1
|
Pérez-Montaño F, Jiménez-Guerrero I, Tamir-Ariel D, Burdman S. Virulence-Related Assays for Investigation of the Acidovorax citrulli-Cucurbitaceae Pathosystem. Methods Mol Biol 2024; 2751:81-94. [PMID: 38265711 DOI: 10.1007/978-1-0716-3617-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Acidovorax citrulli is one of the most important pathogens of cucurbit crops, mainly melon and watermelon. Although A. citrulli is able to infect all aerial parts of the plant, fruits are highly sensitive to the bacterium. Therefore, the disease is known as bacterial fruit blotch (BFB). The unavailability of effective tools for managing BFB, including the lack of resistant varieties, exacerbates the threat this disease poses to the cucurbit industry. However, despite the economic importance of BFB, still little is known about basic aspects of A. citrulli-plant interactions. Here, we present diverse techniques that have recently been developed for investigation of basic aspects of BFB, including identification of virulence determinants of the pathogen.
Collapse
Affiliation(s)
| | | | - Dafna Tamir-Ariel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
2
|
Jiménez-Guerrero I, Sonawane M, Eckshtain-Levi N, Tuang ZK, da Silva GM, Pérez-Montaño F, Leibman-Markus M, Gupta R, Noda-Garcia L, Bar M, Burdman S. Natural variation in a short region of the Acidovorax citrulli type III-secreted effector AopW1 is associated with differences in cytotoxicity and host adaptation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:516-540. [PMID: 37864805 DOI: 10.1111/tpj.16507] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023]
Abstract
Bacterial fruit blotch, caused by Acidovorax citrulli, is a serious disease of melon and watermelon. The strains of the pathogen belong to two major genetic groups: group I strains are strongly associated with melon, while group II strains are more aggressive on watermelon. A. citrulli secretes many protein effectors to the host cell via the type III secretion system. Here we characterized AopW1, an effector that shares similarity to the actin cytoskeleton-disrupting effector HopW1 of Pseudomonas syringae and with effectors from other plant-pathogenic bacterial species. AopW1 has a highly variable region (HVR) within amino acid positions 147 to 192, showing 14 amino acid differences between group I and II variants. We show that group I AopW1 is more toxic to yeast and Nicotiana benthamiana cells than group II AopW1, having stronger actin filament disruption activity, and increased ability to induce cell death and reduce callose deposition. We further demonstrated the importance of some amino acid positions within the HVR for AopW1 cytotoxicity. Cellular analyses revealed that AopW1 also localizes to the endoplasmic reticulum, chloroplasts, and plant endosomes. We also show that overexpression of the endosome-associated protein EHD1 attenuates AopW1-induced cell death and increases defense responses. Finally, we show that sequence variation in AopW1 plays a significant role in the adaptation of group I and II strains to their preferred hosts, melon and watermelon, respectively. This study provides new insights into the HopW1 family of bacterial effectors and provides first evidence on the involvement of EHD1 in response to biotic stress.
Collapse
Affiliation(s)
- Irene Jiménez-Guerrero
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Monica Sonawane
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Noam Eckshtain-Levi
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Za Khai Tuang
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Gustavo Mateus da Silva
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Francisco Pérez-Montaño
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
- Department of Microbiology, University of Seville, Seville, Spain
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Institute, Bet Dagan, Israel
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Institute, Bet Dagan, Israel
| | - Lianet Noda-Garcia
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Institute, Bet Dagan, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
3
|
Yang L, Zhao M, Zhang X, Jiang J, Fei N, Ji W, Ye Y, Guan W, Yang Y, Zhao T. Acidovorax citrulli type III effector AopU interferes with plant immune responses and interacts with a watermelon E3 ubiquitin ligase. Front Microbiol 2023; 14:1275032. [PMID: 37876782 PMCID: PMC10590900 DOI: 10.3389/fmicb.2023.1275032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023] Open
Abstract
Acidovorax citrulli is a seed-borne bacterium that causes bacterial fruit blotch of watermelon and other cucurbit plants worldwide. It uses a type III secretion system to inject type III effectors (T3Es) into plant cells, which affect the host immune responses and facilitate pathogen colonization. However, the current understanding of the specific molecular mechanisms and targets of these effectors in A. citrulli is limited. In this study, we characterized a novel T3E called AopU in A. citrulli group II strain Aac5, which shares homology with XopU in Xanthomonas oryzae. The Agrobacterium-mediated gene transient expression system was used to study the effect of AopU on host immunity. The results showed that AopU localized on the cell membrane and nucleus of Nicotiana benthamiana, inhibited reactive oxygen species burst induced by flg22 and the expression of marker genes associated with pathogen-associated molecular pattern-triggered immunity, but activated salicylic acid and jasmonic acid signal pathways. Further investigations revealed that AopU interacts with E3 ubiquitin ligase ClE3R in watermelon, both in vitro and in vivo. Interestingly, the deletion of aopU did not affect the virulence of A. citrulli, suggesting that AopU may have functional redundancy with other effectors in terms of its role in virulence. Collectively, these findings provide new insights into the mechanism of plant immune responses regulated by A. citrulli T3Es.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Plant Pathology, Plant Protection College, Shenyang Agricultural University, Shenyang, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mei Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoxiao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nuoya Fei
- Department of Plant Pathology, Plant Protection College, Shenyang Agricultural University, Shenyang, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiqin Ji
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunfeng Ye
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Wei Guan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuwen Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| | - Tingchang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
4
|
Wang Z, Shea Z, Rosso L, Shang C, Li J, Bewick P, Li Q, Zhao B, Zhang B. Development of new mutant alleles and markers for KTI1 and KTI3 via CRISPR/Cas9-mediated mutagenesis to reduce trypsin inhibitor content and activity in soybean seeds. FRONTIERS IN PLANT SCIENCE 2023; 14:1111680. [PMID: 37223818 PMCID: PMC10200896 DOI: 10.3389/fpls.2023.1111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/31/2023] [Indexed: 05/25/2023]
Abstract
The digestibility of soybean meal can be severely impacted by trypsin inhibitor (TI), one of the most abundant anti-nutritional factors present in soybean seeds. TI can restrain the function of trypsin, a critical enzyme that breaks down proteins in the digestive tract. Soybean accessions with low TI content have been identified. However, it is challenging to breed the low TI trait into elite cultivars due to a lack of molecular markers associated with low TI traits. We identified Kunitz trypsin inhibitor 1 (KTI1, Gm01g095000) and KTI3 (Gm08g341500) as two seed-specific TI genes. Mutant kti1 and kti3 alleles carrying small deletions or insertions within the gene open reading frames were created in the soybean cultivar Glycine max cv. Williams 82 (WM82) using the CRISPR/Cas9-mediated genome editing approach. The KTI content and TI activity both remarkably reduced in kti1/3 mutants compared to the WM82 seeds. There was no significant difference in terms of plant growth or maturity days of kti1/3 transgenic and WM82 plants in greenhouse condition. We further identified a T1 line, #5-26, that carried double homozygous kti1/3 mutant alleles, but not the Cas9 transgene. Based on the sequences of kti1/3 mutant alleles in #5-26, we developed markers to co-select for these mutant alleles by using a gel-electrophoresis-free method. The kti1/3 mutant soybean line and associated selection markers will assist in accelerating the introduction of low TI trait into elite soybean cultivars in the future.
Collapse
Affiliation(s)
- Zhibo Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Zachary Shea
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Luciana Rosso
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Chao Shang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Jianyong Li
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States
| | - Patrick Bewick
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Qi Li
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Bingyu Zhao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
5
|
Jeon H, Segonzac C. Manipulation of the Host Endomembrane System by Bacterial Effectors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:208-217. [PMID: 36645655 DOI: 10.1094/mpmi-09-22-0190-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The endomembrane system, extending from the nuclear envelope to the plasma membrane, is critical to the plant response to pathogen infection. Synthesis and transport of immunity-related proteins and antimicrobial compounds to and from the plasma membrane are supported by conventional and unconventional processes of secretion and internalization of vesicles, guided by the cytoskeleton networks. Although plant bacterial pathogens reside mostly in the apoplast, major structural and functional modifications of the endomembrane system in the host cell occur during bacterial infection. Here, we review the dynamics of these cellular compartments, briefly, for their essential contributions to the plant defense responses and, in parallel, for their emerging roles in bacterial pathogenicity. We further focus on Pseudomonas syringae, Xanthomonas spp., and Ralstonia solanacearum type III secreted effectors that one or both localize to and associate with components of the host endomembrane system or the cytoskeleton network to highlight the diversity of virulence strategies deployed by bacterial pathogens beyond the inhibition of the secretory pathway. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Hyelim Jeon
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Cécile Segonzac
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea
- Agricultural and Life Science Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
6
|
Reyes Caldas PA, Zhu J, Breakspear A, Thapa SP, Toruño TY, Perilla-Henao LM, Casteel C, Faulkner CR, Coaker G. Effectors from a Bacterial Vector-Borne Pathogen Exhibit Diverse Subcellular Localization, Expression Profiles, and Manipulation of Plant Defense. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:1067-1080. [PMID: 35952362 PMCID: PMC9844206 DOI: 10.1094/mpmi-05-22-0114-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Climate change is predicted to increase the prevalence of vector-borne disease due to expansion of insect populations. 'Candidatus Liberibacter solanacearum' is a phloem-limited pathogen associated with multiple economically important diseases in solanaceous crops. Little is known about the strategies and pathogenicity factors 'Ca. L. solanacearum' uses to colonize its vector and host. We determined the 'Ca. L. solanacearum' effector repertoire by predicting proteins secreted by the general secretory pathway across four different 'Ca. L. solanacearum' haplotypes, investigated effector localization in planta, and profiled effector expression in the vector and host. The localization of 'Ca. L. solanacearum' effectors in Nicotiana spp. revealed diverse eukaryotic subcellular targets. The majority of tested effectors were unable to suppress plant immune responses, indicating they possess unique activities. Expression profiling in tomato and the psyllid Bactericera cockerelli indicated 'Ca. L. solanacearum' differentially interacts with its host and vector and can switch effector expression in response to these environments. This study reveals 'Ca. L. solanacearum' effectors possess complex expression patterns, target diverse host organelles and the majority are unable to suppress host immune responses. A mechanistic understanding of 'Ca. L. solanacearum' effector function will reveal novel targets and provide insight into phloem biology. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
| | - Jie Zhu
- Plant Pathology Department, University of California, Davis, CA, U.S.A
| | | | - Shree P. Thapa
- Plant Pathology Department, University of California, Davis, CA, U.S.A
| | - Tania Y. Toruño
- Plant Pathology Department, University of California, Davis, CA, U.S.A
- Rijk Zwaan Breeding B.V, Burgemeester Crezéelaan 40, De Lier, 2678 KX, The Netherlands
| | | | - Clare Casteel
- Plant Pathology Department, University of California, Davis, CA, U.S.A
- School of Integrative Plant Science, Plant-Microbe Biology and Plant Pathology Section, Cornell University, Ithaca, NY, U.S.A
| | | | - Gitta Coaker
- Plant Pathology Department, University of California, Davis, CA, U.S.A
| |
Collapse
|
7
|
Acidovorax citrulli Effector AopV Suppresses Plant Immunity and Interacts with Aromatic Dehydratase ADT6 in Watermelon. Int J Mol Sci 2022; 23:ijms231911719. [PMID: 36233021 PMCID: PMC9570411 DOI: 10.3390/ijms231911719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Bacterial fruit blotch (BFB) is a disease of cucurbit plants caused by Acidovorax citrulli. Although A. citrulli has great destructive potential, the molecular mechanisms of pathogenicity of A. citrulli are not clear, particularly with regard to its type III secreted effectors. In this study, we characterized the type III secreted effector protein, AopV, from A. citrulli strain Aac5. We show that AopV significantly inhibits reactive oxygen species and the expression of PTI marker genes, and helps the growth of Pseudomonas syringae D36E in Nicotiana benthamiana. In addition, we found that the aromatic dehydratase ADT6 from watermelon was a target of AopV. AopV interacts with ADT6 in vivo and in vitro. Subcellular localization indicated ADT6 and AopV were co-located at the cell membrane. Together, our results reveal that AopV suppresses plant immunity and targets ADT6 in the cell membrane. These findings provide an new characterization of the molecular interaction of A. citrulli effector protein AopV with host cells.
Collapse
|
8
|
Ji W, Zhao M, Fei N, Yang L, Qiao P, Walcott R, Yang Y, Zhao T. Essential Acidovorax citrulli Virulence Gene hrpE Activates Host Immune Response against Pathogen. Int J Mol Sci 2022; 23:ijms23169144. [PMID: 36012409 PMCID: PMC9409176 DOI: 10.3390/ijms23169144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 12/25/2022] Open
Abstract
Bacterial fruit blotch (BFB) caused by Acidovorax citrulli (Ac) is a devastating watermelon disease that severely impacts the global watermelon industry. Like other Gram-negative bacteria, the type three secretion system (T3SS) is the main pathogenicity factor of A. citrulli. The T3SS apparatus gene hrpE codes for the Hrp pilus and serves as a conduit to secret effector proteins into host cells. In this study, we found that the deletion of hrpE in A. citrulli results in the loss of pathogenicity on hosts and the hypersensitive response on non-hosts. In addition, the A. citrulli hrpE mutant showed a reduction in in vitro growth, in planta colonization, swimming and twitching motility, and displayed increases in biofilm formation ability compared to the wild type. However, when HrpE was transiently expressed in hosts, the defense responses, including reactive oxygen species bursts, callose deposition, and expression of defense-related genes, were activated. Thus, the A. Citrulli growth in HrpE-pretreated hosts was suppressed. These results indicated that HrpE is essential for A. citrulli virulence but can also be used by hosts to help resist A. citrulli. Our findings provide a better understanding of the T3SS pathogenesis in A. citrulli, thus providing a molecular basis for biopesticide development, and facilitating the effective control of BFB.
Collapse
Affiliation(s)
- Weiqin Ji
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mei Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA
| | - Nuoya Fei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linlin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pei Qiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ron Walcott
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA
| | - Yuwen Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (Y.Y.); (T.Z.)
| | - Tingchang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (Y.Y.); (T.Z.)
| |
Collapse
|
9
|
Rosenberg T, Jiménez-Guerrero I, Tamir-Ariel D, Yarnitzky T, Burdman S. The GDSL-Lipolytic Enzyme Lip1 Is Required for Full Virulence of the Cucurbit Pathogenic Bacterium Acidovorax citrulli. Microorganisms 2022; 10:microorganisms10051016. [PMID: 35630458 PMCID: PMC9147443 DOI: 10.3390/microorganisms10051016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
Bacterial fruit blotch caused by Acidovoraxcitrulli is a serious disease of cucurbit crops. Here we report characterization of a mutant strain of A. citrulli M6 defective in lip1, a gene encoding a lipolytic enzyme. The M6-lip1- mutant was detected in a mutant library screen aimed at identifying M6 mutants with altered levels of twitching motility. In this screen M6-lip1- was the only mutant that showed significantly larger twitching motility haloes around colonies than wild-type M6. Sequence analyses indicated that lip1 encodes a member of the GDSL family of secreted lipolytic enzymes. In line with this finding, lipolytic assays showed that the supernatants of M6-lip1- had lower lipolytic activity as compared with those of wild-type M6 and a lip1-complemented strain. The mutant was also affected in swimming motility and had compromised virulence on melon seedlings and on Nicotiana benthamiana leaves relative to wild-type and complemented strains. Lip1 contains a predicted N-terminal signal sequence for type II secretion. Evidence from our study confirms Lip1 is indeed secreted in a type II secretion-dependent manner, and this is required for full virulence of A. citrulli. To the best of our knowledge this is the first study reporting contribution of lipolytic activity to virulence of a plant-pathogenic Acidovorax species.
Collapse
Affiliation(s)
- Tally Rosenberg
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (T.R.); (I.J.-G.); (D.T.-A.); (T.Y.)
| | - Irene Jiménez-Guerrero
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (T.R.); (I.J.-G.); (D.T.-A.); (T.Y.)
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Dafna Tamir-Ariel
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (T.R.); (I.J.-G.); (D.T.-A.); (T.Y.)
| | - Tali Yarnitzky
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (T.R.); (I.J.-G.); (D.T.-A.); (T.Y.)
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; (T.R.); (I.J.-G.); (D.T.-A.); (T.Y.)
- Correspondence: ; Tel.: +972-8-9489369
| |
Collapse
|
10
|
Park IW, Hwang IS, Oh EJ, Kwon CT, Oh CS. Nicotiana benthamiana, a Surrogate Host to Study Novel Virulence Mechanisms of Gram-Positive Bacteria, Clavibacter michiganensis, and C. capsici in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:876971. [PMID: 35620684 PMCID: PMC9127732 DOI: 10.3389/fpls.2022.876971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/25/2022] [Indexed: 06/11/2023]
Abstract
Clavibacter michiganensis is a Gram-positive bacterium that causes bacterial canker and wilting in host plants like tomato. Two major virulence genes encoding a cellulase (celA) and a putative serine protease (pat-1) have been reported. Here we show that Nicotiana benthamiana, a commonly used model plant for studying molecular plant-pathogen interactions, is a surrogate host of C. michiganensis and C. capsici. When a low concentration of two Clavibacter species, C. michiganensis and C. capsici, were infiltrated into N. benthamiana leaves, they caused blister-like lesions closely associated with cell death and the generation of reactive oxygen species and proliferated significantly like a pathogenic bacterium. By contrast, they did not cause any disease symptoms in N. tabacum leaves. The celA and pat-1 mutants of C. michiganensis still caused blister-like lesions and cankers like the wild-type strain. When a high concentration of two Clavibacter species and two mutant strains were infiltrated into N. benthamiana leaves, all of them caused strong and rapid necrosis. However, only C. michiganensis strains, including the celA and pat-1 mutants, caused wilting symptoms when it was injected into stems. When two Clavibacter species and two mutants were infiltrated into N. tabacum leaves at the high concentration, they (except for the pat-1 mutant) caused a strong hypersensitive response. These results indicate that C. michiganensis causes blister-like lesions, canker, and wilting in N. benthamiana, and celA and pat-1 genes are not necessary for the development of these symptoms. Overall, N. benthamiana is a surrogate host of Clavibacter species, and their novel virulence factors are responsible for disease development in this plant.
Collapse
Affiliation(s)
- In Woong Park
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, South Korea
| | - In Sun Hwang
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Eom-Ji Oh
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Choon-Tak Kwon
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Chang-Sik Oh
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, South Korea
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
11
|
Pei T, Kan Y, Wang Z, Tang M, Li H, Yan S, Cui Y, Zheng H, Luo H, Liang X, Dong T. Delivery of an Rhs-family nuclease effector reveals direct penetration of the gram-positive cell envelope by a type VI secretion system in Acidovorax citrulli. MLIFE 2022; 1:66-78. [PMID: 38818323 PMCID: PMC10989746 DOI: 10.1002/mlf2.12007] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/16/2021] [Indexed: 06/01/2024]
Abstract
The type VI secretion system (T6SS) is a double-tubular nanomachine widely found in gram-negative bacteria. Its spear-like Hcp tube is capable of penetrating a neighboring cell for cytosol-to-cytosol protein delivery. However, gram-positive bacteria have been considered impenetrable to such T6SS action. Here we report that the T6SS of a plant pathogen, Acidovorax citrulli (AC), could deliver an Rhs-family nuclease effector RhsB to kill not only gram-negative but also gram-positive bacteria. Using bioinformatic, biochemical, and genetic assays, we systematically identified T6SS-secreted effectors and determined that RhsB is a crucial antibacterial effector. RhsB contains an N-terminal PAAR domain, a middle Rhs domain, and an unknown C-terminal domain. RhsB is subject to self-cleavage at both its N- and C-terminal domains and its secretion requires the upstream-encoded chaperone EagT2 and VgrG3. The toxic C-terminus of RhsB exhibits DNase activities and such toxicity is neutralized by either of the two downstream immunity proteins, RimB1 and RimB2. Deletion of rhsB significantly impairs the ability of killing Bacillus subtilis while ectopic expression of immunity proteins RimB1 or RimB2 confers protection. We demonstrate that the AC T6SS not only can effectively outcompete Escherichia coli and B. subtilis in planta but also is highly potent in killing other bacterial and fungal species. Collectively, these findings highlight the greatly expanded capabilities of T6SS in modulating microbiome compositions in complex environments.
Collapse
Affiliation(s)
- Tong‐Tong Pei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yumin Kan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zeng‐Hang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ming‐Xuan Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shuangquan Yan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yang Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hao‐Yu Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Han Luo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoye Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Tao Dong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- Department of Immunology and MicrobiologySchool of Life Sciences, Southern University of Science and TechnologyGuangdongChina
| |
Collapse
|
12
|
Zhang X, Yang Y, Zhao M, Yang L, Jiang J, Walcott R, Yang S, Zhao T. Acidovorax citrulli Type III Effector AopP Suppresses Plant Immunity by Targeting the Watermelon Transcription Factor WRKY6. FRONTIERS IN PLANT SCIENCE 2020; 11:579218. [PMID: 33329640 PMCID: PMC7718035 DOI: 10.3389/fpls.2020.579218] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/14/2020] [Indexed: 06/12/2023]
Abstract
Acidovorax citrulli (Ac) is the causal agent of bacterial fruit blotch (BFB), and BFB poses a threat to global watermelon production. Despite its economic importance, the molecular mechanisms underlying Ac pathogenicity and virulence are not well understood, particularly with regard to its type III secreted effectors. We identify a new effector, AopP, in Ac and confirm its secretion and translocation. AopP suppresses reactive oxygen species burst and salicylic acid (SA) content and significantly contributes to virulence. Interestingly, AopP interacts with a watermelon transcription factor, ClWRKY6, in vivo and in vitro. ClWRKY6 shows typical nuclear localization, and AopP and ClWRKY6 co-localize in the nucleus. Ac infection, SA, and the pathogen-associated molecular pattern flg22 Ac promote ClWRKY6 production, suggesting that ClWRKY6 is involved in plant immunity and SA signaling. Furthermore, ClWRKY6 positively regulates PTI and SA production when expressed in Nicotiana benthamiana. Importantly, AopP reduces ClWRKY6 mRNA and ClWRKY6 protein levels, suggesting that AopP suppresses plant immunity by targeting ClWRKY6. In summary, we identify a novel effector associated with the virulence mechanism of Ac, which interacts with the transcription factor of the natural host, watermelon. The findings of this study provide insights into the mechanisms of watermelon immune responses and may facilitate molecular breeding for bacterial fruit blotch resistance.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuwen Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mei Zhao
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Linlin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ron Walcott
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Shanshan Yang
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tingchang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Zhang X, Zhao M, Jiang J, Yang L, Yang Y, Yang S, Walcott R, Qiu D, Zhao T. Identification and Functional Analysis of AopN, an Acidovorax Citrulli Effector that Induces Programmed Cell Death in Plants. Int J Mol Sci 2020; 21:E6050. [PMID: 32842656 PMCID: PMC7504669 DOI: 10.3390/ijms21176050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/01/2020] [Accepted: 08/18/2020] [Indexed: 01/23/2023] Open
Abstract
Bacterial fruit blotch (BFB), caused by Acidovorax citrulli, seriously affects watermelon and other cucurbit crops, resulting in significant economic losses. However, the pathogenicity mechanism of A. citrulli is not well understood. Plant pathogenic bacteria often suppress the plant immune response by secreting effector proteins. Thus, identifying A. citrulli effector proteins and determining their functions may improve our understanding of the underlying pathogenetic mechanisms. In this study, a novel effector, AopN, which is localized on the cell membrane of Nicotiana benthamiana, was identified. The functional analysis revealed that AopN significantly inhibited the flg22-induced reactive oxygen species burst. AopN induced a programmed cell death (PCD) response. Unlike its homologous protein, the ability of AopN to induce PCD was dependent on two motifs of unknown functions (including DUP4129 and Cpta_toxin), but was not dependent on LXXLL domain. More importantly, the virulence of the aopN mutant of A. citrulli in N. benthamiana significantly decreased, indicating that it was a core effector. Further analysis revealed that AopN interacted with watermelon ClHIPP and ClLTP, which responds to A. citrulli strain Aac5 infection at the transcription level. Collectively, these findings indicate that AopN suppresses plant immunity and activates the effector-triggered immunity pathway.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (J.J.); (L.Y.); (Y.Y.); (D.Q.)
| | - Mei Zhao
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA; (M.Z.); (R.W.)
| | - Jie Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (J.J.); (L.Y.); (Y.Y.); (D.Q.)
| | - Linlin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (J.J.); (L.Y.); (Y.Y.); (D.Q.)
| | - Yuwen Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (J.J.); (L.Y.); (Y.Y.); (D.Q.)
| | - Shanshan Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China;
| | - Ron Walcott
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA; (M.Z.); (R.W.)
| | - Dewen Qiu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (J.J.); (L.Y.); (Y.Y.); (D.Q.)
| | - Tingchang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.Z.); (J.J.); (L.Y.); (Y.Y.); (D.Q.)
| |
Collapse
|
14
|
Yang R, Santos Garcia D, Pérez Montaño F, da Silva GM, Zhao M, Jiménez Guerrero I, Rosenberg T, Chen G, Plaschkes I, Morin S, Walcott R, Burdman S. Complete Assembly of the Genome of an Acidovorax citrulli Strain Reveals a Naturally Occurring Plasmid in This Species. Front Microbiol 2019; 10:1400. [PMID: 31281298 PMCID: PMC6595937 DOI: 10.3389/fmicb.2019.01400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 06/04/2019] [Indexed: 11/13/2022] Open
Abstract
Acidovorax citrulli is the causal agent of bacterial fruit blotch (BFB), a serious threat to cucurbit crop production worldwide. Based on genetic and phenotypic properties, A. citrulli strains are divided into two major groups: group I strains have been generally isolated from melon and other non-watermelon cucurbits, while group II strains are closely associated with watermelon. In a previous study, we reported the genome of the group I model strain, M6. At that time, the M6 genome was sequenced by MiSeq Illumina technology, with reads assembled into 139 contigs. Here, we report the assembly of the M6 genome following sequencing with PacBio technology. This approach not only allowed full assembly of the M6 genome, but it also revealed the occurrence of a ∼53 kb plasmid. The M6 plasmid, named pACM6, was further confirmed by plasmid extraction, Southern-blot analysis of restricted fragments and obtention of M6-derivative cured strains. pACM6 occurs at low copy numbers (average of ∼4.1 ± 1.3 chromosome equivalents) in A. citrulli M6 and contains 63 open reading frames (ORFs), most of which (55.6%) encoding hypothetical proteins. The plasmid contains several genes encoding type IV secretion components, and typical plasmid-borne genes involved in plasmid maintenance, replication and transfer. The plasmid also carries an operon encoding homologs of a Fic-VbhA toxin-antitoxin (TA) module. Transcriptome data from A. citrulli M6 revealed that, under the tested conditions, the genes encoding the components of this TA system are among the highest expressed genes in pACM6. Whether this TA module plays a role in pACM6 maintenance is still to be determined. Leaf infiltration and seed transmission assays revealed that, under tested conditions, the loss of pACM6 did not affect the virulence of A. citrulli M6. We also show that pACM6 or similar plasmids are present in several group I strains, but absent in all tested group II strains of A. citrulli.
Collapse
Affiliation(s)
- Rongzhi Yang
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Diego Santos Garcia
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Francisco Pérez Montaño
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,Department of Microbiology, University of Seville, Seville, Spain
| | - Gustavo Mateus da Silva
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mei Zhao
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Irene Jiménez Guerrero
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tally Rosenberg
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Gong Chen
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Inbar Plaschkes
- Bioinformatics Unit, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shai Morin
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ron Walcott
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|