1
|
Vasquez-Teuber P, Rouxel T, Mason AS, Soyer JL. Breeding and management of major resistance genes to stem canker/blackleg in Brassica crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:192. [PMID: 39052130 PMCID: PMC11272824 DOI: 10.1007/s00122-024-04641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/29/2024] [Indexed: 07/27/2024]
Abstract
Blackleg (also known as Phoma or stem canker) is a major, worldwide disease of Brassica crop species, notably B. napus (rapeseed, canola), caused by the ascomycete fungus Leptosphaeria maculans. The outbreak and severity of this disease depend on environmental conditions and management practices, as well as a complex interaction between the pathogen and its hosts. Genetic resistance is a major method to control the disease (and the only control method in some parts of the world, such as continental Europe), but efficient use of genetic resistance is faced with many difficulties: (i) the scarcity of germplasm/genetic resources available, (ii) the different history of use of resistance genes in different parts of the world and the different populations of the fungus the resistance genes are exposed to, (iii) the complexity of the interactions between the plant and the pathogen that expand beyond typical gene-for-gene interactions, (iv) the incredible evolutionary potential of the pathogen and the importance of knowing the molecular processes set up by the fungus to "breakdown' resistances, so that we may design high-throughput diagnostic tools for population surveys, and (v) the different strategies and options to build up the best resistances and to manage them so that they are durable. In this paper, we aim to provide a comprehensive overview of these different points, stressing the differences between the different continents and the current prospects to generate new and durable resistances to blackleg disease.
Collapse
Affiliation(s)
- Paula Vasquez-Teuber
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
- Department of Plant Production, Faculty of Agronomy, University of Concepción, Av. Vicente Méndez 595, Chillán, Chile
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Thierry Rouxel
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Annaliese S Mason
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany.
| | - Jessica L Soyer
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France.
| |
Collapse
|
2
|
Gautier A, Laval V, Faure S, Rouxel T, Balesdent MH. Polymorphism of Avirulence Genes and Adaptation to Brassica Resistance Genes Is Gene-Dependent in the Phytopathogenic Fungus Leptosphaeria maculans. PHYTOPATHOLOGY 2023; 113:1222-1232. [PMID: 36802873 DOI: 10.1094/phyto-12-22-0466-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The fungal phytopathogen Leptosphaeria maculans, which causes stem canker (blackleg) of rapeseed (Brassica napus), is mainly controlled worldwide by genetic resistance, which includes major resistance genes (Rlm). This model is one of those for which the highest number of avirulence genes (AvrLm) has been cloned. In many systems, including the L. maculans-B. napus interaction, intense use of resistance genes exerts strong selection pressure on the corresponding avirulent isolates, and the fungi may rapidly escape resistance through various molecular events which modify the avirulence genes. In the literature, the study of polymorphism at avirulence loci is often focused on single genes under selection pressure. In this study, we investigate allelic polymorphism at 11 avirulence loci in a French population of 89 L. maculans isolates collected on a trap cultivar in four geographic locations in the 2017-2018 cropping season. The corresponding Rlm genes have been (i) used for a long time, (ii) recently used, or (iii) unused in agricultural practice. The sequence data generated indicate an extreme diversity of situations. For example, genes submitted to an ancient selection may have either been deleted in populations (AvrLm1) or replaced by a single-nucleotide mutated virulent version (AvrLm2, AvrLm5-9). Genes that have never been under selection may either be nearly invariant (AvrLm6, AvrLm10A, AvrLm10B), exhibit rare deletions (AvrLm11, AvrLm14), or display a high diversity of alleles and isoforms (AvrLmS-Lep2). These data suggest that the evolutionary trajectory of avirulence/virulence alleles is gene-dependent and independent of selection pressure in L. maculans. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Angélique Gautier
- Université Paris-Saclay, INRAE, UR BIOGER, Bâtiment F, 22 Place de l'Agronomie, CS 80022, 91120 Palaiseau Cedex, France
| | - Valérie Laval
- Université Paris-Saclay, INRAE, UR BIOGER, Bâtiment F, 22 Place de l'Agronomie, CS 80022, 91120 Palaiseau Cedex, France
| | | | - Thierry Rouxel
- Université Paris-Saclay, INRAE, UR BIOGER, Bâtiment F, 22 Place de l'Agronomie, CS 80022, 91120 Palaiseau Cedex, France
| | - Marie-Hélène Balesdent
- Université Paris-Saclay, INRAE, UR BIOGER, Bâtiment F, 22 Place de l'Agronomie, CS 80022, 91120 Palaiseau Cedex, France
| |
Collapse
|
3
|
Mesarich CH, Barnes I, Bradley EL, de la Rosa S, de Wit PJGM, Guo Y, Griffiths SA, Hamelin RC, Joosten MHAJ, Lu M, McCarthy HM, Schol CR, Stergiopoulos I, Tarallo M, Zaccaron AZ, Bradshaw RE. Beyond the genomes of Fulvia fulva (syn. Cladosporium fulvum) and Dothistroma septosporum: New insights into how these fungal pathogens interact with their host plants. MOLECULAR PLANT PATHOLOGY 2023; 24:474-494. [PMID: 36790136 PMCID: PMC10098069 DOI: 10.1111/mpp.13309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 05/03/2023]
Abstract
Fulvia fulva and Dothistroma septosporum are closely related apoplastic pathogens with similar lifestyles but different hosts: F. fulva is a pathogen of tomato, whilst D. septosporum is a pathogen of pine trees. In 2012, the first genome sequences of these pathogens were published, with F. fulva and D. septosporum having highly fragmented and near-complete assemblies, respectively. Since then, significant advances have been made in unravelling their genome architectures. For instance, the genome of F. fulva has now been assembled into 14 chromosomes, 13 of which have synteny with the 14 chromosomes of D. septosporum, suggesting these pathogens are even more closely related than originally thought. Considerable advances have also been made in the identification and functional characterization of virulence factors (e.g., effector proteins and secondary metabolites) from these pathogens, thereby providing new insights into how they promote host colonization or activate plant defence responses. For example, it has now been established that effector proteins from both F. fulva and D. septosporum interact with cell-surface immune receptors and co-receptors to activate the plant immune system. Progress has also been made in understanding how F. fulva and D. septosporum have evolved with their host plants, whilst intensive research into pandemics of Dothistroma needle blight in the Northern Hemisphere has shed light on the origins, migration, and genetic diversity of the global D. septosporum population. In this review, we specifically summarize advances made in our understanding of the F. fulva-tomato and D. septosporum-pine pathosystems over the last 10 years.
Collapse
Affiliation(s)
- Carl H Mesarich
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
- Bioprotection Aotearoa, Massey University, Palmerston North, New Zealand
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Ellie L Bradley
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Silvia de la Rosa
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Pierre J G M de Wit
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| | - Yanan Guo
- Bioprotection Aotearoa, Massey University, Palmerston North, New Zealand
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | | | - Richard C Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, Québec, Canada
| | | | - Mengmeng Lu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Hannah M McCarthy
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Christiaan R Schol
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis, Davis, California, USA
| | - Mariana Tarallo
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Alex Z Zaccaron
- Department of Plant Pathology, University of California Davis, Davis, California, USA
| | - Rosie E Bradshaw
- Bioprotection Aotearoa, Massey University, Palmerston North, New Zealand
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
4
|
Borhan MH, Van de Wouw AP, Larkan NJ. Molecular Interactions Between Leptosphaeria maculans and Brassica Species. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:237-257. [PMID: 35576591 DOI: 10.1146/annurev-phyto-021621-120602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Canola is an important oilseed crop, providing food, feed, and fuel around the world. However, blackleg disease, caused by the ascomycete Leptosphaeria maculans, causes significant yield losses annually. With the recent advances in genomic technologies, the understanding of the Brassica napus-L. maculans interaction has rapidly increased, with numerous Avr and R genes cloned, setting this system up as a model organism for studying plant-pathogen associations. Although the B. napus-L. maculans interaction follows Flor's gene-for-gene hypothesis for qualitative resistance, it also puts some unique spins on the interaction. This review discusses the current status of the host-pathogen interaction and highlights some of the future gaps that need addressing moving forward.
Collapse
Affiliation(s)
- M Hossein Borhan
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada;
| | | | - Nicholas J Larkan
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada;
| |
Collapse
|
5
|
Van de Wouw AP, Sheedy EM, Ware AH, Marcroft S, Idnurm A. Independent breakdown events of the Brassica napus Rlm7 resistance gene including via the off-target impact of a dual-specificity avirulence interaction. MOLECULAR PLANT PATHOLOGY 2022; 23:997-1010. [PMID: 35249259 PMCID: PMC9190981 DOI: 10.1111/mpp.13204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/01/2022] [Accepted: 02/15/2022] [Indexed: 05/08/2023]
Abstract
Protection of many crops is achieved through the use of genetic resistance. Leptosphaeria maculans, the causal agent of blackleg disease of Brassica napus, has emerged as a model for understanding gene-for-gene interactions that occur between plants and pathogens. Whilst many of the characterized avirulence effector genes interact with a single resistance gene in the host, the AvrLm4-7 avirulence gene is recognized by two resistance genes, Rlm4 and Rlm7. Here, we report the "breakdown" of the Rlm7 resistance gene in Australia, under two different field conditions. The first, and more typical, breakdown probably resulted from widescale use of Rlm7-containing cultivars whereby selection has led to an increase of individuals in the L. maculans population that have undergone repeat-induced point (RIP) mutations at the AvrLm4-7 locus. This has rendered the AvrLm4-7 gene ineffective and therefore these isolates have become virulent towards both Rlm4 and Rlm7. The second, more atypical, situation was the widescale use of Rlm4 cultivars. Whilst a single-nucleotide polymorphism is the more common mechanism of virulence towards Rlm4, in this field situation, RIP mutations have been selected leading to the breakdown of resistance for both Rlm4 and Rlm7. This is an example of a resistance gene being rendered ineffective without having grown cultivars with the corresponding resistance gene due to the dual specificity of the avirulence gene. These findings highlight the value of pathogen surveillance in the context of expanded knowledge about potential complexities for Avr-R interactions for the deployment of appropriate resistance gene strategies.
Collapse
Affiliation(s)
| | | | | | | | - Alexander Idnurm
- School of BioSciencesUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
6
|
Xiang Neik T, Ghanbarnia K, Ollivier B, Scheben A, Severn‐Ellis A, Larkan NJ, Haddadi P, Fernando DWG, Rouxel T, Batley J, Borhan HM, Balesdent M. Two independent approaches converge to the cloning of a new Leptosphaeria maculans avirulence effector gene, AvrLmS-Lep2. MOLECULAR PLANT PATHOLOGY 2022; 23:733-748. [PMID: 35239989 PMCID: PMC8995059 DOI: 10.1111/mpp.13194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 05/10/2023]
Abstract
Brassica napus (oilseed rape, canola) seedling resistance to Leptosphaeria maculans, the causal agent of blackleg (stem canker) disease, follows a gene-for-gene relationship. The avirulence genes AvrLmS and AvrLep2 were described to be perceived by the resistance genes RlmS and LepR2, respectively, present in B. napus 'Surpass 400'. Here we report cloning of AvrLmS and AvrLep2 using two independent methods. AvrLmS was cloned using combined in vitro crossing between avirulent and virulent isolates with sequencing of DNA bulks from avirulent or virulent progeny (bulked segregant sequencing). AvrLep2 was cloned using a biparental cross of avirulent and virulent L. maculans isolates and a classical map-based cloning approach. Taking these two approaches independently, we found that AvrLmS and AvrLep2 are the same gene. Complementation of virulent isolates with this gene confirmed its role in inducing resistance on Surpass 400, Topas-LepR2, and an RlmS-line. The gene, renamed AvrLmS-Lep2, encodes a small cysteine-rich protein of unknown function with an N-terminal secretory signal peptide, which is a common feature of the majority of effectors from extracellular fungal plant pathogens. The AvrLmS-Lep2/LepR2 interaction phenotype was found to vary from a typical hypersensitive response through intermediate resistance sometimes towards susceptibility, depending on the inoculation conditions. AvrLmS-Lep2 was nevertheless sufficient to significantly slow the systemic growth of the pathogen and reduce the stem lesion size on plant genotypes with LepR2, indicating the potential efficiency of this resistance to control the disease in the field.
Collapse
Affiliation(s)
- Ting Xiang Neik
- School of Biological SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Kaveh Ghanbarnia
- Agriculture and Agri‐Food CanadaSaskatoon Research CenterSaskatoonSaskatchewanCanada
- Department of Plant SciencesUniversity of ManitobaWinnipegManitobaCanada
| | | | - Armin Scheben
- School of Biological SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
- Simons Center for Quantitative Biology, Cold Spring Harbor LaboratoryCold Spring HarborNew YorkUSA
| | - Anita Severn‐Ellis
- School of Biological SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Nicholas J. Larkan
- Agriculture and Agri‐Food CanadaSaskatoon Research CenterSaskatoonSaskatchewanCanada
- Armatus Genetics Inc.SaskatoonSaskatchewanCanada
| | - Parham Haddadi
- Agriculture and Agri‐Food CanadaSaskatoon Research CenterSaskatoonSaskatchewanCanada
| | | | - Thierry Rouxel
- Université Paris‐SaclayINRAEUR BIOGERThiverval‐GrignonFrance
| | - Jacqueline Batley
- School of Biological SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Hossein M. Borhan
- Agriculture and Agri‐Food CanadaSaskatoon Research CenterSaskatoonSaskatchewanCanada
| | | |
Collapse
|
7
|
Shaw RK, Shen Y, Zhao Z, Sheng X, Wang J, Yu H, Gu H. Molecular Breeding Strategy and Challenges Towards Improvement of Downy Mildew Resistance in Cauliflower ( Brassica oleracea var. botrytis L.). FRONTIERS IN PLANT SCIENCE 2021; 12:667757. [PMID: 34354719 PMCID: PMC8329456 DOI: 10.3389/fpls.2021.667757] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Cauliflower (Brassica oleracea var. botrytis L.) is one of the important, nutritious and healthy vegetable crops grown and consumed worldwide. But its production is constrained by several destructive fungal diseases and most importantly, downy mildew leading to severe yield and quality losses. For sustainable cauliflower production, developing resistant varieties/hybrids with durable resistance against broad-spectrum of pathogens is the best strategy for a long term and reliable solution. Identification of novel resistant resources, knowledge of the genetics of resistance, mapping and cloning of resistance QTLs and identification of candidate genes would facilitate molecular breeding for disease resistance in cauliflower. Advent of next-generation sequencing technologies (NGS) and publishing of draft genome sequence of cauliflower has opened the flood gate for new possibilities to develop enormous amount of genomic resources leading to mapping and cloning of resistance QTLs. In cauliflower, several molecular breeding approaches such as QTL mapping, marker-assisted backcrossing, gene pyramiding have been carried out to develop new resistant cultivars. Marker-assisted selection (MAS) would be beneficial in improving the precision in the selection of improved cultivars against multiple pathogens. This comprehensive review emphasizes the fascinating recent advances made in the application of molecular breeding approach for resistance against an important pathogen; Downy Mildew (Hyaloperonospora parasitica) affecting cauliflower and Brassica oleracea crops and highlights the QTLs identified imparting resistance against this pathogen. We have also emphasized the critical research areas as future perspectives to bridge the gap between availability of genomic resources and its utility in identifying resistance genes/QTLs to breed downy mildew resistant cultivars. Additionally, we have also discussed the challenges and the way forward to realize the full potential of molecular breeding for downy mildew resistance by integrating marker technology with conventional breeding in the post-genomics era. All this information will undoubtedly provide new insights to the researchers in formulating future breeding strategies in cauliflower to develop durable resistant cultivars against the major pathogens in general and downy mildew in particular.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
8
|
Soyer JL, Clairet C, Gay EJ, Lapalu N, Rouxel T, Stukenbrock EH, Fudal I. Genome-wide mapping of histone modifications during axenic growth in two species of Leptosphaeria maculans showing contrasting genomic organization. Chromosome Res 2021; 29:219-236. [PMID: 34018080 PMCID: PMC8159818 DOI: 10.1007/s10577-021-09658-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/16/2021] [Accepted: 03/03/2021] [Indexed: 12/25/2022]
Abstract
Leptosphaeria maculans 'brassicae' (Lmb) and Leptosphaeria maculans 'lepidii' (Lml) are closely related phytopathogenic species that exhibit a large macrosynteny but contrasting genome structure. Lmb has more than 30% of repeats clustered in large repeat-rich regions, while the Lml genome has only a small amount of evenly distributed repeats. Repeat-rich regions of Lmb are enriched in effector genes, expressed during plant infection. The distinct genome structures of Lmb and Lml provide an excellent model for comparing the organization of pathogenicity genes in relation to the chromatin landscape in two closely related phytopathogenic fungi. Here, we performed chromatin immunoprecipitation (ChIP) during axenic culture, targeting histone modifications typical for heterochromatin or euchromatin, combined with transcriptomic analysis to analyze the influence of chromatin organization on gene expression. In both species, we found that facultative heterochromatin is enriched with genes lacking functional annotation, including numerous effector and species-specific genes. Notably, orthologous genes located in H3K27me3 domains are enriched with effector genes. Compared to other fungal species, including Lml, Lmb is distinct in having large H3K9me3 domains associated with repeat-rich regions that contain numerous species-specific effector genes. Discovery of these two distinctive heterochromatin landscapes now raises questions about their involvement in the regulation of pathogenicity, the dynamics of these domains during plant infection and the selective advantage to the fungus to host effector genes in H3K9me3 or H3K27me3 domains.
Collapse
Affiliation(s)
- Jessica L Soyer
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France.
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany.
- Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| | - Colin Clairet
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Elise J Gay
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Nicolas Lapalu
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Thierry Rouxel
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Eva H Stukenbrock
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany
- Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Isabelle Fudal
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| |
Collapse
|
9
|
Raman H, Raman R, Qiu Y, Zhang Y, Batley J, Liu S. The Rlm13 Gene, a New Player of Brassica napus- Leptosphaeria maculans Interaction Maps on Chromosome C03 in Canola. FRONTIERS IN PLANT SCIENCE 2021; 12:654604. [PMID: 34054900 PMCID: PMC8150007 DOI: 10.3389/fpls.2021.654604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/25/2021] [Indexed: 05/24/2023]
Abstract
Canola exhibits an extensive genetic variation for resistance to blackleg disease, caused by the fungal pathogen Leptosphaeria maculans. Despite the identification of several Avr effectors and R (race-specific) genes, specific interactions between Avr-R genes are not yet fully understood in the Brassica napus-L. maculans pathosystem. In this study, we investigated the genetic basis of resistance in an F2 : 3 population derived from Australian canola varieties CB-Telfer (Rlm4)/ATR-Cobbler (Rlm4) using a single-spore isolate of L. maculans, PHW1223. A genetic linkage map of the CB-Telfer/ATR-Cobbler population was constructed using 7,932 genotyping-by-sequencing-based DArTseq markers and subsequently utilized for linkage and haplotype analyses. Genetic linkage between DArTseq markers and resistance to PHW1223 isolate was also validated using the B. napus 60K Illumina Infinium array. Our results revealed that a major locus for resistance, designated as Rlm13, maps on chromosome C03. To date, no R gene for resistance to blackleg has been reported on the C subgenome in B. napus. Twenty-four candidate R genes were predicted to reside within the quantitative trait locus (QTL) region. We further resequenced both the parental lines of the mapping population (CB-Telfer and ATR-Cobbler, > 80 × coverage) and identified several structural sequence variants in the form of single-nucleotide polymorphisms (SNPs), insertions/deletions (InDels), and presence/absence variations (PAVs) near Rlm13. Comparative mapping revealed that Rlm13 is located within the homoeologous A03/C03 region in ancestral karyotype block "R" of Brassicaceae. Our results provide a "target" for further understanding the Avr-Rlm13 gene interaction as well as a valuable tool for increasing resistance to blackleg in canola germplasm.
Collapse
Affiliation(s)
- Harsh Raman
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Rosy Raman
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Yu Qiu
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Yuanyuan Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Shengyi Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
10
|
Liu F, Zou Z, Peng G, Dilantha Fernando WG. Leptosphaeria maculans Isolates Reveal Their Allele Frequency in Western Canada. PLANT DISEASE 2021; 105:1440-1447. [PMID: 33100150 DOI: 10.1094/pdis-08-20-1838-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Blackleg, caused by Leptosphaeria maculans, is a major disease of canola in Canada, Australia, and Europe. For effective deployment of resistant varieties and disease management, it is crucial to understand the population structure of L. maculans. In this study, we analyzed L. maculans isolates from commercial fields in western Canada from 2014 to 2016 for the presence and frequency of avirulence (Avr) genes. A total of 1,584 isolates were examined for the presence of Avr genes AvrLm1, AvrLm2, AvrLm3, AvrLm4, AvrLm6, AvrLm7, AvrLm9, AvrLepR1, AvrLepR2, and AvrLmS via a set of differential host genotypes carrying known resistance genes and a PCR assay. Several Avr genes showed a higher frequency in the pathogen population, such as AvrLm6 and AvrLm7, which were present in >90% of isolates, whereas AvrLm3, AvrLm9, and AvrLepR2 showed frequencies of <10%. A total of 189 races (different combinations of Avr genes) were detected, with Avr-2-4-6-7-S, Avr-1-4-6-7, and Avr-2-4-6-7 as the three predominant races. When the effect of crop rotation was assessed, only a 3-year rotation showed a significantly higher frequency of AvrLm2 relative to shorter rotations. This study provides the information for producers to select effective canola varieties for blackleg management and for breeders to deploy new R genes in disease resistance breeding in western Canada.
Collapse
Affiliation(s)
- Fei Liu
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Zhongwei Zou
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Gary Peng
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan S7N 0X2, Canada
| | - W G Dilantha Fernando
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
11
|
Cantila AY, Saad NSM, Amas JC, Edwards D, Batley J. Recent Findings Unravel Genes and Genetic Factors Underlying Leptosphaeria maculans Resistance in Brassica napus and Its Relatives. Int J Mol Sci 2020; 22:E313. [PMID: 33396785 PMCID: PMC7795555 DOI: 10.3390/ijms22010313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 11/20/2022] Open
Abstract
Among the Brassica oilseeds, canola (Brassica napus) is the most economically significant globally. However, its production can be limited by blackleg disease, caused by the fungal pathogen Lepstosphaeria maculans. The deployment of resistance genes has been implemented as one of the key strategies to manage the disease. Genetic resistance against blackleg comes in two forms: qualitative resistance, controlled by a single, major resistance gene (R gene), and quantitative resistance (QR), controlled by numerous, small effect loci. R-gene-mediated blackleg resistance has been extensively studied, wherein several genomic regions harbouring R genes against L. maculans have been identified and three of these genes were cloned. These studies advance our understanding of the mechanism of R gene and pathogen avirulence (Avr) gene interaction. Notably, these studies revealed a more complex interaction than originally thought. Advances in genomics help unravel these complexities, providing insights into the genes and genetic factors towards improving blackleg resistance. Here, we aim to discuss the existing R-gene-mediated resistance, make a summary of candidate R genes against the disease, and emphasise the role of players involved in the pathogenicity and resistance. The comprehensive result will allow breeders to improve resistance to L. maculans, thereby increasing yield.
Collapse
Affiliation(s)
| | | | | | | | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia; (A.Y.C.); (N.S.M.S.); (J.C.A.); (D.E.)
| |
Collapse
|
12
|
Li J, Fokkens L, Conneely LJ, Rep M. Partial pathogenicity chromosomes in Fusarium oxysporum are sufficient to cause disease and can be horizontally transferred. Environ Microbiol 2020; 22:4985-5004. [PMID: 32452643 PMCID: PMC7818268 DOI: 10.1111/1462-2920.15095] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 01/05/2023]
Abstract
In Fusarium oxysporum f.sp. lycopersici, all effector genes reported so far - also called SIX genes - are located on a single accessory chromosome which is required for pathogenicity and can also be horizontally transferred to another strain. To narrow down the minimal region required for virulence, we selected partial pathogenicity chromosome deletion strains by fluorescence-assisted cell sorting of a strain in which the two arms of the pathogenicity chromosome were labelled with GFP and RFP respectively. By testing the virulence of these deletion mutants, we show that the complete long arm and part of the short arm of the pathogenicity chromosome are not required for virulence. In addition, we demonstrate that smaller versions of the pathogenicity chromosome can also be transferred to a non-pathogenic strain and they are sufficient to turn the non-pathogen into a pathogen. Surprisingly, originally non-pathogenic strains that had received a smaller version of the pathogenicity chromosome were much more aggressive than recipients with a complete pathogenicity chromosome. Whole genome sequencing analysis revealed that partial deletions of the pathogenicity chromosome occurred mainly close to repeats, and that spontaneous duplication of sequences in accessory regions is frequent both in chromosome deletion strains and in horizontal transfer strains.
Collapse
Affiliation(s)
- Jiming Li
- Molecular Plant PathologyUniversity of AmsterdamAmsterdam1098 XHThe Netherlands
| | - Like Fokkens
- Molecular Plant PathologyUniversity of AmsterdamAmsterdam1098 XHThe Netherlands
| | - Lee James Conneely
- Molecular Plant PathologyUniversity of AmsterdamAmsterdam1098 XHThe Netherlands
| | - Martijn Rep
- Molecular Plant PathologyUniversity of AmsterdamAmsterdam1098 XHThe Netherlands
| |
Collapse
|
13
|
Development of a specific marker for detection of a functional AvrLm9 allele and validating the interaction between AvrLm7 and AvrLm9 in Leptosphaeria maculans. Mol Biol Rep 2020; 47:7115-7123. [PMID: 32897523 DOI: 10.1007/s11033-020-05779-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
Blackleg, which is caused by the fungus Leptosphaeria maculans (L. maculans), is a major disease of canola in western Canada and worldwide. Long-term use of one source of resistance could cause the breakdown of its effectiveness. Therefore, appropriate use of R genes is very important, and knowledge about the distribution of avirulence genes is a prerequisite for effectively deploying resistance. Of the 14 avirulence genes identified in L. maculans, AvrLm5 and AvrLm9 were recognized as the two alleles of the same gene based on two single nucleotide polymorphisms, C85T and G164A/C. In this study, a specific marker was developed to identify AvrLm5 and AvrLm9 based on two single nucleotide polymorphisms, C85T and G164A/C, which are responsible for the function of AvrLm9. The specific marker can be used to discriminate the AvrLm9 from avrLm9 accurately in L. maculans isolates, which is consistent with inoculation tests in isolates without AvrLm4-7. This specific marker was used to screen 1229 isolates collected from fields in the years 2014 through 2016 in Manitoba. From 68 to 84% of the isolates were found to contain the AvrLm9 allele; while 4-7% of them were avirulent on the variety Goéland with Rlm9 loci. Furthermore, no isolates having both AvrLm9 and AvrLm7 were detected using a cotyledon test, while 67% to 84% of isolates contained both avirulence genes via PCR detection, implying suppression of AvrLm9 by AvrLm7. In addition, avirulence gene profiles of the other 10 avirulence alleles were examined with the 1229 isolates using cotyledon tests or PCR amplifications. Taken together, this research enables the fast identification of AvrLm5/9, provides the Avr genes' landscape of western Canada and elaborates the relationship between AvrLm9 and AvrLm7 using isolates from grower fields.
Collapse
|
14
|
Li J, Cornelissen B, Rep M. Host-specificity factors in plant pathogenic fungi. Fungal Genet Biol 2020; 144:103447. [PMID: 32827756 DOI: 10.1016/j.fgb.2020.103447] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 01/18/2023]
Abstract
Fortunately, no fungus can cause disease on all plant species, and although some plant-pathogenic fungi have quite a broad host range, most are highly limited in the range of plant species or even cultivars that they cause disease in. The mechanisms of host specificity have been extensively studied in many plant-pathogenic fungi, especially in fungal pathogens causing disease on economically important crops. Specifically, genes involved in host specificity have been identified during the last few decades. In this overview, we describe and discuss these host-specificity genes. These genes encode avirulence (Avr) proteins, proteinaceous host-specific toxins or secondary metabolites. We discuss the genomic context of these genes, their expression, polymorphism, horizontal transfer and involvement in pathogenesis.
Collapse
Affiliation(s)
- Jiming Li
- Molecular Plant Pathology, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Ben Cornelissen
- Molecular Plant Pathology, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Martijn Rep
- Molecular Plant Pathology, University of Amsterdam, Amsterdam 1098 XH, the Netherlands.
| |
Collapse
|
15
|
Zou Z, Liu F, Selin C, Fernando WGD. Generation and Characterization of a Virulent Leptosphaeria maculans Isolate Carrying a Mutated AvrLm7 Gene Using the CRISPR/Cas9 System. Front Microbiol 2020; 11:1969. [PMID: 32849487 PMCID: PMC7432424 DOI: 10.3389/fmicb.2020.01969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/24/2020] [Indexed: 11/30/2022] Open
Abstract
Blackleg, caused by the fungal pathogen Leptosphaeria maculans, is the most important disease affecting canola (Brassica napus) crops worldwide. We employed the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system to generate the mutant isolate umavr7 from a point mutation of the AvrLm7 coding region in a L. maculans isolate (UMAvr7). Reverse transcription PCR and transcriptome data confirmed that the AvrLm7 gene was knocked out in the mutant isolate. Pathogenicity tests indicated that umavr7 can cause large lesions on a set of Brassica differential genotypes that express different resistance (R) genes. Comparative pathogenicity tests between UMAvr7 (wild type) and umavr7 on the corresponding B. napus genotype 01-23-2-1 (with Rlm7) showed that umavr7 is a mutant isolate, producing large gray/green lesions on cotyledons. The pathogenicity of the mutant isolate was shifted from avirulent to virulent on the B. napus Rlm7 genotype. Therefore, this mutant is virulence on the identified resistant genes to blackleg disease in B. napus genotypes. Superoxide accumulated differently in cotyledons in response to infection with UMAvr7 and umavr7, especially in resistant B. napus genotype 01-23-2-1. Resistance/susceptibility was further evaluated on 123 B. napus genotypes with the mutant isolate, umavr7. Only 6 of the 123 genotypes showed resistance to umavr7. The identification of these six resistant B. napus genotypes will lead to further studies on the development of blackleg disease resistance through breeding and the identification of novel R genes.
Collapse
Affiliation(s)
- Zhongwei Zou
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Fei Liu
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Carrie Selin
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | | |
Collapse
|
16
|
Biotechnological potential of engineering pathogen effector proteins for use in plant disease management. Biotechnol Adv 2019; 37:107387. [DOI: 10.1016/j.biotechadv.2019.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 11/19/2022]
|
17
|
Diaz C, Cevallos F, Damicone J. Characterization of the Race Structure of Leptosphaeria maculans Causing Blackleg of Winter Canola in Oklahoma and Kansas. PLANT DISEASE 2019; 103:2353-2358. [PMID: 31313640 DOI: 10.1094/pdis-01-19-0181-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Blackleg, caused by the fungus Leptosphaeria maculans, is a widespread disease of winter canola (Brassica napus) in Oklahoma and Kansas. Deployment of genetic resistance is the primary strategy for managing blackleg. Resistance genes (Rlm) in canola interact with avirulence genes in the fungus (AvrLm) in a gene-for-gene manner. Little is known about the diversity and frequency of avirulence genes and the race structure in the region. Isolates of Leptosphaeria spp. were collected from diseased leaves in nine counties in Oklahoma and one county in Kansas from 2009 to 2013. Based on pathogenicity and PCR amplification of mating type and species-specific internal transcribed spacer loci, most isolates (n = 90) were L. maculans. The presence of avirulence genes was evaluated using phenotypic interactions on cotyledons of differential cultivars with Rlm1, Rlm2, Rlm3, and Rlm4 and amplification of AvrLm1, AvrLm4-7, and AvrLm6 by PCR. The avirulence alleles AvrLm6 and AvrLm7 were present in the entire L. maculans population. AvrLm1 was found in 34% of the population, AvrLm2 in 4%, and AvrLm4 in only 1%. A total of five races, defined as combinations of avirulence alleles, were identified that included AvrLm1-2-6-7, AvrLm2-6-7, AvrLm4-6-7, AvrLm1-6-7, and AvrLm6-7. Races virulent on the most Rlm genes, AvrLm1-6-7 at 32% and AvrLm6-7 at 62%, were predominant. Defining the avirulence allele frequency and race structure of L. maculans should be useful for the identification and development of resistant cultivars and hybrids for blackleg management in the region. The results suggest that Rlm6 and Rlm7 would be effective, although their deployment should be integrated with quantitative resistance and cultural practices, such as crop rotation, that limit selection pressure on Rlm genes.
Collapse
Affiliation(s)
- Claudia Diaz
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078
| | - Felipe Cevallos
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078
| | - John Damicone
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078
| |
Collapse
|
18
|
Haddadi P, Larkan NJ, Borhan MH. Dissecting R gene and host genetic background effect on the Brassica napus defense response to Leptosphaeria maculans. Sci Rep 2019; 9:6947. [PMID: 31061421 PMCID: PMC6502879 DOI: 10.1038/s41598-019-43419-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/01/2019] [Indexed: 12/17/2022] Open
Abstract
While our understanding of the genetics underlying the Brassica-Leptosphaeria pathosystem has advanced greatly in the last decade, differences in molecular responses due to interaction between resistance genes and host genetic background has not been studied. We applied RNAseq technology to monitor the transcriptome profiles of Brassica napus (Bn) lines carrying one of four blackleg R genes (Rlm2, Rlm3, LepR1 & LepR2) in Topas or Westar background, during the early stages of infection by a Leptosphaeria maculans (Lm) isolate carrying the corresponding Avr genes. We observed upregulation of host genes involved in hormone signalling, cell wall thickening, response to chitin and glucosinolate production in all R gene lines at 3 day after inoculation (dai) albeit having higher level of expression in LepR1 and Rlm2 than in Rlm3 and LepR2 lines. Bn-SOBIR1 (Suppressor Of BIR1-1), a receptor like kinase (RLK) that forms complex receptor like proteins (RLPs) was highly expressed in LepR1 and Rlm2 at 3 dai. In contrast Bn-SOBIR1 induction was low in Rlm3 line, which could indicate that Rlm3 may function independent of SOBIR1. Expression of Salicylic acid (SA) related defense was enhanced in LepR1 and Rlm2 at 3 dai. In contrast to SA, expression of Bn genes with homology to PDF1.2, a jasmonic acid (JA) pathway marker, were increased in all Rlm and LepR lines at 6 and 9 dai. Effect of host genetic background on induction of defense, was determined by comparison of LepR1 and LepR2 in Topas vs Westar genotype (i.e. T-LepR1 vs W-LepR1 and T-LepR2 vs W-LepR2). In both cases (regardless of R gene) overall number of defense related genes at the earliest time point (3 dai) was higher in Tops compared to Westar. SA and JA markers genes such as PR1 and PDF1.2 were more induced in Topas compared to Westar introgression lines at this time point. Even in the absence of any R gene, effect of Topas genotype in enhanced defense, was also evident by the induction of PDF1.2 that started at a low level at 3 dai and peaked at 6 and 9 dai, while no induction in Westar genotype was observed at any of these time points. Overall, variation in time and intensity of expression of genes related to defense, was clearly dependent on both R gene and the host genotype.
Collapse
Affiliation(s)
- Parham Haddadi
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | | | - M Hossein Borhan
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.
| |
Collapse
|
19
|
Ghanbarnia K, Ma L, Larkan NJ, Haddadi P, Fernando WGD, Borhan MH. Leptosphaeria maculans AvrLm9: a new player in the game of hide and seek with AvrLm4-7. MOLECULAR PLANT PATHOLOGY 2018; 19:1754-1764. [PMID: 29330918 PMCID: PMC6638032 DOI: 10.1111/mpp.12658] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 05/14/2023]
Abstract
Blackleg disease of Brassica napus caused by Leptosphaeria maculans (Lm) is largely controlled by the deployment of race-specific resistance (R) genes. However, selection pressure exerted by R genes causes Lm to adapt and give rise to new virulent strains through mutation and deletion of effector genes. Therefore, a knowledge of effector gene function is necessary for the effective management of the disease. Here, we report the cloning of Lm effector AvrLm9 which is recognized by the resistance gene Rlm9 in B. napus cultivar Goéland. AvrLm9 was mapped to scaffold 7 of the Lm genome, co-segregating with the previously reported AvrLm5 (previously known as AvrLmJ1). Comparison of AvrLm5 alleles amongst the 37 re-sequenced Lm isolates and transgenic complementation identified a single point mutation correlating with the AvrLm9 phenotype. Therefore, we renamed this gene as AvrLm5-9 to reflect the dual specificity of this locus. Avrlm5-9 transgenic isolates were avirulent when inoculated on the B. napus cultivar Goéland. The expression of AvrLm5-9 during infection was monitored by RNA sequencing. The recognition of AvrLm5-9 by Rlm9 is masked in the presence of AvrLm4-7, another Lm effector. AvrLm5-9 and AvrLm4-7 do not interact, and AvrLm5-9 is expressed in the presence of AvrLm4-7. AvrLm5-9 is the second Lm effector for which host recognition is masked by AvrLm4-7. An understanding of this complex interaction will provide new opportunities for the engineering of broad-spectrum recognition.
Collapse
Affiliation(s)
- Kaveh Ghanbarnia
- Saskatoon Research and Development Centre, Agriculture and Agri‐Food CanadaSaskatoonSKCanada S7N 0X2
- Department of Plant ScienceUniversity of ManitobaWinnipegMBCanada R3T 2N2
| | - Lisong Ma
- Saskatoon Research and Development Centre, Agriculture and Agri‐Food CanadaSaskatoonSKCanada S7N 0X2
| | - Nicholas J. Larkan
- Saskatoon Research and Development Centre, Agriculture and Agri‐Food CanadaSaskatoonSKCanada S7N 0X2
- Armatus Genetics Inc.SaskatoonSKCanada S7J 4M2
| | - Parham Haddadi
- Saskatoon Research and Development Centre, Agriculture and Agri‐Food CanadaSaskatoonSKCanada S7N 0X2
| | | | - Mohammad Hossein Borhan
- Saskatoon Research and Development Centre, Agriculture and Agri‐Food CanadaSaskatoonSKCanada S7N 0X2
| |
Collapse
|
20
|
Neik TX, Barbetti MJ, Batley J. Current Status and Challenges in Identifying Disease Resistance Genes in Brassica napus. FRONTIERS IN PLANT SCIENCE 2017; 8:1788. [PMID: 29163558 PMCID: PMC5681527 DOI: 10.3389/fpls.2017.01788] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/02/2017] [Indexed: 05/18/2023]
Abstract
Brassica napus is an economically important crop across different continents including temperate and subtropical regions in Europe, Canada, South Asia, China and Australia. Its widespread cultivation also brings setbacks as it plays host to fungal, oomycete and chytrid pathogens that can lead to serious yield loss. For sustainable crop production, identification of resistance (R) genes in B. napus has become of critical importance. In this review, we discuss four key pathogens affecting Brassica crops: Clubroot (Plasmodiophora brassicae), Blackleg (Leptosphaeria maculans and L. biglobosa), Sclerotinia Stem Rot (Sclerotinia sclerotiorum), and Downy Mildew (Hyaloperonospora parasitica). We first review current studies covering prevalence of these pathogens on Brassica crops and highlight the R genes and QTL that have been identified from Brassica species against these pathogens. Insights into the relationships between the pathogen and its Brassica host, the unique host resistance mechanisms and how these affect resistance outcomes is also presented. We discuss challenges in identification and deployment of R genes in B. napus in relation to highly specific genetic interactions between host subpopulations and pathogen pathotypes and emphasize the need for common or shared techniques and research materials or tighter collaboration between researchers to reconcile the inconsistencies in the research outcomes. Using current genomics tools, we provide examples of how characterization and cloning of R genes in B. napus can be carried out more effectively. Lastly, we put forward strategies to breed resistant cultivars through introgressions supported by genomic approaches and suggest prospects that can be implemented in the future for a better, pathogen-resistant B. napus.
Collapse
Affiliation(s)
- Ting Xiang Neik
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Martin J. Barbetti
- School of Agriculture and Environment and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|