1
|
Yan Y, Tang X, Zhu Z, Yin K, Zhang Y, Xu Z, Xu Q, Zou L, Chen G. Two TAL effectors of Xanthomonas citri promote pustule formation by directly repressing the expression of GRAS transcription factor in citrus. MOLECULAR HORTICULTURE 2025; 5:30. [PMID: 40083016 PMCID: PMC11907795 DOI: 10.1186/s43897-024-00131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/02/2024] [Indexed: 03/16/2025]
Abstract
Citrus bacterial canker (CBC), caused by Xanthomonas citri subsp. citri (Xcc), poses a significant threat to the citrus industry. Xcc employs the transcription activator-like effector (TALE) PthA4 to target the major susceptibility (S) gene CsLOB1 in citrus, promoting host susceptibility to bacterial canker. However, the contribution of other Xcc TALEs, aside from PthA4, to virulence remains underexplored. In this study, we characterized two PthA1 variants, designated PthA5 and PthA6, which facilitate Xcc infection in susceptible citrus species by promoting the formation of hypertrophy and hyperplasia symptoms. Both PthA5 and PthA6 bind directly to effector-binding elements (EBEs) in the promoter of CsGRAS9, suppressing its expression. CsGRAS9 negatively regulates Xcc growth in citrus and contributes to CBC resistance. Notably, natural variations in the EBEs of the FhGRAS9 promoter, a homolog of CsGRAS9 in Hong Kong kumquat, prevent Xcc from affecting FhGRAS9 expression. Using the PTG/Cas9 system, we generated proCsGRAS9-edited sweet orange lines #18-2 and #23, which contain 86-bp and 62-bp deletions in the EBE regions of the CsGRAS9 promoter. These mutant lines showed enhanced CsGRAS9 expression and increased resistance to CBC during Xcc infection. Several GA-related genes and CsTAC1, regulated by CsGRAS9, were also identified. This is the first report that TALEs act as repressors of a resistance gene to confer host susceptibility.
Collapse
Affiliation(s)
- Yichao Yan
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China
| | - Xiaomei Tang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Anhui Engineering Laboratory for Horticultural Crop Breeding, College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Zhongfeng Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China
| | - Ke Yin
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China
| | - Yikun Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China
| | - Zhengyin Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lifang Zou
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China.
| | - Gongyou Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, 200240, China
| |
Collapse
|
2
|
Boyer C, Lefeuvre P, Zombre C, Rieux A, Wonni I, Gagnevin L, Pruvost O. New, Complete Circularized Genomes of Xanthomonas citri pv. mangiferaeindicae Produced from Short- and Long-Read Co-Assembly Shed Light on Strains that Emerged a Decade Ago on Mango and Cashew in Burkina Faso. PHYTOPATHOLOGY 2025; 115:14-19. [PMID: 39387826 DOI: 10.1094/phyto-08-24-0267-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
We report high-quality genomes of three strains of Xanthomonas citri pv. mangiferaeindicae, the causal agent of mango bacterial canker disease, including the pathotype strain of this pathovar and two strains from Burkina Faso that emerged a decade ago. These strains hosted two to three plasmids of sizes ranging from 19 to 86 kb. Genome mining revealed the presence of several secretion systems and effectors involved in the virulence of xanthomonads with (i) a type I secretion system of the hlyDB group; (ii) xps and xcs type II secretion systems; (iii) a type III secretion system with several type III effectors, including transcription activator-like effectors; (iv) several type IV secretion systems associated with plasmid or integrative conjugative elements mobility; (v) three type V secretion system subclasses (Va, Vb, and Vc); and (vi) a single i3* type VI secretion system. The two strains isolated in Burkina Faso from mango (Mangifera indica) and cashew (Anacardium occidentale) differed by only 14 single-nucleotide polymorphisms and shared identical secretion systems and type III effector repertoires. Several transcription activator-like effectors were identified in each strain, some of which may target plant genes previously found implicated in disease development in other xanthomonad-associated pathosystems. These results support the emergence in Burkina Faso a decade ago of very closely related strains that became epidemic on mango and cashew (i.e., two distinct host genera of a same plant family). These new genomic resources will contribute to better understanding the biology and evolution of this agriculturally major crop pathogen.
Collapse
Affiliation(s)
- Claudine Boyer
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France
| | | | - Cyrille Zombre
- INERA, Station de Farako-Bâ, 01 BP 910 Bobo-Dioulasso 01, Burkina Faso
| | - Adrien Rieux
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France
| | - Issa Wonni
- INERA, Station de Farako-Bâ, 01 BP 910 Bobo-Dioulasso 01, Burkina Faso
| | - Lionel Gagnevin
- CIRAD, UMR PHIM, F-34032 Montpellier, France
- PHIM Plant Health Institute, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | | |
Collapse
|
3
|
Timilsina S, Kaur A, Sharma A, Ramamoorthy S, Vallad GE, Wang N, White FF, Potnis N, Goss EM, Jones JB. Xanthomonas as a Model System for Studying Pathogen Emergence and Evolution. PHYTOPATHOLOGY 2024; 114:1433-1446. [PMID: 38648116 DOI: 10.1094/phyto-03-24-0084-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In this review, we highlight studies in which whole-genome sequencing, comparative genomics, and population genomics have provided unprecedented insights into past and ongoing pathogen evolution. These include new understandings of the adaptive evolution of secretion systems and their effectors. We focus on Xanthomonas pathosystems that have seen intensive study and improved our understanding of pathogen emergence and evolution, particularly in the context of host specialization: citrus canker, bacterial blight of rice, and bacterial spot of tomato and pepper. Across pathosystems, pathogens appear to follow a pattern of bursts of evolution and diversification that impact host adaptation. There remains a need for studies on the mechanisms of host range evolution and genetic exchange among closely related but differentially host-specialized species and to start moving beyond the study of specific strain and host cultivar pairwise interactions to thinking about these pathosystems in a community context.
Collapse
Affiliation(s)
- Sujan Timilsina
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Amandeep Kaur
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Anuj Sharma
- Department of Horticultural Sciences, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | | | - Gary E Vallad
- Department of Plant Pathology, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598
| | - Nian Wang
- Department of Microbiology and Cell Science, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Frank F White
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Erica M Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| |
Collapse
|
4
|
Diallo A, Wonni I, Sicard A, Blondin L, Gagnevin L, Vernière C, Szurek B, Hutin M. Genetic Structure and TALome Analysis Highlight a High Level of Diversity in Burkinabe Xanthomonas Oryzae pv. oryzae Populations. RICE (NEW YORK, N.Y.) 2023; 16:33. [PMID: 37523017 PMCID: PMC10390441 DOI: 10.1186/s12284-023-00648-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023]
Abstract
Bacterial Leaf Blight of rice (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major threat for food security in many rice growing countries including Burkina Faso, where the disease was first reported in the 1980's. In line with the intensification of rice cultivation in West-Africa, BLB incidence has been rising for the last 15 years. West-African strains of Xoo differ from their Asian counterparts as they (i) are genetically distant, (ii) belong to new races and, (iii) contain reduced repertoires of Transcription Activator Like (TAL) effector genes. In order to investigate the evolutionary dynamics of Xoo populations in Burkina Faso, 177 strains were collected from 2003 to 2018 in three regions where BLB is occurring. Multilocus VNTR Analysis (MLVA-14) targeting 10 polymorphic loci discriminated 24 haplotypes and showed that Xoo populations were structured according to their geographical localization and year of collection. Considering their major role in Xoo pathogenicity, we assessed the TAL effector repertoires of the 177 strains upon RFLP-based profiling. Surprisingly, an important diversity was revealed with up to eight different RFLP patterns. Finally, comparing neutral vs. tal effector gene diversity allowed to suggest scenarios underlying the evolutionary dynamics of Xoo populations in Burkina Faso, which is key to rationally guide the deployment of durably resistant rice varieties against BLB in the country.
Collapse
Affiliation(s)
- A Diallo
- INERA, Institut de l'Environnement et de Recherches Agricoles du Burkina Faso, Laboratoire de Phytopathologie, Bobo-Dioulasso, Burkina Faso
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - I Wonni
- INERA, Institut de l'Environnement et de Recherches Agricoles du Burkina Faso, Laboratoire de Phytopathologie, Bobo-Dioulasso, Burkina Faso.
| | - A Sicard
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - L Blondin
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - L Gagnevin
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - C Vernière
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - B Szurek
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France.
| | - M Hutin
- PHIM Plant Health Institute, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
5
|
Campos PE, Pruvost O, Boyer K, Chiroleu F, Cao TT, Gaudeul M, Baider C, Utteridge TMA, Becker N, Rieux A, Gagnevin L. Herbarium specimen sequencing allows precise dating of Xanthomonas citri pv. citri diversification history. Nat Commun 2023; 14:4306. [PMID: 37474518 PMCID: PMC10359311 DOI: 10.1038/s41467-023-39950-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Herbarium collections are an important source of dated, identified and preserved DNA, whose use in comparative genomics and phylogeography can shed light on the emergence and evolutionary history of plant pathogens. Here, we reconstruct 13 historical genomes of the bacterial crop pathogen Xanthomonas citri pv. citri (Xci) from infected Citrus herbarium specimens. Following authentication based on ancient DNA damage patterns, we compare them with a large set of modern genomes to estimate their phylogenetic relationships, pathogenicity-associated gene content and several evolutionary parameters. Our results indicate that Xci originated in Southern Asia ~11,500 years ago (perhaps in relation to Neolithic climate change and the development of agriculture) and diversified during the beginning of the 13th century, after Citrus diversification and before spreading to the rest of the world (probably via human-driven expansion of citriculture through early East-West trade and colonization).
Collapse
Affiliation(s)
- Paola E Campos
- CIRAD, UMR PVBMT, F-97410, St Pierre, La Réunion, France
- Institut de Systématique, Évolution, Biodiversité (ISyEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005, Paris, France
| | | | - Karine Boyer
- CIRAD, UMR PVBMT, F-97410, St Pierre, La Réunion, France
| | | | - Thuy Trang Cao
- CIRAD, UMR PVBMT, F-97410, St Pierre, La Réunion, France
| | - Myriam Gaudeul
- Institut de Systématique, Évolution, Biodiversité (ISyEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005, Paris, France
- Herbier national, Muséum national d'Histoire naturelle, CP39, 57 rue Cuvier, 75005, Paris, France
| | - Cláudia Baider
- The Mauritius Herbarium, Agricultural Services, Ministry of Agro-Industry and Food Security, R.E. Vaughan Building (MSIRI Compound), Reduit, 80835, Mauritius
| | | | - Nathalie Becker
- Institut de Systématique, Évolution, Biodiversité (ISyEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005, Paris, France
| | - Adrien Rieux
- CIRAD, UMR PVBMT, F-97410, St Pierre, La Réunion, France.
| | - Lionel Gagnevin
- PHIM Plant Health Institute, Univ. Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France.
- CIRAD, UMR PHIM, Montpellier, France.
| |
Collapse
|
6
|
Shafique MS, Guo W, Chen X, Zhao K, Liu Y, Wang C, Ji Z. Genome resource of Xanthomonas oryzae pv. oryzae Chinese strain NE-8 causing bacterial blight of rice. Funct Integr Genomics 2023; 23:189. [PMID: 37246198 DOI: 10.1007/s10142-023-01109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Affiliation(s)
- Muhammad Sohaib Shafique
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China
| | - Wei Guo
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xifeng Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China
| | - Yapei Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China
| | - Chunlian Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572000, China.
| | - Zhiyuan Ji
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081, China.
| |
Collapse
|
7
|
Zárate-Chaves CA, Audran C, Medina Culma CA, Escalon A, Javegny S, Gagnevin L, Thomas E, Pimparé LL, López CE, Jacobs JM, Noël LD, Koebnik R, Bernal AJ, Szurek B. CRISPRi in Xanthomonas demonstrates functional convergence of transcription activator-like effectors in two divergent pathogens. THE NEW PHYTOLOGIST 2023; 238:1593-1604. [PMID: 36764921 DOI: 10.1111/nph.18808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Functional analysis of large gene families in plant pathogens can be cumbersome using classical insertional mutagenesis. Additionally, Cas9 toxicity has limited the application of CRISPR-Cas9 for directed mutagenesis in bacteria. Here, we successfully applied a CRISPR interference strategy to investigate the cryptic role of the transcription activator-like effector (tale) multigene family in several plant-pathogenic Xanthomonas bacterial species, owing to their contribution to pathogen virulence. Single guide RNAs (sgRNAs) designed against Xanthomonas phaseoli pv manihotis tale conserved gene sequences efficiently silenced expression of all tales, with concomitant decrease in virulence and TALE-induced host gene expression. The system is readily translatable to other Xanthomonas species infecting rice, citrus, Brassica, and cassava, silencing up to 16 tales in a given strain using a single sgRNA. Complementation with plasmid-borne designer tales lacking the sgRNA-targeted sequence restored molecular and virulence phenotypes in all pathosystems. Our results evidenced that X. campestris pv campestris CN08 tales are relevant for symptom development in cauliflower. They also show that the MeSWEET10a sugar transporter is surprisingly targeted by the nonvascular cassava pathogen X. cassavae, highlighting a new example of TALE functional convergence between phylogenetically distant Xanthomonas. Overall, this novel technology provides a platform for discovery and rapid functional understanding of highly conserved gene families.
Collapse
Affiliation(s)
| | - Corinne Audran
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, 31326, France
| | - César Augusto Medina Culma
- Laboratorio de interacciones moleculares de microorganismos agrícolas (LIMMA), Universidad de los Andes, Bogotá, 111711, Colombia
| | - Aline Escalon
- CIRAD, UMR PVBMT, Saint-Pierre, 97410, La Réunion, France
| | | | - Lionel Gagnevin
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
| | - Emilie Thomas
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
| | - Léa-Lou Pimparé
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
| | - Camilo E López
- Manihot Biotec, Departamento de Biología, Universidad Nacional de Colombia, Bogotá, 111321, Colombia
| | - Jonathan M Jacobs
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, 43210-1358, USA
| | - Laurent D Noël
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, 31326, France
| | - Ralf Koebnik
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
| | - Adriana Jimena Bernal
- Laboratorio de interacciones moleculares de microorganismos agrícolas (LIMMA), Universidad de los Andes, Bogotá, 111711, Colombia
| | - Boris Szurek
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
| |
Collapse
|
8
|
Teper D, White FF, Wang N. The Dynamic Transcription Activator-Like Effector Family of Xanthomonas. PHYTOPATHOLOGY 2023; 113:651-666. [PMID: 36449529 DOI: 10.1094/phyto-10-22-0365-kd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transcription activator-like effectors (TALEs) are bacterial proteins that are injected into the eukaryotic nucleus to act as transcriptional factors and function as key virulence factors of the phytopathogen Xanthomonas. TALEs are translocated into plant host cells via the type III secretion system and induce the expression of host susceptibility (S) genes to facilitate disease. The unique modular DNA binding domains of TALEs comprise an array of nearly identical direct repeats that enable binding to DNA targets based on the recognition of a single nucleotide target per repeat. The very nature of TALE structure and function permits the proliferation of TALE genes and evolutionary adaptations in the host to counter TALE function, making the TALE-host interaction the most dynamic story in effector biology. The TALE genes appear to be a relatively young effector gene family, with a presence in all virulent members of some species and absent in others. Genome sequencing has revealed many TALE genes throughout the xanthomonads, and relatively few have been associated with a cognate S gene. Several species, including Xanthomonas oryzae pv. oryzae and X. citri pv. citri, have near absolute requirement for TALE gene function, while the genes appear to be just now entering the disease interactions with new fitness contributions to the pathogens of tomato and pepper among others. Deciphering the simple and effective DNA binding mechanism also has led to the development of DNA manipulation tools in fields of gene editing and transgenic research. In the three decades since their discovery, TALE research remains at the forefront of the study of bacterial evolution, plant-pathogen interactions, and synthetic biology. We also discuss critical questions that remain to be addressed regarding TALEs.
Collapse
Affiliation(s)
- Doron Teper
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Frank F White
- Department of Plant Pathology, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Gainesville, FL, U.S.A
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, U.S.A
| |
Collapse
|
9
|
Negi C, Vasistha NK, Singh D, Vyas P, Dhaliwal HS. Application of CRISPR-Mediated Gene Editing for Crop Improvement. Mol Biotechnol 2022; 64:1198-1217. [PMID: 35672603 DOI: 10.1007/s12033-022-00507-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
Plant gene editing has become an important molecular tool to revolutionize modern breeding of crops. Over the past years, remarkable advancement has been made in developing robust and efficient editing methods for plants. Despite a variety of available genome editing methods, the discovery of most recent system of clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins (CRISPR-Cas) has been one of the biggest advancement in this path, with being the most efficient approach for genome manipulation. Until recently, genetic manipulations were confined to methods, like Agrobacterium-mediated transformations, zinc-finger nucleases, and TAL effector nucleases. However this technology supersedes all other methods for genetic modification. This RNA-guided CRISPR-Cas system is being rapidly developed with enhanced functionalities for better use and greater possibilities in biological research. In this review, we discuss and sum up the application of this simple yet powerful tool of CRISPR-Cas system for crop improvement with recent advancement in this technology.
Collapse
Affiliation(s)
- Chandranandani Negi
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, India
| | - Neeraj Kumar Vasistha
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, India
| | | | - Pritesh Vyas
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, India.
| | - H S Dhaliwal
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, India
| |
Collapse
|
10
|
Lachaux M, Thomas E, Bogdanove AJ, Szurek B, Hutin M. TAL Effectors with Avirulence Activity in African Strains of Xanthomonas oryzae pv. oryzae. RICE (NEW YORK, N.Y.) 2022; 15:9. [PMID: 35119567 PMCID: PMC8816977 DOI: 10.1186/s12284-022-00553-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight, a devastating disease of rice. Among the type-3 effectors secreted by Xoo to support pathogen virulence, the Transcription Activator-Like Effector (TALE) family plays a critical role. Some TALEs are major virulence factors that activate susceptibility (S) genes, overexpression of which contributes to disease development. Host incompatibility can result from TALE-induced expression of so-called executor (E) genes leading to a strong and rapid resistance response that blocks disease development. In that context, the TALE functions as an avirulence (Avr) factor. To date no such avirulence factors have been identified in African strains of Xoo. RESULTS With respect to the importance of TALEs in the Rice-Xoo pathosystem, we aimed at identifying those that may act as Avr factor within African Xoo. We screened 86 rice accessions, and identified 12 that were resistant to two African strains while being susceptible to a well-studied Asian strain. In a gain of function approach based on the introduction of each of the nine tal genes of the avirulent African strain MAI1 into the virulent Asian strain PXO99A, four were found to trigger resistance on specific rice accessions. Loss-of-function mutational analysis further demonstrated the avr activity of two of them, talD and talI, on the rice varieties IR64 and CT13432 respectively. Further analysis of TalI demonstrated the requirement of its activation domain for triggering resistance in CT13432. Resistance in 9 of the 12 rice accessions that were resistant against African Xoo specifically, including CT13432, could be suppressed or largely suppressed by trans-expression of the truncTALE tal2h, similarly to resistance conferred by the Xa1 gene which recognizes TALEs generally independently of their activation domain. CONCLUSION We identified and characterized TalD and TalI as two African Xoo TALEs with avirulence activity on IR64 and CT13432 respectively. Resistance of CT13432 against African Xoo results from the combination of two mechanisms, one relying on the TalI-mediated induction of an unknown executor gene and the other on an Xa1-like gene or allele.
Collapse
Affiliation(s)
- Marlène Lachaux
- Plant Health Institute of Montpellier, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Emilie Thomas
- Plant Health Institute of Montpellier, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Adam J Bogdanove
- Plant Pathology and Plant Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Boris Szurek
- Plant Health Institute of Montpellier, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France.
| | - Mathilde Hutin
- Plant Health Institute of Montpellier, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
11
|
Becker S, Mücke S, Grau J, Boch J. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2387-2400. [PMID: 35150566 PMCID: PMC8887545 DOI: 10.1093/nar/gkac098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 11/25/2022] Open
Abstract
Transcription activator-like effectors (TALEs) are bacterial proteins with a programmable DNA-binding domain, which turned them into exceptional tools for biotechnology. TALEs contain a central array of consecutive 34 amino acid long repeats to bind DNA in a simple one-repeat-to-one-nucleotide manner. However, a few naturally occurring aberrant repeat variants break this strict binding mechanism, allowing for the recognition of an additional sequence with a −1 nucleotide frameshift. The limits and implications of this extended TALE binding mode are largely unexplored. Here, we analyse the complete diversity of natural and artificially engineered aberrant repeats for their impact on the DNA binding of TALEs. Surprisingly, TALEs with several aberrant repeats can loop out multiple repeats simultaneously without losing DNA-binding capacity. We also characterized members of the only natural TALE class harbouring two aberrant repeats and confirmed that their target is the major virulence factor OsSWEET13 from rice. In an aberrant TALE repeat, the position and nature of the amino acid sequence strongly influence its function. We explored the tolerance of TALE repeats towards alterations further and demonstrate that inserts as large as GFP can be tolerated without disrupting DNA binding. This illustrates the extraordinary DNA-binding capacity of TALEs and opens new uses in biotechnology.
Collapse
Affiliation(s)
- Sebastian Becker
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Stefanie Mücke
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Jan Grau
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Jens Boch
- To whom correspondence should be addressed. Tel: +49 511 762 4082; Fax: +49 511 762 4088;
| |
Collapse
|
12
|
TAL Effector Repertoires of Strains of Xanthomonas phaseoli pv. manihotis in Commercial Cassava Crops Reveal High Diversity at the Country Scale. Microorganisms 2021; 9:microorganisms9020315. [PMID: 33557009 PMCID: PMC7913752 DOI: 10.3390/microorganisms9020315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Transcription activator-like effectors (TALEs) play a significant role for pathogenesis in several xanthomonad pathosystems. Xanthomonas phaseoli pv. manihotis (Xpm), the causal agent of Cassava Bacterial Blight (CBB), uses TALEs to manipulate host metabolism. Information about Xpm TALEs and their target genes in cassava is scarce, but has been growing in the last few years. We aimed to characterize the TALE diversity in Colombian strains of Xpm and to screen for TALE-targeted gene candidates. We selected eighteen Xpm strains based on neutral genetic diversity at a country scale to depict the TALE diversity among isolates from cassava productive regions. RFLP analysis showed that Xpm strains carry TALomes with a bimodal size distribution, and affinity-based clustering of the sequenced TALEs condensed this variability mainly into five clusters. We report on the identification of 13 novel variants of TALEs in Xpm, as well as a functional variant with 22 repeats that activates the susceptibility gene MeSWEET10a, a previously reported target of TAL20Xam668. Transcriptomics and EBE prediction analyses resulted in the selection of several TALE-targeted candidate genes and two potential cases of functional convergence. This study provides new bases for assessing novel potential TALE targets in the Xpm–cassava interaction, which could be important factors that define the fate of the infection.
Collapse
|
13
|
Teper D, Wang N. Consequences of adaptation of TAL effectors on host susceptibility to Xanthomonas. PLoS Genet 2021; 17:e1009310. [PMID: 33465093 PMCID: PMC7845958 DOI: 10.1371/journal.pgen.1009310] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/29/2021] [Accepted: 12/11/2020] [Indexed: 12/03/2022] Open
Abstract
Transcription activator-like effectors (TALEs) are virulence factors of Xanthomonas that induce the expression of host susceptibility (S) genes by specifically binding to effector binding elements (EBEs) in their promoter regions. The DNA binding specificity of TALEs is dictated by their tandem repeat regions, which are highly variable between different TALEs. Mutation of the EBEs of S genes is being utilized as a key strategy to generate resistant crops against TALE-dependent pathogens. However, TALE adaptations through rearrangement of their repeat regions is a potential obstacle for successful implementation of this strategy. We investigated the consequences of TALE adaptations in the citrus pathogen Xanthomonas citri subsp. citri (Xcc), in which PthA4 is the TALE required for pathogenicity, whereas CsLOB1 is the corresponding susceptibility gene, on host resistance. Seven TALEs, containing two-to-nine mismatching-repeats to the EBEPthA4 that were unable to induce CsLOB1 expression, were introduced into Xcc pthA4:Tn5 and adaptation was simulated by repeated inoculations into and isolations from sweet orange for a duration of 30 cycles. While initially all strains failed to promote disease, symptoms started to appear between 9–28 passages in four TALEs, which originally harbored two-to-five mismatches. Sequence analysis of adapted TALEs identified deletions and mutations within the TALE repeat regions which enhanced putative affinity to the CsLOB1 promoter. Sequence analyses suggest that TALEs adaptations result from recombinations between repeats of the TALEs. Reintroduction of these adapted TALEs into Xcc pthA4:Tn5 restored the ability to induce the expression of CsLOB1, promote disease symptoms and colonize host plants. TALEs harboring seven-to-nine mismatches were unable to adapt to overcome the incompatible interaction. Our study experimentally documented TALE adaptations to incompatible EBE and provided strategic guidance for generation of disease resistant crops against TALE-dependent pathogens. Mutation of the EBEs of susceptibility (S) genes via genome editing and utilization of naturally occurring EBE variants have been used to generate disease resistant plants. However, TALE adaptations may lead to resistance loss, limiting the long-term efficacy of the strategy. We utilized an experimental evolution approach to test TALEs adaptations in the Xanthomonas citri-citrus pathosystem using designer TALEs that cannot recognize the EBE of host targets. We identified adaptive TALE mutations and deletions that occurred during less than 30 cycles of repeated infections, which reconstituted the virulence on the host. Adaptive variants originated from TALEs that harbored a small number of mismatches (≤5) to the EBE, whereas designer TALEs that harbored larger number of mismatches (≥7) to the EBE failed to adapt in the duration of this study. Our study experimentally demonstrates adaptive rearrangements of TALEs during host adaptation and suggests that the potential durability in the resistance of modified crops should be a significant factor to be considered prior to their introduction into the field.
Collapse
Affiliation(s)
- Doron Teper
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
- * E-mail:
| |
Collapse
|
14
|
Perez-Quintero AL, Szurek B. A Decade Decoded: Spies and Hackers in the History of TAL Effectors Research. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:459-481. [PMID: 31387457 DOI: 10.1146/annurev-phyto-082718-100026] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Transcription activator-like effectors (TALEs) from the genus Xanthomonas are proteins with the remarkable ability to directly bind the promoters of genes in the plant host to induce their expression, which often helps bacterial colonization. Metaphorically, TALEs act as spies that infiltrate the plant disguised as high-ranking civilians (transcription factors) to trick the plant into activating weak points that allow an invasion. Current knowledge of how TALEs operate allows researchers to predict their activity (counterespionage) and exploit their function, engineering them to do our bidding (a Manchurian agent). This has been possible thanks particularly to the discovery of their DNA binding mechanism, which obeys specific amino acid-DNA correspondences (the TALE code). Here, we review the history of how researchers discovered the way these proteins work and what has changed in the ten years since the discovery of the code. Recommended music for reading this review can be found in the Supplemental Material.
Collapse
Affiliation(s)
- Alvaro L Perez-Quintero
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523-1177, USA;
- IRD, CIRAD, Université Montpellier, IPME, 34000 Montpellier, France;
| | - Boris Szurek
- IRD, CIRAD, Université Montpellier, IPME, 34000 Montpellier, France;
| |
Collapse
|
15
|
Lang JM, Pérez-Quintero AL, Koebnik R, DuCharme E, Sarra S, Doucoure H, Keita I, Ziegle J, Jacobs JM, Oliva R, Koita O, Szurek B, Verdier V, Leach JE. A Pathovar of Xanthomonas oryzae Infecting Wild Grasses Provides Insight Into the Evolution of Pathogenicity in Rice Agroecosystems. FRONTIERS IN PLANT SCIENCE 2019; 10:507. [PMID: 31114597 PMCID: PMC6503118 DOI: 10.3389/fpls.2019.00507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/02/2019] [Indexed: 05/21/2023]
Abstract
Xanthomonas oryzae (Xo) are globally important rice pathogens. Virulent lineages from Africa and Asia and less virulent strains from the United States have been well characterized. Xanthomonas campestris pv. leersiae (Xcl), first described in 1957, causes bacterial streak on the perennial grass, Leersia hexandra, and is a close relative of Xo. L. hexandra, a member of the Poaceae, is highly similar to rice phylogenetically, is globally ubiquitous around rice paddies, and is a reservoir of pathogenic Xo. We used long read, single molecule real time (SMRT) genome sequences of five strains of Xcl from Burkina Faso, China, Mali, and Uganda to determine the genetic relatedness of this organism with Xo. Novel transcription activator-like effectors (TALEs) were discovered in all five strains of Xcl. Predicted TALE target sequences were identified in the Leersia perrieri genome and compared to rice susceptibility gene homologs. Pathogenicity screening on L. hexandra and diverse rice cultivars confirmed that Xcl are able to colonize rice and produce weak but not progressive symptoms. Overall, based on average nucleotide identity (ANI), type III (T3) effector repertoires, and disease phenotype, we propose to rename Xcl to X. oryzae pv. leersiae (Xol) and use this parallel system to improve understanding of the evolution of bacterial pathogenicity in rice agroecosystems.
Collapse
Affiliation(s)
- Jillian M. Lang
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States
- IRD, Cirad, Univ. Montpellier, IPME, Montpellier, France
| | - Alvaro L. Pérez-Quintero
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States
- IRD, Cirad, Univ. Montpellier, IPME, Montpellier, France
| | - Ralf Koebnik
- IRD, Cirad, Univ. Montpellier, IPME, Montpellier, France
| | - Elysa DuCharme
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States
| | - Soungalo Sarra
- Centre Régional de Recherche Agronomique de Niono, Institut d’Economie Rural, Bamako, Mali
| | - Hinda Doucoure
- Laboratoire de Biologie Moléculaire Appliquée, Université des Sciences Techniques et Technologiques de Bamako, Bamako, Mali
| | - Ibrahim Keita
- Laboratoire de Biologie Moléculaire Appliquée, Université des Sciences Techniques et Technologiques de Bamako, Bamako, Mali
| | - Janet Ziegle
- Pacific Biosciences, Menlo Park, CA, United States
| | - Jonathan M. Jacobs
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States
- IRD, Cirad, Univ. Montpellier, IPME, Montpellier, France
- Department of Plant Pathology, Infectious Disease Institute, Ohio State University, Columbus, OH, United States
| | - Ricardo Oliva
- International Rice Research Institute, Los Baños, Philippines
| | - Ousmane Koita
- Laboratoire de Biologie Moléculaire Appliquée, Université des Sciences Techniques et Technologiques de Bamako, Bamako, Mali
| | - Boris Szurek
- IRD, Cirad, Univ. Montpellier, IPME, Montpellier, France
| | - Valérie Verdier
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States
- IRD, Cirad, Univ. Montpellier, IPME, Montpellier, France
| | - Jan E. Leach
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
16
|
Bastedo DP, Lo T, Laflamme B, Desveaux D, Guttman DS. Diversity and Evolution of Type III Secreted Effectors: A Case Study of Three Families. Curr Top Microbiol Immunol 2019; 427:201-230. [DOI: 10.1007/82_2019_165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|