1
|
Mount HO, Urbanus ML, Zangari F, Gingras AC, Ensminger AW. The Legionella pneumophila effector PieF modulates mRNA stability through association with eukaryotic CCR4-NOT. mSphere 2025; 10:e0089124. [PMID: 39699231 PMCID: PMC11774319 DOI: 10.1128/msphere.00891-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
The eukaryotic CCR4-NOT deadenylase complex is a highly conserved regulator of mRNA metabolism that influences the expression of the complete transcriptome, representing a prime target for a generalist bacterial pathogen. We show that a translocated bacterial effector protein, PieF (Lpg1972) of Legionella pneumophila, directly interacts with the CNOT7/8 nuclease module of CCR4-NOT, with a dissociation constant in the low nanomolar range. PieF is a robust in vitro inhibitor of the DEDD-type nuclease, CNOT7, acting in a stoichiometric, dose-dependent manner. Heterologous expression of PieF phenocopies knockout of the CNOT7 ortholog (POP2) in Saccharomyces cerevisiae, resulting in 6-azauracil sensitivity. In mammalian cells, expression of PieF leads to a variety of quantifiable phenotypes: PieF silences gene expression and reduces mRNA steady-state levels when artificially tethered to a reporter transcript, and its overexpression results in the nuclear exclusion of CNOT7. PieF expression also disrupts the association between CNOT6/6L EEP-type nucleases and CNOT7. Adding to the complexities of PieF activity in vivo, we identified a separate domain of PieF responsible for binding to eukaryotic kinases. Unlike what we observe for CNOT6/6L, we show that these interactions can occur concomitantly with PieF's binding to CNOT7. Collectively, this work reveals a new, highly conserved target of L. pneumophila effectors and suggests a mechanism by which the pathogen may be modulating host mRNA stability and expression during infection. IMPORTANCE The intracellular bacterial pathogen Legionella pneumophila targets conserved eukaryotic pathways to establish a replicative niche inside host cells. With a host range that spans billions of years of evolution (from protists to humans), the interaction between L. pneumophila and its hosts frequently involves conserved eukaryotic pathways (protein translation, ubiquitination, membrane trafficking, autophagy, and the cytoskeleton). Here, we present the identification of a new, highly conserved host target of L. pneumophila effectors: the CCR4-NOT complex. CCR4-NOT modulates mRNA stability in eukaryotes from yeast to humans, making it an attractive target for a generalist pathogen, such as L. pneumophila. We show that the uncharacterized L. pneumophila effector PieF specifically targets one component of this complex, the deadenylase subunit CNOT7/8. We show that the interaction between PieF and CNOT7 is direct, occurs with high affinity, and reshapes the catalytic activity, localization, and composition of the complex across evolutionarily diverse eukaryotic cells.
Collapse
Affiliation(s)
| | - Malene L. Urbanus
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Francesco Zangari
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Alexander W. Ensminger
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Huang L, Yuan Y, Ramirez C, Xia C, Zhang C, Kud J, Kuhl JC, Caplan A, Dandurand LM, Xiao F. The potato RNA metabolism machinery is targeted by the cyst nematode effector RHA1B for successful parasitism. THE PLANT CELL 2024; 36:koae264. [PMID: 39325717 PMCID: PMC11638110 DOI: 10.1093/plcell/koae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/30/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
The potato (Solanum tuberosum) cyst nematode Globodera pallida induces a multinucleate feeding site (syncytium) in potato roots as its sole source of nutrition. Here, we demonstrate that the G. pallida effector RING-H2 finger A1b (RHA1B), which is a functional ubiquitin ligase, interferes with the carbon catabolite repression 4 (CCR4)-negative on TATA-less (NOT) deadenylase-based RNA metabolism machinery that regulates syncytium development in G. pallida-infected potato. Specifically, RHA1B targets the CCR4-associated factor 1 (CAF1) and StNOT10 subunits of the CCR4-NOT complex for proteasome-mediated degradation, leading to upregulation of the cyclin gene StCycA2 involved in syncytium formation. The StCAF1 subunit of CCR4-NOT recruits the RNA binding protein StPUM5 to deadenylate StCycA2 mRNA, resulting in shortened poly-A tails of StCycA2 mRNA and subsequently reduced transcript levels. Knockdown of either subunit (StCAF1 or StNOT10) of the CCR4-NOT complex or StPUM5 in transgenic potato plants resulted in enlarged syncytia and enhanced susceptibility to G. pallida infection, which resembles the phenotypes of StCycA2 overexpression transgenic potato plants. Genetic analyses indicate that transgenic potato plants overexpressing RHA1B exhibit similar phenotypes as transgenic potato plants with knockdown of StNOT10, StCAF1, or StPUM5. Thus, our data suggest that G. pallida utilizes the RHA1B effector to manipulate RNA metabolism in host plants, thereby promoting syncytium development for parasitic success.
Collapse
Affiliation(s)
- Li Huang
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Yulin Yuan
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Chloe Ramirez
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Chao Xia
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Cankui Zhang
- Department of Agronomy, Purdue Center for Plant Biology, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, IN 47907, USA
| | - Joanna Kud
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Joseph C Kuhl
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Allan Caplan
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Louise-Marie Dandurand
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA
| | - Fangming Xiao
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
3
|
de Lima LFF, Carvalho IGB, de Souza-Neto RR, Dos Santos LDS, Nascimento CA, Takita MA, Távora FTPK, Mehta A, de Souza AA. Antisense Oligonucleotide as a New Technology Application for CsLOB1 Gene Silencing Aiming at Citrus Canker Resistance. PHYTOPATHOLOGY 2024; 114:1802-1809. [PMID: 38748545 DOI: 10.1094/phyto-02-24-0058-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Citrus canker disease, caused by Xanthomonas citri subsp. citri, poses a significant threat to global citrus production. The control of the disease in the field relies mainly on the use of conventional tools such as copper compounds, which are harmful to the environment and could lead to bacterial resistance. This scenario stresses the need for new and sustainable technologies to control phytopathogens, representing a key challenge in developing studies that translate basic into applied knowledge. During infection, X. citri subsp. citri secretes a transcriptional activator-like effector that enters the nucleus of plant cells, activating the expression of the canker susceptibility gene LATERAL ORGAN BOUNDARIES 1 (LOB1). In this study, we explored the use of antisense oligonucleotides (ASOs) with phosphorothioate modifications to transiently inhibit the gene expression of CsLOB1 in Citrus sinensis. We designed and validated three potential ASO sequences, which led to a significant reduction in disease symptoms compared with the control. The selected ASO3-CsLOB1 significantly decreased the expression level of CsLOB1 when delivered through two distinct delivery methods, and the reduction of the symptoms ranged from approximately 15 to 83%. Notably, plants treated with ASO3 did not exhibit an increase in symptom development over the evaluation period. This study highlights the efficacy of ASO technology, based on short oligonucleotide chemically modified sequences, as a promising tool for controlling phytopathogens without the need for genetic transformation or plant regeneration. Our results demonstrate the potential of ASOs as a biotechnological tool for the management of citrus canker disease.
Collapse
Affiliation(s)
- Luiz Felipe Franco de Lima
- Citrus Research Center "Sylvio Moreira," Agronomic Institute-IAC, Cordeirópolis, Brazil
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas-UNICAMP, Campinas, Brazil
| | | | - Reinaldo Rodrigues de Souza-Neto
- Citrus Research Center "Sylvio Moreira," Agronomic Institute-IAC, Cordeirópolis, Brazil
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas-UNICAMP, Campinas, Brazil
| | | | | | - Marco Aurélio Takita
- Citrus Research Center "Sylvio Moreira," Agronomic Institute-IAC, Cordeirópolis, Brazil
| | | | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, CEP 70770917, Brasília, Brazil
| | | |
Collapse
|
4
|
Lv Y, Xie M, Zhou S, Wen B, Sui S, Li M, Ma J. CpCAF1 from Chimonanthus praecox Promotes Flowering and Low-Temperature Tolerance When Expressed in Arabidopsis thaliana. Int J Mol Sci 2023; 24:12945. [PMID: 37629126 PMCID: PMC10455127 DOI: 10.3390/ijms241612945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
CCR4-associated factor I (CAF1) is a deadenylase that plays a critical role in the initial step of mRNA degradation in most eukaryotic cells, and in plant growth and development. Knowledge of CAF1 proteins in woody plants remains limited. Wintersweet (Chimonanthus praecox) is a highly ornamental woody plant. In this study, CpCAF1 was isolated from wintersweet. CpCAF1 belongs to the DEDDh (Asp-Glu-Asp-Asp-His) subfamily of the DEDD (Asp-Glu-Asp-Asp) nuclease family. The amino acid sequence showed highest similarity to the homologous gene of Arabidopsis thaliana. In transgenic Arabidopsis overexpressing CpCAF1, the timing of bolting, formation of the first rosette, and other growth stages were earlier than those of the wild-type plants. Root, lateral branch, rosette leaf, and silique growth were positively correlated with CpCAF1 expression. FLOWERING LOCUS T (FT) and SUPPRESSOROF OVEREXPRESSION OF CO 1 (SOC1) gene expression was higher while EARLY FLOWERING3 (ELF3) and FLOWERING LOCUS C (FLC) gene expression of transgenic Arabidopsis was lower than the wild type grown for 4 weeks. Plant growth and flowering occurrences were earlier in transgenic Arabidopsis overexpressing CpCAF1 than in the wild-type plants. The abundance of the CpCAF1 transcript grew steadily, and significantly exceeded the initial level under 4 °C in wintersweet after initially decreasing. After low-temperature exposure, transgenic Arabidopsis had higher proline content and stronger superoxide dismutase activity than the wild type, and the malondialdehyde level in transgenic Arabidopsis was decreased significantly by 12 h and then increased in low temperature, whereas it was directly increased in the wild type. A higher potassium ion flux in the root was detected in transgenic plants than in the wild type with potassium deficiency. The CpCAF1 promoter was a constitutive promoter that contained multiple cis-acting regulatory elements. The DRE, LTR, and MYB elements, which play important roles in response to low temperature, were identified in the CpCAF1 promoter. These findings indicate that CpCAF1 is involved in flowering and low-temperature tolerance in wintersweet, and provide a basis for future genetic and breeding research on wintersweet.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jing Ma
- Chongqing Engineering Research Centre for Floriculture, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Y.L.); (M.X.); (S.Z.); (B.W.); (S.S.); (M.L.)
| |
Collapse
|
5
|
Sun L, Song R, Wang Y, Wang X, Peng J, Nevo E, Ren X, Sun D. New insights into the evolution of CAF1 family and utilization of TaCAF1Ia1 specificity to reveal the origin of the maternal progenitor for common wheat. J Adv Res 2022; 42:135-148. [PMID: 36513409 PMCID: PMC9788937 DOI: 10.1016/j.jare.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/19/2022] [Accepted: 04/08/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Until now, the most likely direct maternal progenitor (AABB) for common wheat (AABBDD) has yet to be identified. Here, we try to solve this particular problem with the specificity of a novel gene family in wheat and by using large population of rare germplasm resources. OBJECTIVES Dissect the novelty of TaCAF1Ia subfamily in wheat. Exploit the conservative and specific characteristics of TaCAF1Ia1 to reveal the origin of the maternal progenitor for common wheat. METHODS Phylogenetic and collinear analysis of TaCAF1 genes were performed to identify the evolutionary specificity of TaCAF1Ia subfamily. The large-scale expression patterns and interaction patterns analysis of CCR4-NOT complex were used to clarify the expressed and structural specificity of TaCAF1Ia subfamily in wheat. The population resequencing and phylogeny analysis of the TaCAF1Ia1 were utilized for the traceability analysis to understand gene-pool exchanges during the transferring and subsequent development from tetraploid to hexaploidy wheat. RESULTS TaCAF1Ia is a novel non-typical CAF1 subfamily without DEDD (Asp-Glu-Asp-Asp) domain, whose members were extensively duplicated in wheat genome. The replication events had started and constantly evolved from ancestor species. Specifically, it was found that a key member CAF1Ia1 was highly specialized and only existed in the subB genome and S genome. Unlike CAF1s reported in other plants, TaCAF1Ia genes may be new factors for anther development. These atypical TaCAF1s could also form CCR4-NOT complex in wheat but with new interaction sites. Utilizing the particular but conserved characteristics of the TaCAF1Ia1 gene, the comparative analysis of haplotypes composition for TaCAF1Ia1 were identified among wheat populations with different ploidy levels. Based on this, the dual-lineages origin model of maternal progenitor for common wheat and potential three-lineages domestication model for cultivated tetraploid wheat were proposed. CONCLUSION This study brings fresh insights for revealing the origin of wheat and the function of CAF1 in plants.
Collapse
Affiliation(s)
- Longqing Sun
- Hubei Hongshan Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China,Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Ruilian Song
- Hubei Hongshan Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yixiang Wang
- Hubei Hongshan Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaofang Wang
- Hubei Hongshan Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Junhua Peng
- Germplasm Enhancement Department, Huazhi Biotech Institute, Changsa, Hunan, China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, Israel
| | - Xifeng Ren
- Hubei Hongshan Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China,Corresponding authors.
| | - Dongfa Sun
- Hubei Hongshan Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, China,Corresponding authors.
| |
Collapse
|
6
|
Zhao Q, Yang Q, Wang Z, Sui Y, Wang Q, Liu J, Zhang H. Analysis of long non-coding RNAs and mRNAs in harvested kiwifruit in response to the yeast antagonist, Wickerhamomyces anomalus. Comput Struct Biotechnol J 2021; 19:5589-5599. [PMID: 34849193 PMCID: PMC8601023 DOI: 10.1016/j.csbj.2021.09.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 01/03/2023] Open
Abstract
W. anomalus exhibits good
biocontrol activity against blue and gray mold on
kiwifruit. LncRNAs in kiwifruit may be involved in activating
plant hormone signal transduction pathways in response to the
biocontrol yeast. LncRNAs in kiwifruit may modulate the production of
related TFs and secondary metabolites. The expression of downstream defense-related genes
in kiwifruit increases in response to the application of the
biocontrol yeast.
Biological control utilizing antagonistic yeasts is an
effective method for controlling postharvest diseases. Long non-coding RNAs
(lncRNAs) have been found to be involved in a variety of plant growth and
development processes, including those associated with plant disease resistance.
In the present study, the yeast antagonist, Wickerhamomyces
anomalus, was found to strongly inhibit postharvest blue mold
(Penicillium expansum) and gray mold
(Botrytis cinerea) decay of kiwifruit. Additionally,
lncRNA high-throughput sequencing and bioinformatic analysis was used to
identify lncRNAs in W. anomalus-treated wounds in
kiwifruit and predict their function based on putative target genes. Our results
indicate that lncRNAs may be involved in increasing ethylene (ET), jasmonic acid
(JA), abscisic acid (ABA), and auxin (IAA) levels, as well as activating signal
transduction pathways that regulate the expression of several transcription
factors (WRKY72, WRKY53,
JUB1AP2). These transcription factors (TFs) then
mediate the expression of downstream, defense-related genes
(ZAR1, PAD4, CCR4,
NPR4) and the synthesis of secondary metabolites, thus,
potentially enhancing disease resistance. Notably, by stimulating the
accumulation of antifungal compounds, such as phenols and lignin, disease
resistance in kiwifruit was enhanced. Our study provides new information on the
mechanism underlying the induction of disease resistance in kiwifruit by
W. anomalus, as well as a new disease resistance
strategy that can be used to enhance the defense response of fruit to pathogenic
fungi.
Collapse
Affiliation(s)
- Qianhua Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Qiya Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Zhenshuo Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuan Sui
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
| | - Qi Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
7
|
Wang P, Li L, Wei H, Sun W, Zhou P, Zhu S, Li D, Zhuge Q. Genome-Wide and Comprehensive Analysis of the Multiple Stress-Related CAF1 (CCR4-Associated Factor 1) Family and Its Expression in Poplar. PLANTS 2021; 10:plants10050981. [PMID: 34068989 PMCID: PMC8155972 DOI: 10.3390/plants10050981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 01/06/2023]
Abstract
Poplar is one of the most widely used tree in afforestation projects. However, it is susceptible to abiotic and biotic stress. CCR4-associated factor 1 (CAF1) is a major member of CCR4-NOT, and it is mainly involved in transcriptional regulation and mRNA degradation in eukaryotes. However, there are no studies on the molecular phylogeny and expression of the CAF1 gene in poplar. In this study, a total of 19 PtCAF1 genes were identified in the Populus trichocarpa genome. Phylogenetic analysis of the PtCAF1 gene family was performed with two closely related species (Arabidopsis thaliana and Oryza sativa) to investigate the evolution of the PtCAF1 gene. The tissue expression of the PtCAF1 gene showed that 19 PtCAF1 genes were present in different tissues of poplar. Additionally, the analysis of the expression of the PtCAF1 gene showed that the CAF1 family was up-regulated to various degrees under biotic and abiotic stresses and participated in the poplar stress response. The results of our study provide a deeper understanding of the structure and function of the PtCAF1 gene and may contribute to our understanding of the molecular basis of stress tolerance in poplar.
Collapse
|
8
|
Sun L, Ke F, Nie Z, Wang P, Xu J. Citrus Genetic Engineering for Disease Resistance: Past, Present and Future. Int J Mol Sci 2019; 20:E5256. [PMID: 31652763 PMCID: PMC6862092 DOI: 10.3390/ijms20215256] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 11/16/2022] Open
Abstract
Worldwide, citrus is one of the most important fruit crops and is grown in more than 130 countries, predominantly in tropical and subtropical areas. The healthy progress of the citrus industry has been seriously affected by biotic and abiotic stresses. Several diseases, such as canker and huanglongbing, etc., rigorously affect citrus plant growth, fruit quality, and yield. Genetic engineering technologies, such as genetic transformation and genome editing, represent successful and attractive approaches for developing disease-resistant crops. These genetic engineering technologies have been widely used to develop citrus disease-resistant varieties against canker, huanglongbing, and many other fungal and viral diseases. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based systems have made genome editing an indispensable genetic manipulation tool that has been applied to many crops, including citrus. The improved CRISPR systems, such as CRISPR/CRISPR-associated protein (Cas)9 and CRISPR/Cpf1 systems, can provide a promising new corridor for generating citrus varieties that are resistant to different pathogens. The advances in biotechnological tools and the complete genome sequence of several citrus species will undoubtedly improve the breeding for citrus disease resistance with a much greater degree of precision. Here, we attempt to summarize the recent successful progress that has been achieved in the effective application of genetic engineering and genome editing technologies to obtain citrus disease-resistant (bacterial, fungal, and virus) crops. Furthermore, we also discuss the opportunities and challenges of genetic engineering and genome editing technologies for citrus disease resistance.
Collapse
Affiliation(s)
- Lifang Sun
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China.
- National Center for Citrus Variety Improvement, Zhejiang Branch, Taizhou 318026, China.
| | - Fuzhi Ke
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China.
- National Center for Citrus Variety Improvement, Zhejiang Branch, Taizhou 318026, China.
| | - Zhenpeng Nie
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China.
- National Center for Citrus Variety Improvement, Zhejiang Branch, Taizhou 318026, China.
| | - Ping Wang
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China.
- National Center for Citrus Variety Improvement, Zhejiang Branch, Taizhou 318026, China.
| | - Jianguo Xu
- Institute of Citrus Research, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, China.
- National Center for Citrus Variety Improvement, Zhejiang Branch, Taizhou 318026, China.
| |
Collapse
|