1
|
Chitin contributes to the formation of a feeding structure in a predatory nematode. Curr Biol 2023; 33:15-27.e6. [PMID: 36460010 DOI: 10.1016/j.cub.2022.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/20/2022] [Accepted: 11/04/2022] [Indexed: 12/03/2022]
Abstract
Some nematode predators and parasites form teeth-like denticles that are histologically different from vertebrate teeth, but their biochemical composition remains elusive. Here, we show a role of chitin in the formation of teeth-like denticles in Pristionchus pacificus, a model system for studying predation and feeding structure plasticity. Pristionchus forms two alternative mouth morphs with one tooth or two teeth, respectively. The P. pacificus genome encodes two chitin synthases, with the highly conserved chs-2 gene being composed of 60 exons forming at least four isoforms. Generating CRISPR-Cas9-based gene knockouts, we found that Ppa-chs-2 mutations that eliminate the chitin-synthase domain are lethal. However, mutations in the C terminus result in viable but teethless worms, with severe malformation of the mouth. Similarly, treatment with the chitin-synthase inhibitor Nikkomycin Z also results in teethless animals. Teethless worms can feed on various bacterial food sources but are incapable of predation. High-resolution transcriptomics revealed that Ppa-chs-2 expression is controlled by the sulfatase-encoding developmental switch Ppa-eud-1. This study indicates a key role of chitin in the formation of teeth-like denticles and the complex feeding apparatus in nematodes.
Collapse
|
2
|
Mundim FM, Gibson AK. A diverse parasite pool can improve effectiveness of biological control constrained by genotype-by-genotype interactions. Evol Appl 2022; 15:2078-2088. [PMID: 36540638 PMCID: PMC9753821 DOI: 10.1111/eva.13501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
The outcomes of biological control programs can be highly variable, with natural enemies often failing to establish or spread in pest populations. This variability has posed a major obstacle in use of the bacterial parasite Pasteuria penetrans for biological control of Meloidogyne species, economically devastating plant-parasitic nematodes for which there are limited management options. A leading hypothesis for this variability in control is that infection is successful only for specific combinations of bacterial and nematode genotypes. Under this hypothesis, failure of biological control results from the use of P. penetrans genotypes that cannot infect local Meloidogyne genotypes. We tested this hypothesis using isofemale lines of M. arenaria derived from a single field population and multiple sources of P. penetrans from the same and nearby fields. In strong support of the hypothesis, susceptibility to infection depended on the specific combination of host line and parasite source, with lines of M. arenaria varying substantially in which P. penetrans source could infect them. In light of this result, we tested whether using a diverse pool of P. penetrans could increase infection and thereby control. We found that increasing the diversity of the P. penetrans inoculum from one to eight sources more than doubled the fraction of M. arenaria individuals susceptible to infection and reduced variation in susceptibility across host lines. Together, our results highlight genotype-by-genotype specificity as an important cause of variation in biological control and call for the maintenance of genetic diversity in natural enemy populations.
Collapse
Affiliation(s)
- Fabiane M. Mundim
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Amanda K. Gibson
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
3
|
Srivastava A, Mohan S, Davies KG. Exploring Bacillus thuringiensis as a model for endospore adhesion and its potential to investigate adhesins in Pasteuria penetrans. J Appl Microbiol 2022; 132:4371-4387. [PMID: 35286009 PMCID: PMC9311801 DOI: 10.1111/jam.15522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/30/2022]
Abstract
Aims Phytonematodes are a constraint on crop production and have been controlled using nematicides; these are highly toxic and legislation in Europe and elsewhere is prohibiting their use and alternatives are being sought. Pasteuria penetrans is a hyperparasitic bacterium that form endospores and have potential to control root‐knot nematodes (Meloidogyne spp.), but their attachment to the nematode cuticle is host‐specific. Understanding host specificity has relied upon endospore inhibition bioassays using immunological and biochemical approaches. Phylogenetic analysis of survey sequences has shown P. penetrans to be closely related to Bacillus and to have a diverse range of collagen‐like fibres which we hypothesise to be involved in the endospore adhesion. However, due to the obligately hyperparasitic nature of Pasteuria species, identifying and characterizing these collagenous‐like proteins through gain of function has proved difficult and new approaches are required. Methods and Results Using antibodies raised to synthetic peptides based on Pasteuria collagen‐like genes we show similarities between P. penetrans and the more easily cultured bacterium Bacillus thuringiensis and suggest it be used as a gain of function platform/model. Using immunological approaches similar proteins between P. penetrans and B. thuringiensis are identified and characterized, one >250 kDa and another ~72 kDa are glycosylated with N‐acetylglucosamine and both of which are digested if treated with collagenase. These treatments also affected endospore attachment and suggest these proteins are involved in adhesion of endospores to nematode cuticle. Conclusion There are conserved similarities in the collagen‐like proteins present on the surface of endospores of both P. penetrans and B. thuringiensis. Significance and Impact of Study As B. thuringiensis is relatively easy to culture and can be transformed, it could be developed as a platform for studying the role of the collagen‐like adhesins from Pasteuria in endospore adhesion.
Collapse
Affiliation(s)
- Arohi Srivastava
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Sharad Mohan
- Division of Nematology, Indian Agricultural Research Institute, Pusa Campus, New Delhi110012, India
| | - Keith G Davies
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| |
Collapse
|
4
|
Sun S, Theska T, Witte H, Ragsdale EJ, Sommer RJ. The oscillating Mucin-type protein DPY-6 has a conserved role in nematode mouth and cuticle formation. Genetics 2021; 220:6481560. [PMID: 35088845 PMCID: PMC9208649 DOI: 10.1093/genetics/iyab233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/13/2021] [Indexed: 01/09/2023] Open
Abstract
Nematodes show an extraordinary diversity of mouth structures and strikingly different feeding strategies, which has enabled an invasion of all ecosystems. However, nearly nothing is known about the structural and molecular architecture of the nematode mouth (stoma). Pristionchus pacificus is an intensively studied nematode that exhibits unique life history traits, including predation, teeth-like denticle formation, and mouth-form plasticity. Here, we used a large-scale genetic screen to identify genes involved in mouth formation. We identified Ppa-dpy-6 to encode a Mucin-type hydrogel-forming protein that is macroscopically involved in the specification of the cheilostom, the anterior part of the mouth. We used a recently developed protocol for geometric morphometrics of miniature animals to characterize these defects further and found additional defects that affect mouth form, shape, and size resulting in an overall malformation of the mouth. Additionally, Ppa-dpy-6 is shorter than wild-type with a typical Dumpy phenotype, indicating a role in the formation of the external cuticle. This concomitant phenotype of the cheilostom and cuticle provides the first molecular support for the continuity of these structures and for the separation of the cheilostom from the rest of the stoma. In Caenorhabditis elegans, dpy-6 was an early mapping mutant but its molecular identity was only determined during genome-wide RNAi screens and not further investigated. Strikingly, geometric morphometric analysis revealed previously unrecognized cheilostom and gymnostom defects in Cel-dpy-6 mutants. Thus, the Mucin-type protein DPY-6 represents to the best of our knowledge, the first protein involved in nematode mouth formation with a conserved role in cuticle deposition. This study opens new research avenues to characterize the molecular composition of the nematode mouth, which is associated with extreme ecological diversification.
Collapse
Affiliation(s)
- Shuai Sun
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Tobias Theska
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Erik J Ragsdale
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany,Corresponding author: Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen 72076, Germany.
| |
Collapse
|
5
|
Kundu A, Jaiswal N, Bhat CG, Phani V, Chatterjee M, Dash M, Rao U, Somvanshi VS. Expression of various odorant-response defective (odr) genes in the entomopathogenic nematode Heterorhabditis bacteriophora (Nematoda: Heterorhabditidae). GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Mohan S, Kiran Kumar K, Sutar V, Saha S, Rowe J, Davies KG. Plant Root-Exudates Recruit Hyperparasitic Bacteria of Phytonematodes by Altered Cuticle Aging: Implications for Biological Control Strategies. FRONTIERS IN PLANT SCIENCE 2020; 11:763. [PMID: 32582268 PMCID: PMC7296116 DOI: 10.3389/fpls.2020.00763] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/13/2020] [Indexed: 05/21/2023]
Abstract
Phytonematodes are globally important functional components of the belowground ecology in both natural and agricultural soils; they are a diverse group of which some species are economically important pests, and environmentally benign control strategies are being sought to control them. Using eco-evolutionary theory, we test the hypothesis that root-exudates of host plants will increase the ability of a hyperparasitic bacteria, Pasteuria penetrans and other closely related bacteria, to infect their homologous pest nematodes, whereas non-host root exudates will not. Plant root-exudates from good hosts, poor hosts and non-hosts were characterized by gas chromatography-mass spectrometry (GC/MS) and we explore their interaction on the attachment of the hyperparasitic bacterial endospores to homologous and heterologous pest nematode cuticles. Although GC/MS did not identify any individual compounds as responsible for changes in cuticle susceptibility to endospore adhesion, standardized spore binding assays showed that Pasteuria endospore adhesion decreased with nematode age, and that infective juveniles pre-treated with homologous host root-exudates reduced the aging process and increased attachment of endospores to the nematode cuticle, whereas non-host root-exudates did not. We develop a working model in which plant root exudates manipulate the nematode cuticle aging process, and thereby, through increased bacterial endospore attachment, increase bacterial infection of pest nematodes. This we suggest would lead to a reduction of plant-parasitic nematode burden on the roots and increases plant fitness. Therefore, by the judicious manipulation of environmental factors produced by the plant root and by careful crop rotation this knowledge can help in the development of environmentally benign control strategies.
Collapse
Affiliation(s)
- Sharad Mohan
- Division of Nematology, Indian Council of Agricultural Research, Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Sharad Mohan,
| | - K. Kiran Kumar
- Indian Council of Agricultural Research, Central Citrus Research Institute, Nagpur, India
| | - Vivek Sutar
- Division of Nematology, Indian Council of Agricultural Research, Indian Agricultural Research Institute, New Delhi, India
| | - Supradip Saha
- Division of Agricultural Chemicals, Indian Council of Agricultural Research, Indian Agricultural Research Institute, New Delhi, India
| | - Janet Rowe
- Plant Pathology and Microbiology, Rothamsted Research, Harpenden, United Kingdom
| | - Keith G. Davies
- Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield, United Kingdom
- Norwegian Institute of Bioeconomy Research, Ås, Norway
- Keith G. Davies,
| |
Collapse
|
7
|
Phani V, Somvanshi VS, Shukla RN, Davies KG, Rao U. A transcriptomic snapshot of early molecular communication between Pasteuria penetrans and Meloidogyne incognita. BMC Genomics 2018; 19:850. [PMID: 30486772 PMCID: PMC6263062 DOI: 10.1186/s12864-018-5230-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/07/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Southern root-knot nematode Meloidogyne incognita (Kofoid and White, 1919), Chitwood, 1949 is a key pest of agricultural crops. Pasteuria penetrans is a hyperparasitic bacterium capable of suppressing the nematode reproduction, and represents a typical coevolved pathogen-hyperparasite system. Attachment of Pasteuria endospores to the cuticle of second-stage nematode juveniles is the first and pivotal step in the bacterial infection. RNA-Seq was used to understand the early transcriptional response of the root-knot nematode at 8 h post Pasteuria endospore attachment. RESULTS A total of 52,485 transcripts were assembled from the high quality (HQ) reads, out of which 582 transcripts were found differentially expressed in the Pasteuria endospore encumbered J2 s, of which 229 were up-regulated and 353 were down-regulated. Pasteuria infection caused a suppression of the protein synthesis machinery of the nematode. Several of the differentially expressed transcripts were putatively involved in nematode innate immunity, signaling, stress responses, endospore attachment process and post-attachment behavioral modification of the juveniles. The expression profiles of fifteen selected transcripts were validated to be true by the qRT PCR. RNAi based silencing of transcripts coding for fructose bisphosphate aldolase and glucosyl transferase caused a reduction in endospore attachment as compared to the controls, whereas, silencing of aspartic protease and ubiquitin coding transcripts resulted in higher incidence of endospore attachment on the nematode cuticle. CONCLUSIONS Here we provide evidence of an early transcriptional response by the nematode upon infection by Pasteuria prior to root invasion. We found that adhesion of Pasteuria endospores to the cuticle induced a down-regulated protein response in the nematode. In addition, we show that fructose bisphosphate aldolase, glucosyl transferase, aspartic protease and ubiquitin coding transcripts are involved in modulating the endospore attachment on the nematode cuticle. Our results add new and significant information to the existing knowledge on early molecular interaction between M. incognita and P. penetrans.
Collapse
Affiliation(s)
- Victor Phani
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Vishal S Somvanshi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rohit N Shukla
- Bionivid Technology Private Limited, 209, 4th Cross, Kasturi Nagar, Bangalore, India
| | - Keith G Davies
- Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield, UK. .,Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Postboks 115 NO-1431, Ås, Norway.
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
8
|
Phani V, Somvanshi VS, Rao U. Silencing of a Meloidogyne incognita selenium-binding protein alters the cuticular adhesion of Pasteuria penetrans endospores. Gene 2018; 677:289-298. [PMID: 30125659 DOI: 10.1016/j.gene.2018.08.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/30/2018] [Accepted: 08/16/2018] [Indexed: 11/30/2022]
Abstract
Pasteuria penetrans is an endospore forming hyperparasitic bacterium of the plant-pathogenic root-knot nematode, Meloidogyne incognita. For successful parasitization, the first step is adherence of bacterial endospores onto the cuticle surface of nematode juveniles. The knowledge of molecular intricacies involved during this adherence is sparse. Here, we identified a M. incognita selenium-binding protein (Mi-SeBP-1) differentially expressed during the initial interaction of M. incognita and P. penetrans, and show that it is involved in modulating parasitic adhesion of bacterial endospores onto nematode cuticle. Selenium-binding proteins (SeBPs) are selenium associated proteins important for growth regulation, tumor prevention and modulation of oxidation/reduction in cells. Although reported to be present in several nematodes, the function of SeBPs is not known in Phylum Nematoda. In situ hybridization assay localized the Mi-SeBP-1 mRNA to the hypodermal cells. RNAi-mediated silencing of Mi-SeBP-1 significantly increased the adherence of P. penetrans endospores to the nematode juvenile cuticle. Silencing of Mi-SeBP-1 did not change the nematode's ability to parasitize plants and reproduction potential within the host. These results suggest that M. incognita Mi-SeBP-1 might be involved in altering the attachment of microbial pathogens on the nematode cuticle, but is not involved in nematode-host plant interaction. This is the first report for a function of SeBP in Phylum Nematoda.
Collapse
Affiliation(s)
- Victor Phani
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|