricultural Biotechnology Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Sheng Guo
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Sizhen Liu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Yue Chen
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Yunsheng Wang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Xinqiu Tan
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| |
Collapse
|
4
|
Trehalose Phosphate Synthase Complex-Mediated Regulation of Trehalose 6-Phosphate Homeostasis Is Critical for Development and Pathogenesis in Magnaporthe oryzae. mSystems 2021; 6:e0046221. [PMID: 34609170 PMCID: PMC8547450 DOI: 10.1128/msystems.00462-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Trehalose biosynthesis pathway is a potential target for antifungal drug development, and trehalose 6-phosphate (T6P) accumulation is widely known to have toxic effects on cells. However, how organisms maintain a safe T6P level and cope with its cytotoxicity effects when accumulated have not been reported. Herein, we unveil the mechanism by which the rice blast fungus Magnaporthe oryzae avoids T6P accumulation and the genetic and physiological adjustments it undergoes to self-adjust the metabolite level when it is unavoidably accumulated. We found that T6P accumulation leads to defects in fugal development and pathogenicity. The accumulated T6P impairs cell wall assembly by disrupting actin organization. The disorganization of actin impairs the distribution of chitin synthases, thereby disrupting cell wall polymer distribution. Additionally, accumulation of T6P compromise energy metabolism. M. oryzae was able to overcome the effects of T6P accumulation by self-mutation of its MoTPS3 gene at two different mutation sites. We further show that mutation of MoTPS3 suppresses MoTps1 activity to reduce the intracellular level of T6P and partially restore ΔMotps2 defects. Overall, our results provide insights into the cytotoxicity effects of T6P accumulation and uncover a spontaneous mutation strategy to rebalance accumulated T6P in M. oryzae. IMPORTANCEM. oryzae, the causative agent of the rice blast disease, threatens rice production worldwide. Our results revealed that T6P accumulation, caused by the disruption of MoTPS2, has toxic effects on fugal development and pathogenesis in M. oryzae. The accumulated T6P impairs the distribution of cell wall polymers via actin organization and therefore disrupts cell wall structure. M. oryzae uses a spontaneous mutation to restore T6P cytotoxicity. Seven spontaneous mutation sites were found, and a mutation in MoTPS3 was further identified. The spontaneous mutation in MoTPS3 can partially rescue ΔMotps2 defects by suppressing MoTps1 activity to alleviate T6P cytotoxicity. This study provides clear evidence for better understanding of T6P cytotoxicity and how the fungus protects itself from T6P’s toxic effects when it has accumulated to severely high levels.
Collapse
|
5
|
Lin C, Cao X, Qu Z, Zhang S, Naqvi NI, Deng YZ. The Histone Deacetylases MoRpd3 and MoHst4 Regulate Growth, Conidiation, and Pathogenicity in the Rice Blast Fungus Magnaporthe oryzae. mSphere 2021; 6:e0011821. [PMID: 34190584 PMCID: PMC8265625 DOI: 10.1128/msphere.00118-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/07/2021] [Indexed: 11/20/2022] Open
Abstract
As the causal agent of the blast disease, Magnaporthe oryzae is one of the most destructive fungal pathogens of rice. Histone acetylation/deacetylation is important for remodeling of chromatin superstructure and thus altering gene expression. In this study, two genes encoding histone deacetylases, namely, MoRPD3 and MoHST4, were identified and functionally characterized in M. oryzae. MoHst4 was required for proper mycelial growth and pathogenicity, whereas overproduction of MoRpd3 led to loss of pathogenicity, likely due to a block in conidial cell death and restricted invasive growth within the host plants. Green fluorescent protein (GFP)-MoRpd3 localized to the nucleus and cytoplasm in vegetative hyphae and developing conidia. By comparative transcriptomics analysis, we identified potential target genes epigenetically regulated by histone deacetylases (HDACs) containing MoRpd3 or MoHst4, which may contribute to conidia formation and/or conidial cell death, which is a prerequisite for successful appressorium-mediated host invasion. Taken together, our results suggest that histone deacetylases MoRpd3 and MoHst4 differentially regulate mycelial growth, asexual development, and pathogenesis in M. oryzae. IMPORTANCE HDACs (histone deacetylases) regulate various aspects of growth, development, and pathogenesis in plant-pathogenic fungi. Most members of HDAC classes I to III have been functionally characterized, except for orthologous Rpd3 and Hst4, in the rice blast fungus Magnaporthe oryzae. In this study, we assessed the function of MoRpd3 and MoHst4 by reverse genetics and found that they differentially regulate M. oryzae vegetative growth, asexual development, and infection. Particularly, MoRpd3 negatively regulates M. oryzae pathogenicity, likely through suppression of conidial cell death, which we recently reported as being critical for appressorium maturation and functioning. Overall, this study broadens our understanding of fungal pathobiology and its critical regulation by histone modification(s) during cell death and in planta differentiation.
Collapse
Affiliation(s)
- Chaoxiang Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xue Cao
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Ziwei Qu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | - Shulin Zhang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Naweed I. Naqvi
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Yi Zhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Differential Roles of a Family of Flavodoxin-Like Proteins That Promote Resistance to Quinone-Mediated Oxidative Stress in Candida albicans. Infect Immun 2021; 89:IAI.00670-20. [PMID: 33468576 DOI: 10.1128/iai.00670-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Abstract
Survival of the fungal pathogen Candida albicans within a mammalian host relies on its ability to resist oxidative stress. The four flavodoxin-like proteins (Pst1, Pst2, Pst3, and Ycp4) that reside on the inner surface of the C. albicans plasma membrane represent a recently discovered antioxidant mechanism that is essential for virulence. Flavodoxin-like proteins combat oxidative stress by promoting a two-electron reduction of quinone molecules, which prevents the formation of toxic semiquinone radicals. Previous studies indicated that Pst3 played a major role in promoting resistance to the small quinone molecules p-benzoquinone and menadione. Analysis of additional quinones confirmed this role for Pst3. To better define their function, antibodies were raised against each of the four flavodoxin-like proteins and used to quantify protein levels. Interestingly, the basal level of flavodoxin-like proteins differed, with Pst3 and Ycp4 being the most abundant. However, after induction with p-benzoquinone, Pst1 and Pst3 were the most highly induced, resulting in Pst3 becoming the most abundant. Constitutive expression of the flavodoxin-like protein genes from a TDH3 promoter resulted in similar protein levels and showed that Pst1 and Pst3 were better at protecting C. albicans against p-benzoquinone than Pst2 or Ycp4. In contrast, Pst1 and Ycp4 provided better protection against oxidative damage induced by tert-butyl hydroperoxide. Thus, both the functional properties and the relative abundance contribute to the distinct roles of the flavodoxin-like proteins in resisting oxidative stress. These results further define how C. albicans combats the host immune response and survives in an environment rich in oxidative stress.
Collapse
|
7
|
Sarkar A, Roy-Barman S. Spray-Induced Silencing of Pathogenicity Gene MoDES1 via Exogenous Double-Stranded RNA Can Confer Partial Resistance Against Fungal Blast in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:733129. [PMID: 34899771 PMCID: PMC8662628 DOI: 10.3389/fpls.2021.733129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/18/2021] [Indexed: 05/06/2023]
Abstract
Over the past years, RNA interference (RNAi) has been used as a promising combat strategy against a wide range of pests and pathogens in ensuring global food security. It involves the induction of highly specific posttranscriptional regulation of target essential genes from an organism, via the application of precursor long, non-coding double-stranded RNA (dsRNA) molecules that share sequence-complementarity with the mRNAs of the targets. Fungal blast disease caused by Magnaporthe oryzae is one of the most deadly diseases of rice and wheat incurring huge losses in global crop yield. To date, the host-induced gene silencing (HIGS) and virus-induced gene silencing (VIGS) aspects of RNAi have been successfully exploited in developing resistance against M. oryzae in rice. Spray-induced gene silencing (SIGS) is a current, potential, non-transformative, and environment-friendly pest and pathogen management strategy, where naked or nanomaterial-bound dsRNA are sprayed on leaves to cause selective knockdown of pathogenicity genes. Although it relies on the ability of fungal pathogens to uptake sprayed RNA, its efficiency varies largely across phytopathogens and their genes, targeted for silencing. Here, we report a transient dsRNA supplementation system for the targeted knockdown of MoDES1, a host-defense suppressor pathogenicity gene from M. oryzae. We validate the feasibility of in vivo SIGS and post-uptake transfer of RNA signals to distal plant parts in rice-M. oryzae pathosystem through a GFP-based reporter system. A protocol for efficient silencing via direct foliar spray of naked dsRNA was optimized. As proof-of-concept, we demonstrate the phenotypic impacts of in vitro dsDES1 treatment on growth, conidiation, ROS-scavenging ability, and pathogenic potential of M. oryzae. Furthermore, our extrapolatory dsDES1 spray experiments on wounded leaves and whole rice plants indicate resultant silencing of MoDES1 that conferred significant resistance against the fungal blast disease. The evaluation of primary and secondary host defense responses provides evidence supporting the notion that spray of sequence-specific dsRNA on wounded leaf tissue can cause systemic and sustained silencing of a M. oryzae target gene. For the first time, we establish a transgene-free SIGS approach as a promising crop protection strategy against the notorious rice-blast fungus.
Collapse
|
8
|
Baetsen-Young A, Man Wai C, VanBuren R, Day B. Fusarium virguliform e Transcriptional Plasticity Is Revealed by Host Colonization of Maize versus Soybean. THE PLANT CELL 2020; 32:336-351. [PMID: 31852777 PMCID: PMC7008477 DOI: 10.1105/tpc.19.00697] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/11/2019] [Accepted: 12/17/2019] [Indexed: 05/05/2023]
Abstract
We exploited the broad host range of Fusarium virguliforme to identify differential fungal responses leading to either an endophytic or a pathogenic lifestyle during colonization of maize (Zea mays) and soybean (Glycine max), respectively. To provide a foundation to survey the transcriptomic landscape, we produced an improved de novo genome assembly and annotation of F. virguliforme using PacBio sequencing. Next, we conducted a high-resolution time course of F. virguliforme colonization and infection of both soybean, a symptomatic host, and maize, an asymptomatic host. Comparative transcriptomic analyses uncovered a nearly complete network rewiring, with less than 8% average gene coexpression module overlap upon colonizing the different plant hosts. Divergence of transcriptomes originating from host specific temporal induction genes is central to infection and colonization, including carbohydrate-active enzymes (CAZymes) and necrosis inducing effectors. Upregulation of Zn(II)-Cys6 transcription factors were uniquely induced in soybean at 2 d postinoculation, suggestive of enhanced pathogen virulence on soybean. In total, the data described herein suggest that F. virguliforme modulates divergent infection profiles through transcriptional plasticity.
Collapse
Affiliation(s)
- Amy Baetsen-Young
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824
| | - Ching Man Wai
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| | - Robert VanBuren
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
9
|
Habig M, Bahena‐Garrido SM, Barkmann F, Haueisen J, Stukenbrock EH. The transcription factor Zt107320 affects the dimorphic switch, growth and virulence of the fungal wheat pathogen Zymoseptoria tritici. MOLECULAR PLANT PATHOLOGY 2020; 21:124-138. [PMID: 31702117 PMCID: PMC6913241 DOI: 10.1111/mpp.12886] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Zymoseptoria tritici is a filamentous fungus causing Septoria tritici blotch in wheat. The pathogen has a narrow host range and infections of grasses other than susceptible wheat are blocked early after stomatal penetration. During these abortive infections, the fungus shows a markedly different gene expression pattern. However, the underlying mechanisms causing differential gene expression during host and non-host interactions are largely unknown, but likely include transcriptional regulators responsible for the onset of an infection programme in compatible hosts. MoCOD1, a member of the fungal Zn(II)2 Cys6 transcription factor family, has been shown to directly affect pathogenicity in the rice blast pathogen Magnaporthe oryzae. Here, we analyse the role of the putative transcription factor Zt107320, a homologue of MoCOD1, during infection of compatible and incompatible hosts by Z. tritici. We show for the first time that Zt107320 is differentially expressed in host versus non-host infections and that lower expression corresponds to an incompatible infection of non-hosts. Applying reverse genetics approaches, we further show that Zt107320 regulates the dimorphic switch as well as the growth rate of Z. tritici and affects fungal cell wall composition in vitro. Moreover, ∆Zt107320 mutants showed reduced virulence during compatible infections of wheat. We conclude that Zt107320 directly influences pathogen fitness and propose that Zt107320 is involved in the regulation of growth processes and pathogenicity during infection.
Collapse
Affiliation(s)
- Michael Habig
- Environmental GenomicsChristian‐Albrechts University of KielKielGermany
- Max Planck Institute for Evolutionary BiologyPlönGermany
| | - Sharon Marie Bahena‐Garrido
- Environmental GenomicsChristian‐Albrechts University of KielKielGermany
- Max Planck Institute for Evolutionary BiologyPlönGermany
- Present address:
National Research Institute of Brewing3‐7‐1 KagamiyamaHigashi‐Hiroshima739‐0046Japan
| | - Friederike Barkmann
- Environmental GenomicsChristian‐Albrechts University of KielKielGermany
- Max Planck Institute for Evolutionary BiologyPlönGermany
| | - Janine Haueisen
- Environmental GenomicsChristian‐Albrechts University of KielKielGermany
- Max Planck Institute for Evolutionary BiologyPlönGermany
| | - Eva Holtgrewe Stukenbrock
- Environmental GenomicsChristian‐Albrechts University of KielKielGermany
- Max Planck Institute for Evolutionary BiologyPlönGermany
| |
Collapse
|
10
|
Qian B, Liu X, Jia J, Cai Y, Chen C, Zhang H, Zheng X, Wang P, Zhang Z. MoPpe1 partners with MoSap1 to mediate TOR and cell wall integrity signalling in growth and pathogenicity of the rice blast fungus Magnaporthe oryzae. Environ Microbiol 2018; 20:3964-3979. [PMID: 30246284 DOI: 10.1111/1462-2920.14421] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/14/2018] [Accepted: 09/17/2018] [Indexed: 12/25/2022]
Abstract
In the rice blast fungus Magnaporthe oryzae, the cell wall integrity (CWI) signalling pathway governs cell wall changes in response to external cues and normal CWI signalling is critical for appressorium function and pathogenicity. We previously characterized the mitogen-activated protein kinase (MAPK) kinase MoMkk1 as an integral component of the CWI pathway. Using the affinity purification approach, we have identified MoMkk1-interacting MoPpe1 as a homologue of Saccharomyces cerevisiae serine/threonine protein phosphatase Sit4/Ppe1. We found that MoPpe1 is required for vegetative growth, conidiation and full virulence. In addition, we found that MoPpe1 interacts with MoSap1, a protein with functions similar to MoPpe1. Intriguingly, we found that MoPpe1-MoSap1 interaction is related to CWI and target of rapamycin (TOR) pathways. We presented evidence suggesting that MoPpe1 and MoSap1 function as an adaptor complex linking CWI and TOR signalling and that the activation of the TOR pathway leads to suppression of CWI signalling, resulting in defects in appressorium function and pathogenicity. Taken together, our studies not only reveal important functions of MoMkk1-MoPpe1-MoSap1 interactions in growth and pathogenicity of the blast fungus, but also highlight the complexity of regulatory networks involving conserved yet novel regulatory mechanisms of CWI and TOR signalling.
Collapse
Affiliation(s)
- Bin Qian
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Jia Jia
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Yongchao Cai
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Chen Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Ping Wang
- Departments of Pediatrics, and Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, 70112, USA
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| |
Collapse
|
11
|
Wang J, Yin Z, Tang W, Cai X, Gao C, Zhang H, Zheng X, Wang P, Zhang Z. The thioredoxin MoTrx2 protein mediates reactive oxygen species (ROS) balance and controls pathogenicity as a target of the transcription factor MoAP1 in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2017; 18:1199-1209. [PMID: 27560036 PMCID: PMC6638232 DOI: 10.1111/mpp.12484] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/01/2016] [Accepted: 08/21/2016] [Indexed: 05/11/2023]
Abstract
We have shown previously that the transcription factor MoAP1 governs the oxidative response and is important for pathogenicity in the rice blast fungus Magnaporthe oryzae. To explore the underlying mechanism, we have identified thioredoxin MoTrx2 as a target of MoAP1 in M. oryzae. Thioredoxins are highly conserved 12-kDa oxidoreductase enzymes containing a dithiol-disulfide active site, and function as antioxidants against free radicals, such as reactive oxygen species (ROS). In yeast and fungi, thioredoxins are important for oxidative stress tolerance and growth. To study the functions of MoTrx2, we generated ΔMotrx2 mutants that exhibit various defects, including sulfite assimilation, asexual and sexual differentiation, infectious hyphal growth and pathogenicity. We found that ΔMotrx2 mutants possess a defect in the scavenging of ROS during host cell invasion and in the active suppression of the rice defence response. We also found that ΔMotrx2 mutants display higher intracellular ROS levels during conidial germination, but lower peroxidase and laccase activities, which contribute to the attenuation in virulence. Given that the function of MoTrx2 overlaps that of MoAP1 in the stress response and pathogenicity, our findings further indicate that MoTrx2 is a key thioredoxin protein whose function is subjected to transcriptional regulation by MoAP1 in M. oryzae.
Collapse
Affiliation(s)
- Jingzhen Wang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Ziyi Yin
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Wei Tang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Xingjia Cai
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Chuyun Gao
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Ping Wang
- Departments of Pediatrics and Microbiology, Immunology, and ParasitologyLouisiana State University Health Sciences CenterNew OrleansLA70112USA
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| |
Collapse
|
12
|
van der Does HC, Rep M. Adaptation to the Host Environment by Plant-Pathogenic Fungi. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:427-450. [PMID: 28645233 DOI: 10.1146/annurev-phyto-080516-035551] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Many fungi can live both saprophytically and as endophyte or pathogen inside a living plant. In both environments, complex organic polymers are used as sources of nutrients. Propagation inside a living host also requires the ability to respond to immune responses of the host. We review current knowledge of how plant-pathogenic fungi do this. First, we look at how fungi change their global gene expression upon recognition of the host environment, leading to secretion of effectors, enzymes, and secondary metabolites; changes in metabolism; and defense against toxic compounds. Second, we look at what is known about the various cues that enable fungi to sense the presence of living plant cells. Finally, we review literature on transcription factors that participate in gene expression in planta or are suspected to be involved in that process because they are required for the ability to cause disease.
Collapse
Affiliation(s)
| | - Martijn Rep
- Molecular Plant Pathology, University of Amsterdam, 1098XH Amsterdam, The Netherlands;
| |
Collapse
|