1
|
Wimmi S, Fleck M, Helbig C, Brianceau C, Langenfeld K, Szymanski WG, Angelidou G, Glatter T, Diepold A. Pilotins are mobile T3SS components involved in assembly and substrate specificity of the bacterial type III secretion system. Mol Microbiol 2024; 121:304-323. [PMID: 38178634 DOI: 10.1111/mmi.15223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
In animal pathogens, assembly of the type III secretion system injectisome requires the presence of so-called pilotins, small lipoproteins that assist the formation of the secretin ring in the outer membrane. Using a combination of functional assays, interaction studies, proteomics, and live-cell microscopy, we determined the contribution of the pilotin to the assembly, function, and substrate selectivity of the T3SS and identified potential new downstream roles of pilotin proteins. In absence of its pilotin SctG, Yersinia enterocolitica forms few, largely polar injectisome sorting platforms and needles. Accordingly, most export apparatus subcomplexes are mobile in these strains, suggesting the absence of fully assembled injectisomes. Remarkably, while absence of the pilotin all but prevents export of early T3SS substrates, such as the needle subunits, it has little effect on secretion of late T3SS substrates, including the virulence effectors. We found that although pilotins interact with other injectisome components such as the secretin in the outer membrane, they mostly localize in transient mobile clusters in the bacterial membrane. Together, these findings provide a new view on the role of pilotins in the assembly and function of type III secretion injectisomes.
Collapse
Affiliation(s)
- Stephan Wimmi
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Moritz Fleck
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Carlos Helbig
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Corentin Brianceau
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katja Langenfeld
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Witold G Szymanski
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Georgia Angelidou
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
2
|
Yuan X, Sundin GW, Zeng Q, Johnson KB, Cox KD, Yu M, Huang J, Yang CH. Erwinia amylovora Type III Secretion System Inhibitors Reduce Fire Blight Infection Under Field Conditions. PHYTOPATHOLOGY 2023; 113:2197-2204. [PMID: 37344783 DOI: 10.1094/phyto-04-23-0111-sa] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Fire blight, caused by Erwinia amylovora, is an economically important disease in apples and pears worldwide. This pathogen relies on the type III secretion system (T3SS) to cause disease. Compounds that inhibit the function of the T3SS (T3SS inhibitors) have emerged as alternative strategies for bacterial plant disease management, as they block bacterial virulence without affecting growth, unlike traditional antibiotics. In this study, we investigated the mode of action of a T3SS inhibitor named TS108, a plant phenolic acid derivative, in E. amylovora. We showed that adding TS108 to an in vitro culture of E. amylovora repressed the expression of several T3SS regulon genes, including the master regulator gene hrpL. Further studies demonstrated that TS108 negatively regulates CsrB, a global regulatory small RNA, at the posttranscriptional level, resulting in a repression of hrpS, which encodes a key activator of hrpL. Additionally, TS108 has no impact on the expression of T3SS in Dickeya dadantii or Pseudomonas aeruginosa, suggesting that its inhibition of the E. amylovora T3SS is likely species specific. To better evaluate the performance of T3SS inhibitors in fire blight management, we conducted five independent field experiments in four states (Michigan, New York, Oregon, and Connecticut) from 2015 to 2022 and observed reductions in blossom blight incidence as high as 96.7% compared with untreated trees. In summary, the T3SS inhibitors exhibited good efficacy against fire blight.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011
| | - George W Sundin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511
| | - Kenneth B Johnson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Kerik D Cox
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY 14456
| | - Manda Yu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| | - Jian Huang
- T3 Bioscience, Lapham Hall 181, Milwaukee, WI 53211
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| |
Collapse
|
3
|
Yang HW, Lee JH, Zhao Y. RpoN Regulon in Erwinia amylovora Revealed by Transcriptional Profiling and In Silico Binding Site Analysis. PHYTOPATHOLOGY 2023; 113:183-193. [PMID: 35994732 DOI: 10.1094/phyto-07-22-0255-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Erwinia amylovora causes a devastating fire blight disease in apples and pears. One of the main virulence determinants in E. amylovora is the hypersensitive response (HR) and pathogenicity (hrp)-type III secretion system (T3SS), which is activated by the RpoN-HrpL sigma factor cascade. However, the RpoN regulon in E. amylovora has not been investigated. In this study, we determined the RpoN regulon in E. amylovora by combining RNA-seq transcriptomic analysis with in silico binding site analysis. RNA-seq revealed that 262 genes, approximately 7.5% genes in the genome of E. amylovora, were differentially transcribed in the rpoN mutant as compared with the wild type. Specifically, genes associated with virulence, motility, nitrogen assimilation, the PspF system, stress response, and arginine biosynthesis are positively regulated by RpoN, whereas genes associated with biosynthesis of amino acids and sorbitol transport are negatively regulated by RpoN. In silico binding site analysis identified 46 potential target genes with a putative RpoN binding site, and the upstream sequences of six, three, and three genes also contain putative GlnG, PspF, and YfhA binding sites, respectively. Overall, RpoN directly regulates genes associated with virulence, nitrogen assimilation, the PspF system, motility and the YfhA/YfhK two-component regulatory system.
Collapse
Affiliation(s)
- Ho-Wen Yang
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Jae-Hoon Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
- Department of Plant Pathology, WSU-IAREC, Prosser, WA 99350, U.S.A
| |
Collapse
|
4
|
Kharadi RR, Selbmann K, Sundin GW. A complete twelve-gene deletion null mutant reveals that cyclic di-GMP is a global regulator of phase-transition and host colonization in Erwinia amylovora. PLoS Pathog 2022; 18:e1010737. [PMID: 35914003 PMCID: PMC9371280 DOI: 10.1371/journal.ppat.1010737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/11/2022] [Accepted: 07/11/2022] [Indexed: 11/19/2022] Open
Abstract
Cyclic-di-GMP (c-di-GMP) is an essential bacterial second messenger that regulates biofilm formation and pathogenicity. To study the global regulatory effect of individual components of the c-di-GMP metabolic system, we deleted all 12 diguanylate cyclase (dgc) and phosphodiesterase (pde)-encoding genes in E. amylovora Ea1189 (Ea1189Δ12). Ea1189Δ12 was impaired in surface attachment due to a transcriptional dysregulation of the type IV pilus and the flagellar filament. A transcriptomic analysis of surface-exposed WT Ea1189 and Ea1189Δ12 cells indicated that genes involved in metabolism, appendage generation and global transcriptional/post-transcriptional regulation were differentially regulated in Ea1189Δ12. Biofilm formation was regulated by all 5 Dgcs, whereas type III secretion and disease development were differentially regulated by specific Dgcs. A comparative transcriptomic analysis of Ea1189Δ8 (lacks all five enzymatically active dgc and 3 pde genes) against Ea1189Δ8 expressing specific dgcs, revealed the presence of a dual modality of spatial and global regulatory frameworks in the c-di-GMP signaling network.
Collapse
Affiliation(s)
- Roshni R. Kharadi
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | - Kayla Selbmann
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | - George W. Sundin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
5
|
Kharadi RR, Sundin GW. CsrD regulates amylovoran biosynthesis and virulence in Erwinia amylovora in a novel cyclic-di-GMP dependent manner. MOLECULAR PLANT PATHOLOGY 2022; 23:1154-1169. [PMID: 35396793 PMCID: PMC9276943 DOI: 10.1111/mpp.13217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Erwinia amylovora is an economically devastating plant pathogen that causes fire blight disease in members of the Rosaceae family, most notably in apple and pear. The exopolysaccharide amylovoran is a pathogenicity determinant in E. amylovora and a major component of the extracellular matrix of biofilms formed within the xylem vasculature of the host plant. The second messenger cyclic-di-GMP (c-di-GMP) has been reported to positively regulate the transcription of amsG (the first gene in the 12-gene amylovoran [ams] biosynthetic operon), thus impacting amylovoran production. However, the regulatory mechanism by which this interaction occurs is largely unknown. Here, we report that c-di-GMP can bind to specific residues in the EAL domain of the E. amylovora protein CsrD. CsrD and RNase E regulate the degradation of the sRNA CsrB in E. amylovora. When CsrD is bound to c-di-GMP, there is an enhancement in the level of RNase E-mediated degradation of CsrB, which then alters amsG transcription. Additionally, csrD was also found to positively contribute to virulence and biofilm formation. We thus present a pathway of conditional regulation of amylovoran production mediated by changing intracellular levels of c-di-GMP, which impacts disease progression.
Collapse
Affiliation(s)
- Roshni R. Kharadi
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - George W. Sundin
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
6
|
The RNA-Binding Protein ProQ Impacts Exopolysaccharide Biosynthesis and Second Messenger Cyclic di-GMP Signaling in the Fire Blight Pathogen Erwinia amylovora. Appl Environ Microbiol 2022; 88:e0023922. [PMID: 35416685 DOI: 10.1128/aem.00239-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erwinia amylovora is a plant-pathogenic bacterium that causes fire blight disease in many economically important plants, including apples and pears. This bacterium produces three exopolysaccharides (EPSs), amylovoran, levan, and cellulose, and forms biofilms in host plant vascular tissues, which are crucial for pathogenesis. Here, we demonstrate that ProQ, a conserved bacterial RNA chaperone, was required for the virulence of E. amylovora in apple shoots and for biofilm formation in planta. In vitro experiments revealed that the deletion of proQ increased the production of amylovoran and cellulose. Prc is a putative periplasmic protease, and the prc gene is located adjacent to proQ. We found that Prc and the associated lipoprotein NlpI negatively affected amylovoran production, whereas Spr, a peptidoglycan hydrolase degraded by Prc, positively regulated amylovoran. Since the prc promoter is likely located within proQ, our data showed that proQ deletion significantly reduced the prc mRNA levels. We used a genome-wide transposon mutagenesis experiment to uncover the involvement of the bacterial second messenger c-di-GMP in ProQ-mediated cellulose production. The deletion of proQ resulted in elevated intracellular c-di-GMP levels and cellulose production, which were restored to wild-type levels by deleting genes encoding c-di-GMP biosynthesis enzymes. Moreover, ProQ positively affected the mRNA levels of genes encoding c-di-GMP-degrading phosphodiesterase enzymes via a mechanism independent of mRNA decay. In summary, our study revealed a detailed function of E. amylovora ProQ in coordinating cellulose biosynthesis and, for the first time, linked ProQ with c-di-GMP metabolism and also uncovered a role of Prc in the regulation of amylovoran production. IMPORTANCE Fire blight, caused by the bacterium Erwinia amylovora, is an important disease affecting many rosaceous plants, including apple and pear, that can lead to devastating economic losses worldwide. Similar to many xylem-invading pathogens, E. amylovora forms biofilms that rely on the production of exopolysaccharides (EPSs). In this paper, we identified the RNA-binding protein ProQ as an important virulence regulator. ProQ played a central role in controlling the production of EPSs and participated in the regulation of several conserved bacterial signal transduction pathways, including the second messenger c-di-GMP and the periplasmic protease Prc-mediated systems. Since ProQ has recently been recognized as a global posttranscriptional regulator in many bacteria, these findings provide new insights into multitiered regulatory mechanisms for the precise control of virulence factor production in bacterial pathogens.
Collapse
|
7
|
Zhang Y, Andrade MO, Wang W, Teper D, Romeo T, Wang N. Examination of the Global Regulon of CsrA in Xanthomonas citri subsp. citri Using Quantitative Proteomics and Other Approaches. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1236-1249. [PMID: 34282945 DOI: 10.1094/mpmi-05-21-0113-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The RNA-binding protein CsrA is a global posttranscriptional regulator and controls many physiological processes and virulence traits. Deletion of csrA caused loss of virulence, reduced motility and production of xanthan gum and substantial increase in glycogen accumulation, as well as enhanced bacterial aggregation and cell adhesion in Xanthomonas spp. How CsrA controls these traits is poorly understood. In this study, an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis was conducted to compare the protein profile of wild-type strain Xanthomonas citri subsp. citri and the isogenic ΔcsrA strain. A total of 2,374 proteins were identified, and 284 were considered to be differentially expressed proteins (DEPS), among which 151 proteins were up-regulated and 133 were down-regulated in the ΔcsrA strain with respect to the wild-type strain. Enrichment analysis and a protein-protein interaction network analysis showed that CsrA regulates bacterial secretion systems, flagella, and xanthan gum biosynthesis. Several proteins encoded by the gumB operon were down-regulated, whereas proteins associated with flagellum assembly and the type IV secretion system were up-regulated in the ΔcsrA strain relative to the Xcc306 strain. These results were confirmed by β-glucuronidase assay or Western blot. RNA secondary structure prediction and a gel-shift assay indicated that CsrA binds to the Shine-Dalgarno sequence of virB5. In addition, the iTRAQ analysis identified 248 DEPs that were not previously identified in transcriptome analyses. Among them, CsrA regulates levels of eight regulatory proteins (ColR, GacA, GlpR, KdgR, MoxR, PilH, RecX, and YgiX), seven TonB-dependent receptors, four outer membrane proteins, and two ferric enterobactin receptors. Taken together, this study greatly expands understanding of the regulatory network of CsrA in X. citri subsp. citri.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yanan Zhang
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred FL 33850, U.S.A
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, 655011, China
| | - Maxuel O Andrade
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred FL 33850, U.S.A
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Wenting Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred FL 33850, U.S.A
- Department of Plant Pathology, University of Florida, Gainesville FL 32611, U.S.A
| | - Doron Teper
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred FL 33850, U.S.A
| | - Tony Romeo
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville FL 32611, U.S.A
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred FL 33850, U.S.A
| |
Collapse
|
8
|
Cui Z, Huntley RB, Schultes NP, Kakar KU, Yang CH, Zeng Q. Expression of the Type III Secretion System Genes in Epiphytic Erwinia amylovora Cells on Apple Stigmas Benefits Endophytic Infection at the Hypanthium. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1119-1127. [PMID: 34698527 DOI: 10.1094/mpmi-06-21-0152-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Erwinia amylovora causes fire blight on rosaceous plants. One of the major entry points of E. amylovora into hosts is flowers, where E. amylovora proliferates epiphytically on stigmatic and hypanthium surfaces and, subsequently, causes endophytic infection at the hypanthium. The type III secretion system (T3SS) is an important virulence factor in E. amylovora. Although the role of T3SS during endophytic infection is well characterized, its expression during epiphytic colonization and role in the subsequent infection is less understood. Here, we investigated T3SS gene expression in epiphytic E. amylovora on stigma and hypanthium of apple flowers under different relative humidities (RH). On stigma surfaces, T3SS was expressed in a high percentage of E. amylovora cells, and its expression promoted epiphytic growth. On hypanthium surfaces, however, T3SS was expressed in fewer E. amylovora cells than on the stigma, and displayed no correlation with epiphytic growth, even though T3SS expression is essential for infection. E. amylovora cells grown on stigmatic surfaces and then flushed down to the hypanthium displayed a higher level of T3SS expression than cells grown on the hypanthium surface alone. Furthermore, E. amylovora cells precultured on stigma had a higher potential to infect flowers than E. amylovora cells precultured in a T3SS-repressive medium. This suggests that T3SS induction during the stigmatic epiphytic colonization may be beneficial for subsequent infection. Finally, epiphytic expression of T3SS was influenced by RH. Higher percentage of stigmatic E. amylovora cells expressed T3SS under high RH than under low RH.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zhouqi Cui
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, U.S.A
| | - Regan B Huntley
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, U.S.A
| | - Neil P Schultes
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, U.S.A
| | - Kaleem U Kakar
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, 87300, Pakistan
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, U.S.A
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, U.S.A
| |
Collapse
|
9
|
Kharadi RR, Schachterle JK, Yuan X, Castiblanco LF, Peng J, Slack SM, Zeng Q, Sundin GW. Genetic Dissection of the Erwinia amylovora Disease Cycle. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:191-212. [PMID: 33945696 DOI: 10.1146/annurev-phyto-020620-095540] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fire blight, caused by the bacterial phytopathogen Erwinia amylovora, is an economically important and mechanistically complex disease that affects apple and pear production in most geographic production hubs worldwide. We compile, assess, and present a genetic outlook on the progression of an E. amylovora infection in the host. We discuss the key aspects of type III secretion-mediated infection and systemic movement, biofilm formation in xylem, and pathogen dispersal via ooze droplets, a concentrated suspension of bacteria and exopolysaccharide components. We present an overall outlook on the genetic elements contributing to E. amylovora pathogenesis, including an exploration of the impact of floral microbiomes on E. amylovora colonization, and summarize the current knowledge of host responses to an incursion and how this response stimulates further infection and systemic spread. We hope to facilitate the identification of new, unexplored areas of research in this pathosystem that can help identify evolutionarily susceptible genetic targets to ultimately aid in the design of sustainable strategies for fire blight disease mitigation.
Collapse
Affiliation(s)
- Roshni R Kharadi
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Jeffrey K Schachterle
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
- Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, Beltsville, Maryland 20705, USA
| | - Xiaochen Yuan
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Luisa F Castiblanco
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Jingyu Peng
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Suzanne M Slack
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, USA
| | - George W Sundin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| |
Collapse
|
10
|
Activation of metabolic and stress responses during subtoxic expression of the type I toxin hok in Erwinia amylovora. BMC Genomics 2021; 22:74. [PMID: 33482720 PMCID: PMC7821729 DOI: 10.1186/s12864-021-07376-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/08/2021] [Indexed: 11/15/2022] Open
Abstract
Background Toxin-antitoxin (TA) systems, abundant in prokaryotes, are composed of a toxin gene and its cognate antitoxin. Several toxins are implied to affect the physiological state and stress tolerance of bacteria in a population. We previously identified a chromosomally encoded hok-sok type I TA system in Erwinia amylovora, the causative agent of fire blight disease on pome fruit trees. A high-level induction of the hok gene was lethal to E. amylovora cells through unknown mechanisms. The molecular targets or regulatory roles of Hok were unknown. Results Here, we examined the physiological and transcriptomic changes of Erwinia amylovora cells expressing hok at subtoxic levels that were confirmed to confer no cell death, and at toxic levels that resulted in killing of cells. In both conditions, hok caused membrane rupture and collapse of the proton motive force in a subpopulation of E. amylovora cells. We demonstrated that induction of hok resulted in upregulation of ATP biosynthesis genes, and caused leakage of ATP from cells only at toxic levels. We showed that overexpression of the phage shock protein gene pspA largely reversed the cell death phenotype caused by high levels of hok induction. We also showed that induction of hok at a subtoxic level rendered a greater proportion of stationary phase E. amylovora cells tolerant to the antibiotic streptomycin. Conclusions We characterized the molecular mechanism of toxicity by high-level of hok induction and demonstrated that low-level expression of hok primes the stress responses of E. amylovora against further membrane and antibiotic stressors. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07376-w.
Collapse
|
11
|
Zhang WB, Yan HL, Zhu ZC, Zhang C, Du PX, Zhao WJ, Li WM. Genome-wide identification of the Sec-dependent secretory protease genes in Erwinia amylovora and analysis of their expression during infection of immature pear fruit. J Zhejiang Univ Sci B 2020; 21:716-726. [PMID: 32893528 DOI: 10.1631/jzus.b2000281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The general secretory (Sec) pathway represents a common mechanism by which bacteria secrete proteins, including virulence factors, into the extracytoplasmic milieu. However, there is little information about this system, as well as its associated secretory proteins, in relation to the fire blight pathogen Erwinia amylovora. In this study, data mining revealed that E. amylovora harbors all of the essential components of the Sec system. Based on this information, we identified putative Sec-dependent secretory proteases in E. amylovora on a genome-wide scale. Using the programs SignalP, LipoP, and Phobius, a total of 15 putative proteases were predicted to contain the N-terminal signal peptides (SPs) that might link them to the Sec-dependent pathway. The activities of the predicted SPs were further validated using an Escherichia coli-based alkaline phosphatase (PhoA) gene fusion system that confirmed their extracytoplasmic property. Transcriptional analyses showed that the expression of 11 of the 15 extracytoplasmic protease genes increased significantly when E. amylovora was used to inoculate immature pears, suggesting their potential roles in plant infection. The results of this study support the suggestion that E. amylovora might employ the Sec system to secrete a suite of proteases to enable successful infection of plants, and shed new light on the interaction of E. amylovora with host plants.
Collapse
Affiliation(s)
- Wang-Bin Zhang
- College of Plant Science, Tarim University, Alar 843300, China.,Southern Xinjiang Key Laboratory of Integrated Pest Management, Tarim University, Alar 843300, China
| | - Hai-Lin Yan
- College of Plant Science, Tarim University, Alar 843300, China.,Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zong-Cai Zhu
- College of Plant Science, Tarim University, Alar 843300, China.,Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pei-Xiu Du
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen-Jun Zhao
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Wei-Min Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
12
|
Hua C, Wang T, Shao X, Xie Y, Huang H, Liu J, Zhang W, Zhang Y, Ding Y, Jiang L, Wang X, Deng X. Pseudomonas syringaedual‐function protein Lon switches between virulence and metabolism by acting as bothDNA‐binding transcriptional regulator and protease in different environments. Environ Microbiol 2020; 22:2968-2988. [DOI: 10.1111/1462-2920.15067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Canfeng Hua
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Tingting Wang
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Xiaolong Shao
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Yingpeng Xie
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Hao Huang
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Jingui Liu
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Weitong Zhang
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Yingchao Zhang
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Yiqing Ding
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Lin Jiang
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Xin Wang
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
| | - Xin Deng
- Department of Biomedical SciencesCity University of Hong Kong, 83 Tat Chee Road, 16 Kowloon Tong, Hong Kong China
- Shenzhen Research InstituteCity University of Hong Kong Shenzhen Guangdong China
| |
Collapse
|
13
|
Lon Protease Is Important for Growth Under Stressful Conditions and Pathogenicity of the Phytopathogen, Bacterium Dickeya solani. Int J Mol Sci 2020; 21:ijms21103687. [PMID: 32456249 PMCID: PMC7279449 DOI: 10.3390/ijms21103687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 01/08/2023] Open
Abstract
The Lon protein is a protease implicated in the virulence of many pathogenic bacteria, including some plant pathogens. However, little is known about the role of Lon in bacteria from genus Dickeya. This group of bacteria includes important potato pathogens, with the most aggressive species, D. solani. To determine the importance of Lon for pathogenicity and response to stress conditions of bacteria, we constructed a D. solani Δlon strain. The mutant bacteria showed increased sensitivity to certain stress conditions, in particular osmotic and high-temperature stresses. Furthermore, qPCR analysis showed an increased expression of the lon gene in D. solani under these conditions. The deletion of the lon gene resulted in decreased motility, lower activity of secreted pectinolytic enzymes and finally delayed onset of blackleg symptoms in the potato plants. In the Δlon cells, the altered levels of several proteins, including virulence factors and proteins associated with virulence, were detected by means of Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) analysis. These included components of the type III secretion system and proteins involved in bacterial motility. Our results indicate that Lon protease is important for D. solani to withstand stressful conditions and effectively invade the potato plant.
Collapse
|
14
|
Yang HW, Yu M, Lee JH, Chatnaparat T, Zhao Y. The stringent response regulator (p) ppGpp mediates virulence gene expression and survival in Erwinia amylovora. BMC Genomics 2020; 21:261. [PMID: 32228459 PMCID: PMC7106674 DOI: 10.1186/s12864-020-6699-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/24/2020] [Indexed: 01/30/2023] Open
Abstract
Background The nucleotide second messengers, i.e., guanosine tetraphosphate and pentaphosphate [collectively referred to as (p) ppGpp], trigger the stringent response under nutrient starvation conditions and play an essential role in virulence in the fire blight pathogen Erwinia amylovora. Here, we present transcriptomic analyses to uncover the overall effect of (p) ppGpp-mediated stringent response in E. amylovora in the hrp-inducing minimal medium (HMM). Results In this study, we investigated the transcriptomic changes of the (p) ppGpp0 mutant under the type III secretion system (T3SS)-inducing condition using RNA-seq. A total of 1314 differentially expressed genes (DEGs) was uncovered, representing more than one third (36.8%) of all genes in the E. amylovora genome. Compared to the wild-type, the (p) ppGpp0 mutant showed down-regulation of genes involved in peptide ATP-binding cassette (ABC) transporters and virulence-related processes, including type III secretion system (T3SS), biofilm, and motility. Interestingly, in contrast to previous reports, the (p) ppGpp0 mutant showed up-regulation of amino acid biosynthesis genes, suggesting that it might be due to that these amino acid biosynthesis genes are indirectly regulated by (p) ppGpp in E. amylovora or represent specific culturing condition used. Furthermore, the (p) ppGpp0 mutant exhibited up-regulation of genes involved in translation, SOS response, DNA replication, chromosome segregation, as well as biosynthesis of nucleotide, fatty acid and lipid. Conclusion These findings suggested that in HMM environment, E. amylovora might use (p) ppGpp as a signal to activate virulence gene expression, and simultaneously mediate the balance between virulence and survival by negatively regulating DNA replication, translation, cell division, as well as biosynthesis of nucleotide, amino acid, fatty acid, and lipid. Therefore, (p) ppGpp could be a promising target for developing novel control measures to fight against this devastating disease of apples and pears.
Collapse
Affiliation(s)
- Ho-Wen Yang
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr, Urbana, IL, 61801, USA
| | - Menghao Yu
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr, Urbana, IL, 61801, USA
| | - Jae Hoon Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr, Urbana, IL, 61801, USA
| | - Tiyakhon Chatnaparat
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr, Urbana, IL, 61801, USA
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr, Urbana, IL, 61801, USA.
| |
Collapse
|
15
|
Yu M, Zhang G, Jiang J, Du L, Zhao Y. Lysobacter enzymogenes Employs Diverse Genes for Inhibiting Hypha Growth and Spore Germination of Soybean Fungal Pathogens. PHYTOPATHOLOGY 2020; 110:593-602. [PMID: 31774360 DOI: 10.1094/phyto-09-19-0356-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lysobacter enzymogenes strain C3 (LeC3) is a potential biocontrol agent for plant diseases caused by fungi and oomycetes. Understanding the interaction between LeC3 and soybean pathogens at the molecular level could help improve its biocontrol efficacy. In this study, we obtained mutants with decreased abilities in inhibiting hypha growth of the white mold pathogen Sclerotinia sclerotiorum. Insertion sites for 50 mutants, which no longer inhibited S. sclerotiorum hypha growth in dual cultural assay, were determined and seven mutants were selected for further characterization. These seven mutants also completely lost their abilities in suppressing spore germination of Fusarium virguliforme, the causal agent of soybean sudden death syndrome. Furthermore, mutation of the seven genes, which encode diguanylate cyclase, transcriptional regulators from the TetR family, hemolysin III family channel protein, type IV secretion system VirB10 protein, phenol hydroxylase, and phosphoadenosine phosphosulfate reductase, respectively, led to reduced production or secretion of four extracellular enzymes and heat-stable antifungal factor (HSAF). These results suggest that these seven genes play important roles in L. enzymogenes in suppressing hypha growth and spore germination of fungal pathogens, probably by influencing production or secretion of extracellular enzymes and HSAF.
Collapse
Affiliation(s)
- Menghao Yu
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Guiying Zhang
- Department of Plant Protection, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jiasong Jiang
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, U.S.A
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, U.S.A
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| |
Collapse
|
16
|
Yu M, Zhao Y. Cell permeability, β-lactamase activity, and transport contribute to high level of resistance to ampicillin in Lysobacter enzymogenes. Appl Microbiol Biotechnol 2019; 104:1149-1161. [PMID: 31822985 DOI: 10.1007/s00253-019-10266-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 11/26/2022]
Abstract
Discovery of multidrug resistance (MDR) in environmental microorganisms provides unique resources for uncovering antibiotic resistomes, which could be vital to predict future emergence of MDR pathogens. Our previous studies indicated that Lysobacter sp. conferred intrinsic resistance to multiple antibiotics at high levels, especially ampicillin, the first broad-spectrum β-lactam antibiotics against both Gram-positive and Gram-negative bacteria. However, the underlying molecular mechanisms for resistance to ampicillin in Lysobacter enzymogenes strain C3 (LeC3) remain unknown. In this study, screening a Tn5 transposon mutant library of LeC3 recovered 12 mutants with decreased ampicillin resistance, and three mutants (i.e., tatC, lebla, and lpp) were selected for further characterization. Our results revealed that genes encoding β-lactamase (lebla) and twin-arginine translocation (tatC) system for β-lactamase transport played a pivotal role in conferring ampicillin resistance in L. enzymogenes. It was also demonstrated that the lpp gene was not only involved in resistance against β-lactams but also conferred resistance to multiple antibiotics in L. enzymogenes. Permeability assay results indicated that decreased MDR in the lpp mutant was in part due to its higher cellular permeability. Furthermore, our results showed that the difference of LeC3 and L. antibioticus strain LaATCC29479 in ampicillin susceptibility was partly due to their differences in cellular permeability, but not due to β-lactamase activities.
Collapse
Affiliation(s)
- Menghao Yu
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
17
|
Yu M, Zhao Y. Comparative resistomic analyses of Lysobacter species with high intrinsic multidrug resistance. J Glob Antimicrob Resist 2019; 19:320-327. [DOI: 10.1016/j.jgar.2019.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/24/2019] [Accepted: 05/04/2019] [Indexed: 01/01/2023] Open
|
18
|
Lee JH, Ancona V, Chatnaparat T, Yang HW, Zhao Y. The RNA-Binding Protein CsrA Controls Virulence in Erwinia amylovora by Regulating RelA, RcsB, and FlhD at the Posttranscriptional Level. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1448-1459. [PMID: 31140921 DOI: 10.1094/mpmi-03-19-0077-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
CsrA, an RNA-binding protein, binds to target transcripts and alters their translation or stability. In Erwinia amylovora, CsrA positively regulates the expression of type III secretion system (T3SS), exopolysaccharide amylovoran, and motility. In this study, the global effect of CsrA and its noncoding small RNA (ncsRNA) csrB in E. amylovora was determined by RNA-seq, and potential molecular mechanisms of CsrA-dependent virulence regulation were examined. Transcriptomic analyses under the T3SS-inducing condition revealed that mutation in the csrA gene led to differential expression of more than 20% of genes in the genome. Among them, T3SS genes and those required for cell growth and viability were significantly downregulated. On the other hand, the csrB mutant exhibited significant upregulation of most major virulence genes, suggesting an antagonistic effect of csrB on CsrA targets. Direct interaction between CsrA protein and csrB was further confirmed through the RNA electrophoretic mobility shift assay (REMSA). However, no direct interaction between CsrA and hrpL and hrpS transcripts was detected, suggesting that HrpL and HrpS are not targets of CsrA, whereas three CsrA targets (relA, rcsB, and flhD) were identified and confirmed by REMSA, site-directed mutagenesis, and LacZ reporter gene assays. These findings might partially explain how CsrA positively controls E. amylovora virulence by targeting major regulators at the posttranscriptional level.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Veronica Ancona
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Tiyakhon Chatnaparat
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Ho-Wen Yang
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| |
Collapse
|
19
|
Ge Y, Lee JH, Liu J, Yang H, Tian Y, Hu B, Zhao Y. Homologues of the RNA binding protein RsmA in Pseudomonas syringae pv. tomato DC3000 exhibit distinct binding affinities with non-coding small RNAs and have distinct roles in virulence. MOLECULAR PLANT PATHOLOGY 2019; 20:1217-1236. [PMID: 31218814 PMCID: PMC6715622 DOI: 10.1111/mpp.12823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pseudomonas syringae pv. tomato DC3000 (PstDC3000) contains five RsmA protein homologues. In this study, four were functionally characterized, with a focus on RsmA2, RsmA3 and RsmA4. RNA electrophoretic mobility shift assays demonstrated that RsmA1 and RsmA4 exhibited similar low binding affinities to non-coding small RNAs (ncsRNAs), whereas RsmA2 and RsmA3 exhibited similar, but much higher, binding affinities to ncsRNAs. Our results showed that both RsmA2 and RsmA3 were required for disease symptom development and bacterial growth in planta by significantly affecting virulence gene expression. All four RsmA proteins, especially RsmA2 and RsmA3, influenced γ-amino butyric acid utilization and pyoverdine production to some degree, whereas RsmA2, RsmA3 and RsmA4 influenced protease activities. A single RsmA, RsmA3, played a dominant role in regulating motility. Furthermore, reverse transcription quantitative real-time PCR and western blot results showed that RsmA proteins, especially RsmA2 and RsmA3, regulated target genes and possibly other RsmA proteins at both transcriptional and translational levels. These results indicate that RsmA proteins in PstDC3000 exhibit distinct binding affinities to ncsRNAs and have distinct roles in virulence. Our results also suggest that RsmA proteins in PstDC3000 interact with each other, where RsmA2 and RsmA3 play a major role in regulating various functions in a complex manner.
Collapse
Affiliation(s)
- Yixin Ge
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and PestsNanjing Agricultural UniversityNanjing210095P. R. China
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Jae Hoon Lee
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Jun Liu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and PestsNanjing Agricultural UniversityNanjing210095P. R. China
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Ho‐wen Yang
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Yanli Tian
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and PestsNanjing Agricultural UniversityNanjing210095P. R. China
| | - Baishi Hu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and PestsNanjing Agricultural UniversityNanjing210095P. R. China
| | - Youfu Zhao
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
20
|
Demir Z, Bayraktar A, Tunca S. One Extra Copy of lon Gene Causes a Dramatic Increase in Actinorhodin Production by Streptomyces coelicolor A3(2). Curr Microbiol 2019; 76:1045-1054. [PMID: 31214822 DOI: 10.1007/s00284-019-01719-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/12/2019] [Indexed: 01/01/2023]
Abstract
ATP-dependent Lon protease plays important roles in different physiological processes, including cellular differentiation of the bacteria and is a part of an important stress response regulon (HspR/HAIR). In Streptomyces, biosynthesis of secondary metabolites starts with cellular differentiation and stress is one of the factor that affect metabolite production. To clarify the effect of Lon protease on secondary metabolite production, we constructed a recombinant strain of Streptomyces coelicolor A3(2) that has one extra copy of lon gene with its own promoter and transcriptional terminator in its genome. Expression of lon gene in the recombinant strain was determined by quantitative real time (RT-qPCR). Actinorhodin and undecylprodigiosin production of the recombinant cell was measured in liquid R2YE and it was found to produce about 34 times more actinorhodin and 9 times more undecylprodigiosin than the wild-type at 168 h of growth. Development of stable Streptomyces strains capable of producing high amounts of secondary metabolites is valuable for biotechnology industry. One extra copy of lon gene is enough to boost antibiotic production by S. coelicolor A3(2) and this change do not cause any metabolic burden in the cell.
Collapse
Affiliation(s)
- Zeynep Demir
- Molecular Biology and Genetic Department, Faculty of Science, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Aslı Bayraktar
- Molecular Biology and Genetic Department, Faculty of Science, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Sedef Tunca
- Molecular Biology and Genetic Department, Faculty of Science, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
21
|
Figaj D, Ambroziak P, Przepiora T, Skorko-Glonek J. The Role of Proteases in the Virulence of Plant Pathogenic Bacteria. Int J Mol Sci 2019; 20:ijms20030672. [PMID: 30720762 PMCID: PMC6386880 DOI: 10.3390/ijms20030672] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/30/2019] [Accepted: 02/02/2019] [Indexed: 12/17/2022] Open
Abstract
A pathogenic lifestyle is inextricably linked with the constant necessity of facing various challenges exerted by the external environment (both within and outside the host). To successfully colonize the host and establish infection, pathogens have evolved sophisticated systems to combat the host defense mechanisms and also to be able to withstand adverse environmental conditions. Proteases, as crucial components of these systems, are involved in a variety of processes associated with infection. In phytopathogenic bacteria, they play important regulatory roles and modulate the expression and functioning of various virulence factors. Secretory proteases directly help avoid recognition by the plant immune systems, and contribute to the deactivation of the defense response pathways. Finally, proteases are important components of protein quality control systems, and thus enable maintaining homeostasis in stressed bacterial cells. In this review, we discuss the known protease functions and protease-regulated signaling processes associated with virulence of plant pathogenic bacteria.
Collapse
Affiliation(s)
- Donata Figaj
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | - Patrycja Ambroziak
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | - Tomasz Przepiora
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | | |
Collapse
|
22
|
Ge Y, Lee JH, Hu B, Zhao Y. Loss-of-Function Mutations in the Dpp and Opp Permeases Render Erwinia amylovora Resistant to Kasugamycin and Blasticidin S. MOLECULAR PLANT-MICROBE INTERACTIONS® 2018; 31:823-832. [PMID: 0 DOI: 10.1094/mpmi-01-18-0007-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Extensive use of the antibiotic streptomycin to control fire blight disease of apples and pears, caused by the enterobacterial plant pathogen Erwinia amylovora, leads to the development of streptomycin-resistant strains in the United States and elsewhere. Kasugamycin (Ksg) has been permitted to be used as an alternative or replacement to control this serious bacterial disease. In this study, we investigated the role of two major peptide ATP-binding cassette transporter systems in E. amylovora, the dipeptide permease (Dpp) and oligopeptide permease (Opp), in conferring sensitivity to Ksg and blasticidin S (BcS). Minimum inhibitory concentration and spot dilution assays showed that the dpp deletion mutants exhibited slightly enhanced resistance to Ksg in rich medium, whereas the opp mutant exhibited slightly enhanced resistance to Ksg in minimal medium and BcS in rich medium. Deletion of both dpp and opp conferred a higher level of resistance to Ksg in both rich and minimal media, whereas deletion of opp alone was sufficient to confer high level of resistance to BcS in minimal medium. In addition, bioinformatic analysis combined with reverse transcription-quantitative polymerase chain reaction showed that the Rcs phosphorelay system negatively regulates opp expression and the rcsB mutant was more sensitive to both Ksg and BcS in minimal medium as compared with the wild type. An electrophoresis motility shift assay further confirmed the direct binding of the RcsA/RcsB proteins to the promoter region of the opp operon. However, neither the Dpp nor the Opp permeases contributed to disease progress on immature pears, hypersensitive response on tobacco leaves, or exopolysaccharide amylovoran production. These results suggested that Ksg and BcS employ the Dpp and Opp permeases to enter E. amylovora cells and the Dpp and Opp permeases act synergistically for illicit transport of antibiotics.
Collapse
Affiliation(s)
- Yixin Ge
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, 210095, P. R. China; and
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Jae Hoon Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| | - Baishi Hu
- College of Plant Protection and Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, 210095, P. R. China; and
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A
| |
Collapse
|
23
|
Abstract
Most pathogenic bacteria deliver virulence factors into host cytosol through type III secretion systems (T3SS) to perturb host immune responses. The expression of T3SS is often repressed in rich medium but is specifically induced in the host environment. The molecular mechanisms underlying host-specific induction of T3SS expression is not completely understood. Here we demonstrate in Xanthomonas citri that host-induced phosphorylation of the ATP-dependent protease Lon stabilizes HrpG, the master regulator of T3SS, conferring bacterial virulence. Ser/Thr/Tyr phosphoproteome analysis revealed that phosphorylation of Lon at serine 654 occurs in the citrus host. In rich medium, Lon represses T3SS by degradation of HrpG via recognition of its N terminus. Genetic and biochemical data indicate that phosphorylation at serine 654 deactivates Lon proteolytic activity and attenuates HrpG proteolysis. Substitution of alanine for Lon serine 654 resulted in repression of T3SS gene expression in the citrus host through robust degradation of HrpG and reduced bacterial virulence. Our work reveals a novel mechanism for distinct regulation of bacterial T3SS in different environments. Additionally, our data provide new insight into the role of protein posttranslational modification in the regulation of bacterial virulence.IMPORTANCE Type III secretion systems (T3SS) are an essential virulence trait of many bacterial pathogens because of their indispensable role in the delivery of virulence factors. However, expression of T3SS in the noninfection stage is energy consuming. Here, we established a model to explain the differential regulation of T3SS in host and nonhost environments. When Xanthomonas cells are grown in rich medium, the T3SS regulator HrpG is targeted by Lon protease for proteolysis. The degradation of HrpG leads to downregulated expression of HrpX and the hrp/hrc genes. When Xanthomonas cells infect the host, specific plant stimuli can be perceived and induce Lon phosphorylation at serine 654. Phosphorylation on Lon attenuates its proteolytic activity and protects HrpG from degradation. Consequently, enhanced stability of HrpG activates HrpX and turns on bacterial T3SS in the host. Our work provides a novel molecular mechanism underlying host-dependent activation of bacterial T3SS.
Collapse
|
24
|
Lee JH, Zhao Y. Integration of multiple stimuli-sensing systems to regulate HrpS and type III secretion system in Erwinia amylovora. Mol Genet Genomics 2017; 293:187-196. [PMID: 28965178 DOI: 10.1007/s00438-017-1376-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/20/2017] [Indexed: 12/13/2022]
Abstract
The bacterial enhancer binding protein (bEBP) HrpS is essential for Erwinia amylovora virulence by activating the type III secretion system (T3SS). However, how the hrpS gene is regulated remains poorly understood in E. amylovora. In this study, 5' rapid amplification of cDNA ends and promoter deletion analyses showed that the hrpS gene contains two promoters driven by HrpX/HrpY and the Rcs phosphorelay system, respectively. Electrophoretic mobility shift and gene expression assays demonstrated that integration host factor IHF positively regulates hrpS expression through directly binding the hrpX promoter and positively regulating hrpX/hrpY expression. Moreover, hrpX expression was down-regulated in the relA/spoT ((p)ppGpp-deficient) mutant and the dksA mutant, but up-regulated when the wild-type strain was treated with serine hydroxamate, which induced (p)ppGpp-mediated stringent response. Furthermore, the csrA mutant showed significantly reduced transcripts of major hrpS activators, including the hrpX/hrpY, rcsA and rcsB genes, indicating that CsrA is required for full hrpS expression. On the other hand, the csrB mutant exhibited up-regulation of the rcsA and rcsB genes, and hrpS expression was largely diminished in the csrB/rcsB mutant, indicating that the Rcs system is mainly responsible for the increased hrpS expression in the csrB mutant. These findings suggest that E. amylovora recruits multiple stimuli-sensing systems, including HrpX/HrpY, the Rcs phosphorelay system and the Gac-Csr system, to regulate hrpS and T3SS gene expression.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA.
| |
Collapse
|